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Summary

We consider estimation of regression models for sparse asynchronous longitudinal observations, 

where time-dependent responses and covariates are observed intermittently within subjects. Unlike 

with synchronous data, where the response and covariates are observed at the same time point, 

with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating 

equations are proposed for generalized linear models with either time invariant or time-dependent 

coefficients under smoothness assumptions for the covariate processes which are similar to those 

for synchronous data. For models with either time invariant or time-dependent coefficients, the 

estimators are consistent and asymptotically normal but converge at slower rates than those 

achieved with synchronous data. Simulation studies evidence that the methods perform well with 

realistic sample sizes and may be superior to a naive application of methods for synchronous data 

based on an ad hoc last value carried forward approach. The practical utility of the methods is 

illustrated on data from a study on human immunodeficiency virus.
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1. Introduction

In many longitudinal studies, measurements are taken at irregularly spaced and sparse time 

points. The sparsity refers to the availability of only a few observations per subject. In the 

classical longitudinal set-up, a small number of measurements of response and covariates are 

synchronized within individuals, meaning that they are observed at the same time points, 

with the measurement times varying across individuals. However, in many applications, 

observed covariates and response variables may be mismatched over time within 

individuals, leading to asynchronous data. This greatly complicates the study of the 
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association between response and covariates, with virtually all available longitudinal 

regression methods developed for the synchronous setting.

Often no synchronous data may be available and existing methods are not applicable to 

asynchronous data. In educational studies, it is of interest to associate subjective evaluations 

of students’ performance and objective test results. However, subjective information is 

usually collected through interviews or phone calls, which are obtained at different time 

points. In clinical epidemiology, one may study the links between biomarkers, sampled 

repeatedly at laboratory visits, with self-reported measures of function and quality of life, 

captured via outpatient phone interviews. In other clinical settings, the relationship between 

two biomarkers may be of interest, with laboratory visits scheduled at different times by 

design to address logistical issues which prevent their simultaneous observation. As an 

example, in a prospective observational cohort study (Wohl et al., 2005), a total of 191 

patients were followed for up to 5 years, with human immunodeficiency virus (HIV) viral 

load and CD4 cell counts measured repeatedly on these patients. Fig. 1 displays the 

observation times for the two variables: we see clearly that sparse measurements are taken 

on each variable for each subject and that the study protocol has specified that the viral load 

and CD4 cell count are obtained at laboratary visits on different days. Hence, there are no 

synchronous data within individuals, as would be needed by the existing methods. It is well 

known in the medical literature that HIV viral load and CD4 cell counts are negatively 

associated (Hoffman et al., 2010). The ad hoc but commonly adopted last value carried 

forward approach which employs synchronous data methods does not identify this 

association in the data analysis in Section 5.

The goal of this paper is to develop simple, computationally efficient and theoretically 

justified estimators for longitudinal regression models based on such sparse asynchronous 

data. A popular regression model for longitudinal data with time varying response and 

covariates is the generalized linear model

(1)

where g is a known, strictly increasing and continuously twice-differentiable link function, t 

is a univariate time index, X(t) is a vector of time varying covariates plus intercept term, Y(t) 

is a time varying response and β is an unknown time invariant regression parameter. Model 

(1) characterizes the conditional mean of Y(t) given X(t) while leaving its dependence 

structure and distributional form completely unspecified. Existing methodology (Diggle et 

al. (2002) and references therein) for model (1) assumes that X and Y are observed at the 

same time points within individuals, with the resulting estimators based on this synchronous 

data being n1/2 consistent and asymptotically normal. To our knowledge, estimation via 

generalized estimating equations (Diggle et al., 2002) has not been studied with 

asynchronous data and it is unclear whether parametric rates of convergence are achievable.

A more flexible model is the generalized varying-coefficient model that allows the unknown 

regression coefficient β(t) to vary over time in model (1):
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(2)

For the identity link function, as recently reviewed by Fan and Zhang (2008), estimation for 

sparse synchronous longitudinal data may be based on two main approaches: global and 

local. Local methods, which include local likelihood, may be based on local polynomial 

smoothing (Wu et al., 1998; Hoover et al., 1998; Fan and Zhang, 2000; Wu and Chiang, 

2000). Global approaches employ alternative basic function representations for the data and 

regression coefficients, such as polynomial spline (Huang et al., 2002, 2004), smoothing 

spline (Hoover et al., 1998; Chiang et al., 2001; Fan and Zhang, 2000) and functional data 

analytic approximations (Yao et al., 2005; Zhou et al., 2008; Sentürk and Muller, 2010; 

Zhou et al., 2008). Interestingly, whereas the optimal non-parametric rates of convergence 

for estimation of β(t) are the same for the local and global approaches with sparse 

longitudinal data, the global approaches can incorporate within-subject correlation structure 

in the estimation procedure, similarly to generalized estimating equations (Diggle et al., 

2002). Qu and Li (2006) employed penalized splines with quadratic inference functions. Fan 

et al. (2007) studied non-parametric estimation of the covariance function. Other related 

work can be found in Sun et al. (2007) and references therein. Establishing efficiency gains 

for the global approaches is challenging for the time-dependent parameter estimators, owing 

to slow rates of convergence.

Hybrids of models (1) and (2) have been widely investigated with synchronous longitudinal 

data, where some of the regression parameters are time invariant and some are time 

dependent. The so-called partial linear model is a variant inwhich the intercept termis time 

varyingwhereas other coefficients are constant. In general, the time-independent parameter 

may be estimated at the usual parametric rates. An important discovery that was made by 

Lin and Carroll (2001) is that the commonly used forms of the kernel methods cannot 

incorporate within-subject correlation to improve efficiency of the time invariant parameter 

estimator. Wang (2003) proposed an innovative kernel method, which assumes knowledge 

of the true correlation structure, yielding efficiency gains. The idea was extended by Wang 

et al. (2005) to achieve the semiparametric efficient bound that was computed in Lin and 

Carroll (2001) for the time-independent parameter. A counting process approach on the 

observation time was adopted by Martinussen and Scheike (1999, 2001), Cheng and Wei 

(2000) and Lin and Ying (2001), which enables n1/2-consistent estimation of the time-

independent parameter without explicit smoothing.

In this paper, we propose estimators for models (1) and (2) with asynchronous longitudinal 

data. Extending Martinussen and Scheike’s (2010) representation of synchronous data, we 

formulate the observation process by using a bivariate counting process for the observation 

times of the covariate and response variables. For subject i=1, … , n,
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counts the number of observation times up to t on the response and up to s on the covariates, 

where Tij , j = 1, … ,Li, are the observation times for the response and Sik, k = 1, … ,Mi, are 

the observation times for the covariates, i.e., with sparse asynchronous longitudinal data, we 

observe for i=1, … , n

where Li and Mi are finite with probability 1. To use existing methods for synchronous 

longitudinal data, where Li=Mi and Tij=Sij , j=1, … , Li, for each observed response, one 

may carry forward the most recently observed covariate. As evidenced by the numerical 

studies in Sections 4 and 5, this ad hoc approach may incur substantial bias.

To obtain estimators for models (1) and (2) with asynchronous data, we adapt local kernel 

weighting techniques to estimating equations that have previously been developed for 

synchronous data. Our main idea is intuitive: we downweight those observationswhich are 

distant in time, either from each other or from a known fixed time. This enables the use of 

all covariate observations for each observed response. These methods require similar 

smoothness assumptions on the covariate trajectories to those employed with synchronous 

data. In practice, there may be scenarios where it is necessary to preprocess the covariate 

X(t) when applying the methodologies of the paper. With a suitable choice of the bandwidth 

controlling the kernel weighting, the estimators for the time invariant coefficient and time-

dependent coefficient are shown to be consistent and asymptotically normal, with simple 

plug-in variance estimators. The usual cross-validation for bandwidth selection does not 

work because the data are non-synchronous but we develop a novel data-adaptive bandwidth 

selection procedure which works well in simulation studies. The choice of the local method 

versus a global method is based in part on computational and inferential simplicity and, in 

part, by the fact that it is unclear that efficiency gains are achievable given the slow rates of 

convergence of the estimators. The optimal rates of convergences for our local estimators 

for models (1) and (2) with asynchronous data are slower than the corresponding optimal 

rates which may be achieved with synchronous data. In addition, the estimator for the time-

independent model converges more slowly than the parametric rate n−1/2 for synchronous 

data. Given this lack of n−1/2-consistency, the extent to which efficiency gains with 

synchronous data for time-independent parameter estimation by using global methods carry 

over to the asynchronous setting is not obvious. These results are detailed in Sections 2 and 

3.

The remainder of the paper is organized as follows. In Section 2, we discuss estimation for 

model (1) with time-independent coefficients by using asynchronous data and provide the 

corresponding theoretical findings. The results for the time-dependent model (2) are given in 

Section 3. Section 4 reports simulation studies and Section 5 applies our procedure to data 

from the HIV study, exhibiting improved performance versus the last value carried forward 

approach with synchronous data methods. Concluding remarks are given in Section 6. 

Proofs of results from Sections 2 and 3 are given in Appendix A.
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The data that are analysed in the paper and the programs that were used to analyse them can 

be obtained from http://wileyonlinelibrary.com/journal/rss-datasets

2. Time invariant coefficient

2.1. Estimation

Suppose that we have a random sample of n subjects. For the ith subject, let Yi(t) be the 

response variable at time t and let Xi(t) be a p × 1 vector of possibly time-dependent 

covariates. The response Yi(t) may be a continuous, categorical or count variable, whereas 

the covariate Xi(t) may include time-independent covariates, such as an intercept term, in 

addition to time varying covariates. The main requirement for the validity of the methods 

presented below is that, if the time varying covariates in Xi(t) are multivariate, then the 

different covariates are measured at the same time points. Precise conditions on Xi(t) are 

provided in the theoretical discussion in Section 2.2 and do not differ considerably from 

those needed for estimation with synchronous data.

We now focus on the regression model (1) that relates Yi(t) to Xi(t) through a time invariant 

coefficient. To estimate β, we propose to use kernel weighting in a working independence 

generalized estimating equation (Diggle et al., 2002) which has previously been developed 

for synchronous data. The resulting estimating equation is

(3)

Using counting process notation, this is equivalent to

(4)

where Kh(t)=K(t/h)/h, K(t) is a symmetric kernel function, which is usually taken to be the 

Epanechnikov kernel K(t)=0.75(1–t2)+, and h is the bandwidth.

The kernelweighting accounts for the fact that the covariate and response are mismatched 

and permits contributions to Un(β) from all possible pairings of response and covariate 

observations. It requires that the observation times Tij and Sik, i=1, … , n, should be close for 

some but not all subjects. The theoretical results that are presented below require only that 

these observation times are close for a very small fraction of the overall sample of n 

individuals. If the observation times for covariate and response are close to each other, then 

the kernel weight is close to 1; however, if the observation times are far apart, then the 

contribution to the estimating equation (3) may be 0. In general, the relative contribution to 

Un(β) is determined by the closeness of the covariate and response measurement times. Note 

that, for a response measured at a particular time Tij , there may be multiple Siks at which 

covariates are measured which contribute to the estimating equation. We solve Un(β)=0 to 

obtain an estimate for β, which is denoted by . Regarding the computations, once the kernel 

function K has been chosen and the bandwidth has been fixed, the estimating equation can 
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be solved by using a standard Newton–Raphson implementation for generalized linear 

models, with good convergence properties.

2.2. Asymptotic properties

We next study the asymptotic properties of , including the bias–variance trade-off with 

respect to the bandwidth selection. We allow the observations of Xi(·) and the observations 

of Yi(·) to be arbitrarily correlated. We specify our assumptions on the covariance structure 

as follows. For s, t ∈ [0, τ], let var{Y(t)|X(t)}=σ{t, X(t)}2 and cov{Y(s), Y(t)|X(s) X(t)}=r{s, t, 

X(s), X(t)}, where τ is the maximum follow-up time. Observe that the conditional variances 

and correlations of Y are completely unspecified and may depend on X.

We need the following conditions.

Condition 1. Ni(t, s) is independent of (Yi, Xi) and, moreover, E{dNi(t, s)} = λ(t, s)dt ds, 

where λ(t, s) is a twice-continuous differentiable function for any 0 ⩽ t, s ⩽ τ. In addition, 

Borel measure for  is strictly positive. For t1 ≠ s1 and t2 ≠ s2, 

 where f(t1, t2, s1, 

s2) is continuous for t1 ≠ s1, and t2 ≠ s2 and f(t1±, t2±, s1±, s2±) exists.

Condition 2. If there is a vector γ such that γTX(s)=0 for any  with probability 1, then 

γ=0.

Condition 3. For any β in a neighbourhood of β0, the true value of β, E[X(s)g{X(t)Tβ}] is 

continuously twice differentiable in (t, s)∈[0, τ]⊗2 and |g′{X(t)Tη}|⩽q{||X(t)||} for some q(·) 

satisfying that E[||X(t)||4q{||X(t)||}2] is uniformly bounded in t. Additionally, E{||X(t)||4}<∞. 

Furthermore, E[X(s1)X(s2)Tr{t1, t2, X(t1), X(t2)}] and E[X(s1)X(s2)T
g {X(t1)Tβ0}g{X(t2)T 

β0}] are continuously twice differentiable in (s1, s2, t1, t2)∈[0, τ]⊗4. Moreover,

and

Condition 4. K(·) is a symmetric density function satisfying ∫ z2 K(z)dz < ∞ and ∫ K(z)2 dz 

< ∞. Additionally, nh → ∞.

Condition 5. nh5 → 0.

Condition 1 requires that the observation process is independent of both the response and the 

covariates. We require that λ(s, t) is positive in a neighbourhood of the diagonal where s=t 

at some time points, but not all time points, and λ(s, t) need not be greater than 0 when s ≠ t. 

Analogous assumptions have been widely utilized with synchronous data, as in Lin and 

Ying (2001), Yao et al. (2005) and Martinussen and Scheike (2010). We consider the sparse 

longitudinal set-up where the number of observations Ni(t, s) has finite expectation but may 
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have infinite support, similarly to Martinussen and Scheike (2010) with synchronous data. 

This differs from the dense setting that is popular in functional data analysis where Li and Mi 

→ ∞ as n → ∞ for all i. Condition 2 ensures identifiability of β whereas condition 3 posits 

smoothness assumptions on the expectation of some functionals of X(s) and gives additional 

regularity conditions on the observation intensity λ. The latter condition implies that the 

covariance function of X(t) is twice continuously differentiable. Such a condition is not 

satisfied by processes having independent increments. For Gaussian processes, the 

implication is that X(t) has continuous but not necessarily differentiable sample paths with 

probability 1. In theory, the condition may still allow the actual path of X(s) to be 

discontinuous, as with categorical covariates which jump according to a point process, 

where discontinuities may occur with zero measure. In Section 6, we discuss the possibility 

of relaxing condition 3. Conditions 4 and 5 specify valid kernels and bandwidths.

The following theorem, which is established in Appendix A, states the asymptotic properties 

of .

Theorem 1. Under conditions 1–4, the asymptotic distribution of  satisfies

(5)

where A(β0) = ∫s E[X(s)g′{X(s)Tβ0}X(s)T]λ(s, s)ds, β0 is the true regression coefficient and C 

is a constant, which can be found in Appendix A. The asymptotic variance

(6)

The asymptotic results do not depend on λ(s, t) for s ≠ t as we are dealing with asynchronous 

data in which the response and covariates are never ‘perfectly’ matched, i.e. there is zero 

measure associated with identical observation times. The variance depends critically on the 

joint density of the observation times on the diagonal, which determines how quickly 

information accumulates from an asynchronous response and covariates across subjects. For 

the case where synchronous data occur with positive probability, synchronous data methods 

may be employed with the synchronous portion of the data and will yield improved 

convergence rates relatively to the methods proposed above for pure asynchronous data.

If the bandwidth is further restricted by condition 5, then the asymptotic bias in condition (5) 

vanishes and  is consistent.

Corollary 1. Under conditions 1–5,  is consistent and converges to a mean 0 normal 

distribution given in theorem 1.

For statistical inference, it is challenging to estimate the variance in equation (6) directly, 

owing to the time varying quantities σ and λ, which are difficult to estimate well without 

imposing additional assumptions on the covariate and response processes. In practice, we 

estimate Σ by

Cao et al. Page 7

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2015 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and estimate the variance of  by the sandwich formula

This approach has been adopted by Cheng and Wei (2000) and Lin and Ying (2001) with 

synchronous data as well.

Corollary 2. Under conditions 1–5, the sandwich formula consistently estimates the variance 

of .

Our method depends on the selection of the bandwidth. Theoretically speaking, condition 4 

says that the bandwidth cannot be too small (smaller than O(n−1)); otherwise, the variance 

will be quite large. However, to eliminate the asymptotic bias, we require a small 

bandwidth. Theorem 1 indicates that the bias is of order O(n1/2h5/2), so we should choose 

bandwidth h=o(n−1/5). With this choice of bandwidth, we achieve a rate of convergence 

o(n2/5), which is slower than the parametric n1/2 rate of convergence for synchronous data 

under model (1).

We propose a data-adaptive bandwidth selection procedure despite the fact that traditional 

cross-validation methods are not applicable owing to asynchronous measurement times for 

the covariates and response. On the basis of condition (5), we first regress  on h2 in a 

reasonable range of h to obtain the slope estimate . To obtain the variance, we split the 

data randomly into two parts and obtain regression coefficient estimates  and 

based on each half-sample. The variance of  is then estimated by 

. Using both  and , we thus calculate the mean-squared 

error as  on the basis of theorem 1. Finally, we select the optimal bandwidth h 

minimizing this mean-squared error.

Our numerical studies show that small bias may be achieved for bandwidths between n−1 

and n−1/2, with stable variance estimation and confidence interval coverage for bandwidths 

larger than n−4/5. Within this range, the bias diminishes as the sample size increases, as 

predicted by theorem 1. Methods based on asynchronous data are generally less efficient 

than those based on synchronous data, with the information in synchronous data dominating 

that in asynchronous data. Numerical studies (which are not reported) demonstrate that, in 

moderate sample sizes, asynchronous data may yield comparable but reduced efficiency 

when there are a large number of observation times for the covariate process.
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3. Time-dependent coefficients

The observed data are the same as in Section 2. Suppose that we are interested in estimating 

the coefficient β(t) in model (2) at a fixed time point t. Similarly to synchronous data, in the 

asynchronous set-up, neither the response Y(t) nor the covariate X(t) is generally observed at 

time t. However, one may utilize measurements of these variables which are taken close in 

time to t to estimate β(t). Kernel weighting is employed to downweight measurements of 

Y(t) and X(t) on the basis of their distance from t. Recall that, in Section 2, a single 

bandwidth was used to weight on the basis of the distance between the covariate and 

response measurements. The main difference in this section is that two bandwidths are 

needed to weight separately on the basis of the distance of the response measurement 

fromtime t and the distance of the covariate measurement from time t. Fitting model (2) with 

synchronous data requires only a single bandwidth, since the response and covariate are 

always measured at the same time points.

The doubly kernel-weighted estimating equation for β(t) is

(7)

where Kh1,h2(t, s)=K(t/h1, s/h2)/(h1h2) and K(t, s) is a bivariate kernel function, say, the 

product of univariate Epanechnikov kernels K(t, s)=0.5625(1–t2)+(1–s2)+. We solve 

equation (7) to obtain an estimate for β(t), which is denoted as . Computationally, the 

Newton–Raphson iterative method can be utilized after choosing Kh1,h2 and fixing the 

bandwidths. As this estimating equation leads to separate estimates of β(t) at each time point 

t, the resulting inferential procedures that are described below are pointwise and not 

simultaneous. To obtain the trajectory of , one solves equation (7) on a dense grid of 

time points in (0, τ).

To derive the large sample properties of the estimator, we need the following assumptions.

Condition 1′. Ni(t, s) is independent of (Yi, Xi) and, moreover, E{dNi(t, s)}=λ(t, s)dtds, 

where λ(t, s) is twice continuous differentiable for any 0⩽t, s⩽τ and is strictly positive for 

t=s. For t1 ≠ s1, t2 ≠ s2, 

 where f(t1, t2, s1, 

s2) is continuous for t1 ≠ s1 and t2 ≠ s2 and f(t1±, t2±, s1±, s2±) exists.

Condition 2′. For any fixed time point t, if there is a vector γ such that γT X(t)=0, then γ=0.

Condition 3′. E[X(s1)g{X(s2)T β(s3)}] is continuously twice differentiable in (s1, s2, s3) ∈ 

s[0, τ]⊗3 and |g′{X(t)Tη}⩽q{||X(t)||} for some q(·) satisfying that E[||X(t)||4q{||X(t)||2}] is 

uniformly bounded in t. Moreover, E[X(t1)X(s1)Tr{s2, t2, X(s2), X(t2)}] is continuously twice 

differentiable in (t1, s1, t2, s2)∈[0, τ]⊗4 and E[X(t1)X(s1)T g{X(t2)T β0(t)}g{X(s2)T β0(t)}] is 

continuously twice differentiable in (t1, s1, t2, s2, t)∈[0, τ]⊗5.

Cao et al. Page 9

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2015 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Condition 4′. The kernel function K(x, y) is a symmetric bivariate density function for x and 

y. In addition, ∫ |x3y|K(x, y)dxdy < ∞, ∫ |xy3|K(x, y)dxdy < ∞, ∫ x2 y2 K(x, y) dx dy < ∞ and 

∫ K(x, y)2dx dy < ∞. Moreover, nh1h2 → ∞.

Condition 5′. .

Conditions 1′–5′ are similar in spirit to conditions 1–5 in Section 2. Condition 1′ strengthens 

condition 1, requiring that, to estimate β(t) at time t, λ(t, t)>0. Condition 2′ is a modified 

identifiability assumption for β(t) at time t. Condition 3′ posits the requirements on the 

covariance function of the covariate process, with the implications similar to those discussed 

in Section 2. Conditions 4′ and 5′ are provided for the kernel function and the bandwidth.

We establish the asymptotic distribution of  in the following theorem.

Theorem 2. Under conditions 1′–4′, the asymptotic distribution of  for any fixed time 

point t ∈ (0, τ) based on solving Un{β(t)} in equation (7) is

where B{β0(t),t}= λ(t,t)E[X(t)g′{X(t)T β0(t)} X(t)T], β0(t) is the true coefficient function and 

D1(t),D2(t) and D3(t) are known functions, whose specific forms can be found in Appendix 

A. The variance function is

(8)

If the bandwidth is further restricted by condition 5′, then the asymptotic bias in equation (8) 

vanishes and  is consistent for β0(t), as stated in the following corollary.

Corollary 3. Under conditions 1′–5′  is consistent and converges to the zero-mean 

normal distribution given in theorem 2 for any t ∈(0, τ).

For any fixed time point t, the variance estimator for  may be obtained by expanding the 

estimating equation (7) similarly to the time invariant case.

Corollary 4. Under conditions 1′–5′, for any fixed time point t ∈ (0, τ), the sandwich 

formula consistently estimates the variance of .

If we let h=h1=h2, on the basis of condition 4′, a valid bandwidth is larger than O(n−1/2). In 

contrast, theorem 2 indicates that the bias is of order O(n1/2h3), so we should choose 

bandwidth h=o(n−1/6). With this choice of bandwidth, we achieve o(n1/3) rate of 

convergence, which is slower than the o(n2/5) rate of convergence for the synchronous case 

with time-dependent coefficient (Martinussen and Scheike, 2010). In general, similarly to 

model (1), asynchronous estimators for model (2) converge more slowly and are less 

efficient than those based on synchronous data.
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Our numerical studies show that bandwidths near n−1/2 perform well with moderate sample 

sizes. As with model (1), the automation of bandwidth selection for estimation of β(t) is 

challenging with asynchronous data because the calculation of error criteria for use in cross-

validation is unclear. Our suggested procedure calculates the integrated mean-squared error. 

This is accomplished through calculating mean-squared errors separately at time points of 

interest by adapting the approach for time-independent coefficients in Section 2. We then 

sum them to obtain integrated mean-square errors and choose the bandwidth that minimizes 

this summation. This procedure performs well in the simulation studies.

4. Numerical studies

In this section we investigate finite sample properties of the estimators that were proposed in 

Section 2 and Section 3 through Monte Carlo simulation.

4.1. Time invariant coefficient

We first study the performance of the estimator for the time invariant coefficient in model 

(1).We generate 1000 data sets, each consisting of n = 100, 400, 900 subjects. The number 

of observation times for the response Y(t) was Poisson distributed with intensity rate 5, and 

similarly for the number of observation times for the covariate X(t). With these two numbers 

of measurements, the observation times for the response and covariate are generated from 

the uniform distribution Unif(0,1) independently. The covariate process is Gaussian, with 

values at fixed time points being multivariate normal with mean 0, variance 1 and 

correlation exp(−|tij–tik|), where tij is the jth measurement time and tik is the kth measurement 

time for the response, both on subject i. Whereas realizations of this Gaussian process may 

not be differentiable on the diagonal, the resulting expectations in conditions 3 and 3′ are 

bounded and smoothly differentiable, as required for the validity of the asynchronous 

estimator. At the data-generating stage, to generate the response, we include the response 

observation times with the covariate observation times when generating the covariates that 

are needed for simulating responses at the response observation times. The responses were 

generated from

(9)

where β0 is the intercept, β1 is a time-independent coefficient and ε(t) is Gaussian, with 

mean 0, variance 1 and cov{ε(s), ε(t)} = 2−|t–s|. Once the response has been generated, we 

remove the covariate measurements at the response observation times from the observed 

covariate values. In this simulation, we set β0=0.5 and β1=1.5 and assess the performance of 

. The results are very similar for other choices of βs. Under a logistic regression model for 

a binary response, the simulation set-up is similar to that for the continuous response except 

that the link function is g(x)=exp(x)/{1+exp(x)} and the response variable is generated 

through Y(t)=I(Unif(0,1)⩽1/[1+exp{−β0−X(t)β1}]).

On the basis of our theory, we use different bandwidths in the range of (n−1/5,n−1 when 

solving equation (3) to find . The kernel function is the Epanechnikov kernel, which is 

K(x)=0.75(1 – x2)+. Similar results were obtained by using other kernels. We evaluate the 

accuracies of the asymptotic approximations by calculating the average bias, the average 
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relative bias and the empirical standard deviation of  across the 1000 data sets. We also 

calculate a model-based standard error and the corresponding 0.95 confidence interval based 

on the normal approximation. The automated bandwidth procedure that was described in 

Section 2 was also employed for estimation.

Table 1 summarizes the main results over 1000 simulations, where ‘auto’ means bandwidths 

based on the adaptive selection procedure, ‘BD’ represents different bandwidths, ‘Bias’ is 

the empirical bias, ‘RB’ is Bias divided by the true β1, ‘SD’ is the sample standard 

deviation, ‘SE’ is the average of the standard error estimates and ‘CP’ represents the 

coverage probability of the 95% confidence interval for β1. We observe that as the sample 

size increases the bias decreases and is small, that the empirical and model-based standard 

errors tend to agree reasonably well and that the coverage is close to the nominal 0.95-level. 

The performance improves with larger sample sizes.

4.2. Time-dependent coefficient

We next study the properties of the estimator for the time-dependent coefficient in model 

(2). We consider a wide range of functional forms, including β(t)=0.4t+0.5, β(t)=sin(2πt) and 

β(t)=t1/2. The responses were generated from the model

(10)

The simulation set-up is identical to that in Section 4.1, except that we increase the Poisson 

intensity to 10. We employ the same bandwidth for the response and the covariate 

observation times. In addition to a fixed bandwidth, we also adopt a data-adaptive 

bandwidth selection procedure as described in Section 3.

The results (Table 2) are similar to those for the time-independent coefficient. For all 

functional forms of β(t), as the sample size increases, the bias is well controlled, the 

empirical and model-based standard errors agree reasonably well and the empirical coverage 

probability is close to the nominal 0.95-level. The performance tends to improve as the 

sample size increases. The empirical results appear to support the (nh1h2)1/2 rate of 

convergence in theorem 2, with the empirical standard errors diminishing roughly 

proportionally to this rate.

Similar results were obtained for a time-dependent logistic regression and have been 

omitted.

4.3. Comparison with last value carried forward method

In longitudinal studies, a naive approach to analysing asynchronous data is the last value 

carried forward method. If data at a certain time point are missing, then the observation at 

the most recent time point in the past is used in an analysis for synchronous data. It is well 

known that this method is theoretically biased. However, in practice, it is often employed, 

owing to its conceptual simplicity and ease of implementation. In this subsection, we study 

its performance in simulation studies under the time-independent coefficient model (1).
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The simulation set-up is the same as in Section 4.1. For the last value carried forward 

procedure, in applying generalized estimating equations for synchronous data (Diggle et al., 

2002), for a response observed at time tij, the covariate at time tij was taken to be the 

covariate observed at time s=max(x⩽tij, x∈{si1,…,simi}}). This corresponds to the most 

recent observation time relative to the response. For a response, if no covariate is observed 

before the response’s observation time, then the observed response is omitted from the 

analysis.

Table 3 summarizes the results based on linear and logistic link functions when β1 = 1.5. 

The results for other choices of β1 are very similar andwe omit the details. The bias is 

substantial and does not attenuate as the sample size increases. Because of decreasing 

variance, as the sample size increases, the coverage probability deteriorates. This is 

especially true for the logistic regression which has 0 coverage probability when the sample 

size n = 900.

5. Application to human immunodeficiency virus data

We now illustrate the proposed inferential procedures for models (1) and (2) with a 

comparison with the last value carried forward approach on data from the HIV study that 

was described in Section 1. A total of 190 HIV patients were followed from July 1997 to 

September 2002. Details of the study design, methods and medical implications are given in 

Wohl et al. (2005). During this study, all patients were scheduled to have their 

measurements taken during semiannual visits, with HIV viral load and CD4 cell counts 

obtained separately at different laboratories. Because many patients missed visits and the 

HIV infection occurred randomly during the study, there are unequal numbers of repeated 

measurements on viral load and CD4 cell count and there are different measurement times 

for the two variables. These data are sparse and purely asynchronous.

In our analysis, we took the CD4 cell counts as the covariate and HIV viral load as the 

response. Both CD4 cell count and HIV viral load are continuous variables with skewed 

distribution. As is customary, we log-transformed these variables before the analysis. Since 

the measurement timescale is not in Unif(0, 1), we use the interquantile range to do 

adjustment. We first fit model (1) with bandwidths h=2(Q3–Q1)n−γ, where Q3 is the 0.75-

quantile and Q1 is the 0.25-quantile of the pooled sample of measurement times for the 

covariate and response, n is the number of patients and γ=0.3, 0.5, 0.7. The time-

independent coefficient model is

(11)

Coefficient estimateswere obtained by the estimating equation (3) based on different 

bandwidths and data-driven bandwidth selection procedure, auto. For comparison, we also 

use the last value carried forward approach, lvcf, for coefficient estimation. The resulting 

estimates and standard errors are given in Table 4.

From Table 4, using the estimates from equation (3),we can clearly see the negative 

relationship between CD4 cell counts and HIV viral load, which has been verified in earlier 

medical studies. For different choices of bandwidth, the point estimate does not change 
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much, but the variance decreases as the bandwidth increases, as expected. Overall, on the 

basis of these analyses, there appears to be at least some evidence that CD4 cell count and 

HIV viral load are associated. In contrast, the last value carried forward approach suggests a 

very weak positive association, in a direction which is opposite to that observed in previous 

studies and in the current analysis using estimating equation (3).

To investigate whether the relationship between CD4 cell counts and HIV viral load varies 

over time, we fit the varying-coefficient model

(12)

In Fig. 2, we depict the coefficient estimates and 95% confidence intervals based on 

automatic bandwidth selection. From the plot, we see that the negative association is 

relatively constant over time and comparable in magnitude with that obtained under model 

(11). The pointwise intervals cover 0 at all time points. The results seem to support the use 

of a simpler model based on an assumption of time-independent regression parameters.

To check conditions 1 and 1′ on the observation intensity, one may construct plots of the 

observation times. For condition 1, a histogram (which has been omitted) of the differences 

between Tij and the closest Sik was roughly normal and centred near 0, suggesting that the 

assumption holds in this data set. For condition 1′, we plotted Tij versus Sik (which has been 

omitted) and found that, for time points between 400 and 1400, there was sufficient 

information on the diagonal where s=t to permit estimation of β(t).

6. Concluding remarks

In this paper, we proposed kernel-weighted estimating equations for generalized linear 

models with asynchronous longitudinal data. The methods include estimators for models 

with either time invariant coefficient β or time-dependent coefficient β(t). The 

procedureswere developed by extending the univariate counting process framework for the 

observation process for synchronous data to a bivariate counting process set-up that is 

appropriate for asynchronous data. The resulting theory demonstrates that the rates of 

convergence that are achieved with asynchronous data are generally slower than those 

achieved with synchronous data and that, even under the time-independent model (1), 

parametric rates of convergence are not achievable.

To borrow information from nearby points, we require the covariance function of X(t) to be 

twice continuously differentiable for t=s. These assumptions are sufficient for our theoretical 

arguments and are similar to those required for synchronous data for estimation of β(t), 

where at least some smoothness of X(t) is needed. One may relax the continuous 

differentiability assumption such that the covariance function of X(t) is continuously 

differentiable from either the left-hand or right-hand side. This relaxation allows a more 

general class of X(t), including processes with independent increments, such as Poisson 

processes and Brownian motion. The trade-off is that the resulting kernel-weighted 

estimators will have an asymptotic bias which is of the order h instead of h2 as stated in 

theorem 1, and the resulting convergence rates and optimal bandwidths may differ. The 
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theoretical justification for these results requires non-trivial modifications of the proofs in 

this paper and are left for further research.

Global approaches like functional data analysis (Yao et al., 2005; Sentürk and Muller, 2010) 

or basis approximations (Zhou et al., 2008) for synchronized data provide added structure 

for incorporating correlation between observations in the estimation procedure. The 

extension to asynchronous data does not appear to have been studied in the literature. Given 

the slow rates of convergence for the local method, the extent to which global methods will 

improve efficiency is unclear. Additional assumptions may be required to achieve such gains 

and may be more restrictive than the minimal set of conditions that are specified in theorems 

1 and 2. A deeper investigation of these issues is clearly warranted but is beyond the scope 

of the current paper.

In this paper, we did not consider the partially time-dependent model, in which some 

coefficients are time invariant and some coefficients are time dependent. As in earlier work 

on this model with synchronous data, a two-step procedure may be useful for estimation. 

This merits further investigation.

The asymptotic theory for  under model (2) in Section 3 is pointwise. The construction 

of simultaneous confidence intervals and hypothesis tests for the time-dependent 

coefficients would be useful in applications, like the HIV study. This requires a careful 

theoretical study of the uniform convergence properties of the estimator like in Zhou and 

Wu (2010). Future work is planned.
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Appendix A

In this appendix, we provide details on the proofs of theorem 1 and theorem 2. Our main 

tools are empirical processes and central limit theorems.

A.1. Proof of theorem 1

The key idea is to establish the relationship

(13)

where A(β0) is given in theorem 1 and
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where Fβ(s, y)=E[X(s) g{X(s + y)Tβ}]. To obtain result (13), first, using  and  to denote 

the empirical measure and true probability measure respectively, we obtain

(14)

For the second term on the right-hand side of equation (14), we have

Recall that Fβ0(s, hz) = E[X(s) g{X(s + hz)Tβ0}]. Using condition 3 and after the Taylor 

series expansion of Fβ0 (s, hz), since ∫ z K(z) dz = 0 and ∫ K(z) dz = 1, we obtain

(15)

We then extract the main terms

(16)

Moreover, if γT A(β0)γ =0, then γT X(s)=0 almost surely for , so γ =0 from condition 2. 

Thus, A(β0) is a positive definite matrix, and thus non-singular. For the first term on the 

right-hand side of equation (14), we consider the class of functions

for a given constant ε. Note that the functions in this class are Lipschitz continuous in β and 

the Lipschitz constant is uniformly bounded by
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Since, by condition 3,

we have

for some constant M2. Conditionally on N(τ, τ), E{∫ ∫ h Kh(t - s)2 dN(t, s)|N(τ, τ)} can be 

easily verified to be finite. Therefore,  is finite. Therefore, this class is a P-Donsker 

class by the Jain–Marcus theorem (van der Vaart and Wellner, 1996). As the result, we 

obtain that the first term on the right-hand side of equation (14) for |β–β0| < M(nh)−1/2 is 

equal to

(17)

Combining equations (15) and (17) and by condition 4, we obtain result (13).

Consequently,

(18)

In contrast, following a similar argument to that before, we can calculate

as follows:
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Using conditioning arguments, we obtain

After a change of variables and incorporating conditions 3 and 4, the first three terms in term 

I are all of order O(h) and the last term equals

So we have

(19)

Similarly, it can be shown that

(20)

and I3 – I4 =O(h2). Therefore, we have

(21)

To prove the asymptotic normality, we verify the Lyapunov condition. Define
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Similarly to the calculation of Σ,

Therefore,

(22)

Combining with equation (18), we finish the proof of theorem 1.

A.2. Proof of corollary 2

We next show the consistency of the variance estimate. To begin with, we have

(23)

Using a similar argument to that to obtain equation (17), we show that

is a P-Glivenko–Cantelli class. Therefore,

in probability. Since  is consistent for β0, by the continuous mapping theorem, 

 converges in probability to −A(β0). Similarly, let

then  in probability. However,

After a change of variables, and by condition 3,
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Therefore,

The consistency of the variance estimate follows.

A.3. Proof of theorem 2

Denote G(s1, s2)=E[X(t + s1)g{X(t + s2)Tβ0(t + s2)} − X(t + s1)g{X(t + s1)T β(t)}]. We first 

establish the relationship

(24)

where B{β0(t), t} is defined in theorem 2,

and

Cao et al. Page 20

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2015 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To obtain equation (24), first, using  and  to denote the empirical measure and true 

probability measure respectively, we have

(25)

For the second term on the right-hand side of equation (25), we have

Recall that G(s1, s2)=E[X(t + s1) g{X(t + s2)Tβ0(t + s2/} − X(t + s1) g{X(t + s1)T β(t)}] and 

we can do a Taylor series expansion of G around (0, 0). Taking into account conditions 3′ 

and 4′, and after a change of variables, we obtain

(26)

where we did another Taylor series expansion of function g{X(t)T β(t)} at X(t)T β0(t) for any 

fixed t.

For any fixed t, if γT B{β0(t), t}γ=0, then γT X(t)=0, so γ=0 from condition 2′. Thus B{β0(t), 

t} is a non-singular matrix. For term I, we consider the class of functions

for a given constant ε. Similarly to the proof in theorem 1, we can show that this is a P-

Donsker class for any fixed time point t by the Jain–Marcus theorem. We therefore obtain 

that the first term on the right-hand side of equation (25) for |β(t) – β0(t)| < M(nh1h2)−1/2 is 

equal to

(27)
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Combining equations (25), (26) and (27) and, by condition 4′, we obtain equation (24). 

Therefore,

Now we show that (nh1h2)1/2 Un{β0(t)} follows the central limit theorem. In other words, 

we wish to derive the distribution of

(28)

For convenience, we denote the above sum as , where

(29)

Since this is an independent and identically distributed sum, we need to calculate only 

Σ*(t)=var{W1(t)}. We have

Similarly to calculation of the order of Σ, we obtain

by conditions 4′ and 5′ and a change of variables. Similarly to the proof of theorem 1, we 

have
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Therefore, we have

(30)

Similarly, we have

which verifies that the Lyapunov condition holds.

Thus

(31)

Combining with equation (24), the conclusion of theorem 2 holds.

A.4. Proof of corollary 4

The consistency of the variance estimate can similarly be shown as in the proof of corollary 

2 and we omit the details.
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Fig. 1 
. Observation times of CD4 cell counts ( ) and HIV viral load (■) by patient
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Fig. 2. 
Trajectory of time varying coefficient estimation with a data-adaptive bandwidth based on 

model (12): h = 102 days
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Table 4

Summary statistics for  based on model (11)

Parameter Results for the following values of h(n−γ):

289(n −0.3 ) 101(n −0.5 ) 35(n −0.7 ) 134(auto) lvcf

β̂1 −1.182 −1.130 −1.074 −1.178 0.003

SE(β̂1) 0.685 0.832 1.143 0.816 1.806

z-value −1.727 −1.359 −0.940 −1.444 0.0001
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