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Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target gene expressions 

at the post-transcriptional level. Moreover, they have been reported as either oncomirs or tumor 

suppressors and possessed therapeutic potential in cancer. In this study, we investigated differential 

co-expression of miRNAs across four cancer types. We observed that losing positive co-

expressions among miRNAs frequently occurs in the studied cancer types. This observation 

suggests that the disruption of positive co-expressions among miRNAs may be prevalent during 

tumorigenesis. By systematically collecting these losing positive co-expression among miRNAs in 

cancer, we constructed a cross-cancer miRNA differential co-expression network. We observed 

that the influential miRNAs in the proposed network, i.e. hubs or in larger cliques, tended to be 

involved in more cancer types than other miRNAs. Moreover, we found that miRNAs losing 

positive co-expression in cancers might make co-contribution to cancer development, and even 

could be used to predict the cancer types in which miRNAs were involved. Finally, we identified 

two potential miRNA-regulated onco-modules, mitosis and DNA replication, that are associated 

with poor survival outcomes in patients across multiple cancers. Collectively, our study suggested 

that the disruption of miRNA positive co-expression in cancer might make contribution to cancer 

development. Our findings also form an important basis for identifying miRNAs with potential co-

contribution to carcinogenesis.

Introduction

MicroRNAs (miRNAs) are small (~22 nucleotide) noncoding RNAs that regulate gene 

expression at the post-transcriptional level in eukaryotic cells1,2. They are involved in 

numerous biological processes3–5, including tumorigenesis6–8, and have therapeutic 

potential in cancer9,10. In humans, more than 2,500 mature miRNAs have been found and 
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recorded in miRBase release 2011, and the majority of human genes are reported to be 

potentially regulated by miRNAs12. Accordingly, miRNAs constitute one of the most 

abundant gene regulators in human cells; they form complicated regulatory networks with 

target genes in living cells.

In the miRNA regulatory network, co-regulations of miRNAs are reported to cause 

biological consequences13–16. Zhou et al. showed that co-regulations by miRNA pairs are 

significant and abundant in the miRNA regulatory network14; Xu et al. constructed a 

miRNA-miRNA synergistic network to uncover miRNA co-regulating functional modules 

and their implications in several diseases16. These observed co-regulations of miRNAs may 

suggest the existence of cooperative behaviors among miRNAs. Moreover, the co-expression 

among miRNAs is required for forming their co-regulation. Therefore, disruption of miRNA 

co-expression might be influential in cellular system, and even lead to disease.

To address this knowledge gap, we investigated the differential co-expression among 

miRNAs across four cancer types (lung, prostate, ovarian, and stomach cancer). We 

observed that the positive co-expression among miRNAs in normal samples were frequently 

disrupted in all the examined cancer types. This phenomenon motivated us to build the 

cross-cancer miRNA differential co-expression network. By analyzing this network, we 

found that the critical miRNAs in the network might also play pivotal roles in cancer, and 

identified two miRNA-regulated onco-modules. In summary, through the cross-cancer 

miRNA differential co-expression network that we built, we uncovered possible influence of 

disrupting miRNA positive co-expression in cancer and revealed the potential miRNA-

regulated modules that play pivotal roles during tumorigenesis.

Results and discussion

Differential co-expression of microRNAs in cancer

In this study, we investigated miRNA differential co-expression between normal and four 

cancer types (lung, stomach, ovarian, and prostate cancers). We observed that the proportion 

of significantly co-expressed miRNA pairs (Pearson correlation coefficient P ≤ 0.01) in 

normal samples was higher than those in the four types of cancer samples (Fig. 1A). 

Notably, we did not observe this difference in mRNA co-expression (Fig. S1A) or randomly 

permutated expression profiles (Fig. S2). This observation implies that the co-expressed 

miRNA pairs in normal samples might be disturbed in cancer. By comparing the co-

expression measurement of miRNA pairs between normal and cancer samples, we observed 

that miRNAs frequently lost their positive co-expressions in cancer (42~59%, Fig. 1B and 

Table S1). This consistent loss of positive co-expression was not observed in mRNA co-

expression (Fig. S1B). These results suggested that the loss of positive co-expressions 

among miRNAs might be a common mechanism in cancer.

To further investigate the association of losing positive miRNA co-expression with cancer, 

we collected cancer-miRNA relationships from miRCancer database17. The miRCancer 

database accumulated and curated differentially expressed miRNAs in cancer(s) from 

literature. We further denoted these miRNAs collected by miRCancer database as cancer-

associated miRNAs. We found that the paired miRNAs losing positive co-expressions in 
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more cancer types tended to be reportedly differentially expressed in the same cancer types 

according to miRCancer database (Fig. 1C). Importantly, the trend was not observed in other 

three differential co-expression categories, i.e. LN, GP, and GN (Fig. S3A). Of note, only 

lung, stomach, prostate, and ovarian cancers were considered in Figure 1C and Figure S3A 

to keep the consistency with the studied cancer types. The similar trend of miRNA 

differential co-expression was also observed when all the cancer types in miRCancer 

database were considered (Fig. S3B). In other words, miRNA pairs which lose their positive 

co-expressions in all the four studied cancer types were more recurrently observed to be 

involved in the same cancer types in the previous studies than the other miRNA pairs (Fig. 

1C; P ≤ 1e-30, Fisher’s exact test). These observations emphasize the association between 

these miRNA pairs and cancer and even suggest that they may co-contribute to 

carcinogenesis, and further motivated us to focus on those losing positive co-expressions 

among miRNAs in all the four cancer types.

Cross-cancer miRNA differential co-expression network

We then collected the 2,036 miRNA pairs that lose positive co-expression in all the four 

cancer types to construct the cross-cancer miRNA differential co-expression network (Fig. 

2A). In this network, 507 nodes were miRNAs; 2,036 edges were positive co-expression 

among miRNAs in normal samples, but these 2,036 positive co-expression lost in all the four 

cancer types. We found that this network significantly enriched with known cancer-

associated miRNAs (36%, P = 0.002, Fisher’s exact test). The significant overrepresentation 

of cancer-associated miRNAs in the network might show the relevance of miRNAs losing 

positive co-expression to cancer. In addition, six miRNA families, mir-8, mir-15, mir-17, 

mir-33, mir-146, and mir-515, were significantly enriched in the network (Table S2). Among 

them, mir-17 is a well-known oncomir family18–21. In to mir-17 family, the remaining five 

miRNA families have been reported to be differentially expressed in cancer(s) in the 

miRCancer database. The enrichment of these cancer-associated miRNA families might 

further emphasize the relevance of the proposed network to cancer. However, these enriched 

cancer-associated families accounted for only 14% (72/507) of the miRNAs in the network, 

suggesting that only a small proportion of the relevance of the network to cancer might be 

attributed to the miRNA family feature. More underlying scenarios describing how losing 

positive co-expression among miRNAs contributed to carcinogenesis remain to be 

discovered.

The cross-cancer miRNA differential co-expression network is scale-free (Fig. S4). The 

scale-free feature suggests that this network might be robust against randomly attack to the 

network structure, such as arbitrarily removing nodes22,23. However, scale-free network 

might be relatively weak from targeted attack, such as removal of hub nodes22,23. Notably, 

links in the proposed network were formed in normal samples but disconnected in tumor 

samples. Disconnection of links could lead removal of nodes and further network structure 

failure. Accordingly, the scale-free structure of our cross-cancer miRNA differential co-

expression network implies that the pivotal nodes (miRNAs), such as hubs or nodes forming 

larger cliques, in the network might be critical in cancer. The hub proteins and proteins 

forming larger cliques in the human protein interaction network have been reported to be 

highly associated with essentiality and cancer24–26. Moreover, their corresponding 
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topological properties, which are degree and clique level (CLV), have been widely used to 

predict essential genes27,28. Indeed, we found that cancer-associated miRNAs possessed 

significantly higher degree and CLV than other miRNAs (Table S3). Interestingly, after 

organizing the network by clique level, the hotspot formed by cancer-associated miRNAs 

obviously could be observed near the largest maximum cliques, i.e. cliques with a size of 7 

(Fig. 2A). This observation might confirm that the cancer-associated miRNAs tend to locate 

on the hub or form larger cliques in the network, the highly influential locations in the 

network structure.

We also observed that the hubs, which are miRNAs with top 10% highest degree, were 

significantly enriched with cancer-associated miRNAs (75%, P < 0.001, Fisher’s exact test, 

Fig. 2B, bar chart). Moreover, hub miRNAs were involved in more cancer types than non-

hubs (Fig. 2B, line chart). According to the miRCancer database, hubs participated in nearly 

four cancer types on average, but non-hubs participated in less than one (3.67 vs. 0.88, P < 

0.001, Wilcoxon rank sum test). Briefly, the hub miRNAs in the proposed network tend to 

be differentially expressed in multiple cancer types. To note, the hub miRNAs formed 

relatively larger number of positive co-expressions in normal samples, but these positive co-

expressions were disrupted in all four studied cancer types. This result suggests that the 

degree of miRNAs in the proposed network, i.e. the number of losing positive co-expression 

in cancers, might be associated with the importance of the given miRNA in cancer 

development. It further implies that attacking hub miRNAs, through either removing them or 

disrupting their positive co-expression, in normal sample might influence carcinogenesis.

Like hubs, miRNAs with higher CLV (≥ 5) also tended to enrich with cancer-associated 

miRNAs (86%, P < 0.001, Fisher’s exact test, Fig. 2C, bar chart), whereas cancer-associated 

miRNAs were significantly underrepresented in miRNAs that did not form cliques (CLV = 

0, 28%, P < 0.001, Fisher’s exact test, Fig. 2C, bar chart). Additionally, miRNAs in larger 

cliques were involved in more cancer types according to the miRCancer database (Fig. 2C, 

line chart). On average, miRNAs with CLV ≥ 5 participated in more than four cancer types, 

while rest of the miRNAs participated in less than one cancer type (4.34 vs. 0.96, P < 0.001, 

Wilcoxon rank sum test). Briefly, the miRNAs forming relatively larger clique (CLV ≥ 5) 

tend to be differentially expressed in multiple cancer types, while those independent 

miRNAs, i.e. forming no cliques, tend to be not differentially expressed in cancer. To note, 

miRNAs with higher CLV formed larger and denser positively co-expressed modules in 

normal samples, and these modules were disrupted in all four studied cancer types. This 

result pinpoints that the miRNA CLV in the proposed network might be associated with their 

importance in cancer. It further suggests that the disruption of larger miRNA positively co-

expressed cliques might have catastrophic effects on cellular systems, and even lead to 

carcinogenesis. Taken together, our network analyses revealed that the miRNAs that are 

critical in the network (i.e., hubs and cliques) tend to be differentially expressed in cancer 

and even multiple cancer types, and therefore they may play pivotal roles in cancer. 

Furthermore, the relevance of these pivotal miRNAs in the network might be attributed by 

their connecting losing positive co-expression, which formed the proposed network. 

Therefore, the above network analyses further implied that the disruption of positive co-

expression among miRNAs might influence cancer development.
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MicroRNAs losing positive co-expression might be co-involved in carcinogenesis

In the above network analysis, we found that network-critical miRNAs might play pivotal 

roles in cancer. Moreover, the relevance of these network-critical miRNAs in cancer might 

be attributed by their connecting losing positive co-expression. In addition, we observed that 

the paired miRNAs losing positive co-expression in more cancer types tended to be 

reportedly involved in the same cancer types (Fig. 1C). To further investigate the relevance 

of miRNA losing positive co-expression in cancer, we defined co-cancer probability between 

two miRNAs via Jaccard index (See Methods in detail). We found that those miRNA pairs 

losing positive co-expression in all the four studied cancer types had significantly higher co-

cancer probability than remaining pairs (P < 0.001, Wilcoxon rank sum test). In other words, 

two connected miRNAs in our network tend to be involved in the same cancer type. This 

observation implied that miRNAs losing positive co- expression in cancer may co-contribute 

to cancer development. To verify this implication, we designed a classifier to predict the 

cancer types of the studied miRNAs using the cancer types of their connecting partners in 

the network. Briefly, the concept of this classifier is “A given miRNA tends to participate in 

those cancer types in which its connecting partners participate recurrently.” Interestingly, 

this classifier performed well on hub miRNAs (Fig. 3A, black bar, the median of area under 

curve (AUC) is 0.73) but not for all miRNAs (Fig. 3A, dashed line, the median: 0.55) or 

non-hubs (Fig. 3A, grey bar, the median: 0.50). This result indicates that the degree could 

affect the performance of the classifier. Indeed, we observed that the AUC value was 

significantly and positively correlated with the degree (Spearman’s rank correlation 

coefficient = 0.40, P < 0.001). That is, more connecting partners could provide more 

information about cancer involvement to predict the cancer types of studied miRNAs. The 

result confirmed the concept of this classifier: the studied miRNAs tended to participate in 

the cancer types that were recurrently observed to be involved by enough number of 

connecting partners. It further connects to the conclusion from our network analysis: 

disrupting positive co-expression among miRNAs may influence cancer development.

For example, miR-20b-5p had the highest degree in the network (62 partners). Among the 

cancer types involved by miR-20b-5p connecting partners in the network, gastric cancer was 

the most frequently observed (10 partners, Fig. 3B). According to our classifier, miR-20b-5p 

might be involved in gastric cancer. As expected, miR-20b-5p has also been reported to be 

associated with gastric cancer29–32. Another example is miR-130b-3p, which is located in 

one of the largest cliques in the network. Among the cancer types of miR-130b-3p 

connecting partners, lung cancer was the most frequently observed (14 partners, Fig. 3C). 

However, there has been no report in literature of miR-130b-3p in lung cancer. Importantly, 

our recent study33 confirmed the de-regulation of miR-130b-3p in lung cancer using the 

reverse transcription polymerase chain reaction (RT-PCR). This result indicated that 

miR-130b-3p could be involved in lung cancer development. These two examples confirmed 

that recurrently losing positive co-expression in cancers could be a robust predictor of cancer 

types involved by miRNAs. Furthermore, these observations suggest that the paired miRNAs 

forming connections in the network may be mutually implicated in the pathogenesis of the 

same cancer type.
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Clique miRNA-regulated pan-cancer activated functional modules

Within the proposed network, there are two maximum cliques measuring as size-7 (K7) (Fig. 

4A). We termed these two K7 cliques M1 and M2 (Fig. 4A). According to the above results, 

we’ve observed that paired miRNAs forming connections in the proposed network may be 

mutually implicated in the pathogenesis of the same cancer type. Therefore, the miRNAs in 

these two maximum cliques might have co-contribution to carcinogenesis. In other words, 

they might form co-expressed modules in normal samples to regulate cancer development 

either positively or negatively. Notably, all the miRNAs in these two maximum cliques are 

reported to be differentially expressed in cancer(s) in miRCancer database. Furthermore, 

their target genes were significantly enriched with cancer-associated genes annotated by the 

Cancer Gene Census (CGC) (M1: 4.11%, M2: 3.87%, P < 0.001, Fisher’s exact test). More 

importantly, we found that genes targeted by more M1 or M2 miRNAs had a higher 

probability of being cancer-associated genes (Fig. S5). This result suggests that the clique 

miRNAs might co-contribute to carcinogenesis through co-regulating their cancer-associated 

target genes.

To further explore the downstream regulation of K7 miRNAs in cancer, we applied an 

integrative approach to identify miRNA-regulated functional modules in cancer (Supporting 

Information S4). Among them, there were two functional modules co-regulated by both M1 

and M2 (Fig. 4B and C). The number of functional modules regulated by M1 and/or M2 

during the identification process is depicted in Figure S6. According to their enriched 

functions, we termed these two modules as “DNA replication” and “Mitosis.” Dysregulation 

of DNA replication and/or mitosis have been known to lead to genome instability and even 

carcinogenesis34,35. Notably, these two modules enriched with co-expressed protein-protein 

interactions (PPIs) in all four cancer types, as well as in eleven examined TCGA cancer 

types (Table S4). These results further suggest that these two modules may be commonly 

activated in pan-cancer. Accordingly, they could be onco-modules, i.e. their activation could 

stimulate or promote tumorigenesis. Moreover, we could not similarly identify common 

functional modules across the four cancer types when only mRNA co-expression data was 

used (Table S5). In other words, when the influence of miRNA regulation was removed from 

the differential co-expression analysis, no consistent functional module across four studied 

cancers was discovered. This observation implied that the activation of these two functional 

modules might be attributed to the disruption of the co-expressed miRNA modules, which 

are the two maximum miRNA cliques (M1 and M2) in the proposed network. To substantiate 

the oncogenic potential of the two proposed modules, we performed survival analysis on 

them by utilizing gene expression profiles. We calculated the mean expression level of the 

observed module gene set for each sample (patient). Then, we categorized as “highly 

expressed” those samples in which patients exhibited a mean expression level that was 

higher than the mean of the averaged expression level across patients. Accordingly, we can 

divide patients into two groups: 1) those with highly expressed gene set and 2) those with 

lower expressions of the gene set in the observed functional module. We found that patients 

with higher expression levels of the genes in the modules possessed poor survival rates (Fig. 

4D and E). However, we did not observe significant difference in survival rate for COAD, 

LUSC, OV, or UCEC (Fig. S7). Overall, the high expression of the genes in these two 

modules may be associated with poor survival rates in patients across multiple cancer types. 
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This result verifies that these two identified functional modules may have oncogenic 

potential, and their activation may promote tumorigenesis. Furthermore, it emphasizes that 

the disruption of miRNA co-expression might make contribution to cancer development. 

Additionally, our previous study demonstrated that the co-expression network analysis might 

be a promising approach to identify potential drugs for cancer treatment, such as drug 

repositioning36. Similar to the findings in our previous study, the miRNA co-expression 

results in this study may be useful for the development of the miRNA-based diagnosis or 

therapy in cancer.

Conclusions

In this study, we investigate miRNA differential co-expression in four cancer types. Our 

miRNA differential co-expression analysis further suggested that losing positive co-

expression among miRNAs might be a common mechanism during cancer development. We 

then proposed a cross-cancer miRNA differential co-expression network by collecting the 

disrupted positive co-expression among miRNAs in all the studied cancer types. We found 

that the influential miRNAs, i.e. hub miRNAs or miRNAs in larger cliques, in the network 

could play pivotal roles in cancer. Moreover, the results of our network analysis imply that 

disruption of positive co-expression among miRNAs might potentially influence cancer 

development. Furthermore, we found that miRNAs losing positive co-expression in cancers 

might co-contribute to cancer development, and even could be used to predict the cancer 

types in which miRNAs were involved. Finally, we identified two miRNA-regulated onco-

modules that are likely activated in pan-cancer and that are associated with the poor survival 

rate of patients. Collectively, our study sheds light on the overall effects of disrupting 

miRNA positive co-expression in cancer, which might make contribution to cancer 

development. In addition, our findings form an important basis for identifying miRNAs with 

potential co-contribution to carcinogenesis.

Materials and methods

Expression profiles and clinical data

The miRNA expression profiles were produced by the miRNome project37 and downloaded 

from the Gene Expression Omnibus (GEO)38,39. The accession number is GSE31568. In this 

study four types of cancer (lung, prostate, ovarian, and gastric cancer) were used. There 

were 32, 23, 15, and 13 samples from lung, prostate, ovarian, and gastric cancer, 

respectively. The expression profiles from 70 healthy individuals were used as a control 

(normal samples). Furthermore, only miRNAs with expression levels registering higher than 

25% of other miRNAs in at least 75% samples were used to perform the analysis (See Table 

S1 for the detail number of expressed miRNAs in control and cancer samples). In this study, 

we used this miRNA expression profile to build the cross-cancer miRNA differential co-

expression network.

The mRNA expression profiles, which were used to validate the differential co-expression of 

miRNA and identify miRNA regulatory functional modules for the four cancer types, were 

also downloaded from the GEO38,39. These accession numbers are GSE32863 (lung 

cancer)40, GSE17951 (prostate cancer)41,42, GSE18520 (ovarian cancer)43, and GSE13861 
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(gastric cancer)44. There were 58 tumor samples from lung adenocarcinoma and 58 controls, 

which were extracted from adjacent non-tumor lung tissues. For prostate cancer, the 

numbers of tumor and control samples were 109 and 13, respectively. With respect to 

ovarian cancer samples, 53 samples from high-grade primary tumor specimens and 10 from 

normal ovarian samples were used. The gastric cancer samples contained 65 tumor samples 

from primary gastric adenocarcinoma and 19 control samples from surrounding normal 

tissue.

In this study, we also used mRNA expression profiles and clinical data from The Cancer 

Genome Atlas (TCGA). For the cross validation of module activity in cancer, mRNA 

expression profiles of eleven cancer types in TCGA were investigated: breast cancer 

(BRCA), colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), 

clear cell kidney carcinoma (KIRC), lung adenocarcinoma (LUAD), lung squamous cell 

carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), prostate adenocarcinoma 

(PRAD), stomach adenocarcinoma (STAD), papillary thyroid carcinoma (THCA), and 

uterine corpus endometrial carcinoma (UCEC). We used RNA-Seq V2 data from BRCA, 

COAD, HNSC, KIRC, LUAD, LUSC, OV, PRAD, THCA, and UCEC, and RNA-Seq data 

from STAD. The RSEM (RNA-Seq by Expectation Maximization)45 and RPKM (Reads Per 

Kilobase of transcript per Million mapped reads) values of mRNA were used as gene 

expression levels for RNA-Seq V2 and RNA-Seq data, respectively.

Among these eleven cancer types, the mRNA expression profiles and clinical data of nine 

cancer types, i.e. BRCA, COAD, HNSC, KIRC, LUAD, LUSC, OV, STAD, and UCEC, 

were used to perform the survival analyses. Of note, PRAD and THCA data were excluded 

from survival analyses because their clinical data contained only 1 and 15 death events, 

respectively. For other cancer types, the number of death events was more than 20 (BRCA: 

114, COAD: 89, HNSC: 158, KIRC: 167, LUAD: 125, LUSC: 140, OV: 303, STAD: 24, and 

UCEC: 60).

Construction of the cross-cancer miRNA differential co-expression network

The miRNA expression profiles collected from control (normal) and cancer samples were 

used to calculate the expression correlations between miRNAs. In this study, we utilized the 

Pearson Correlation Coefficient (PCC) of miRNA expression profiles in control or cancer 

samples to access the co-expressions among miRNAs. While the distribution of PCC values 

varies by sample size, the distribution of PCC P-values does not (Supporting Information 

S5). We utilized the PCC P-value instead of the PCC value to filter out insignificantly 

correlated miRNA pairs. In our case, we observed that the proportion of significantly 

correlated (P ≤ 0.01) miRNA pairs in control (normal) samples was higher than that in any 

of the four examined cancer samples (Fig. 1A). Therefore, we considered miRNA pairs with 

a PCC P-value ≤ 0.01 as significantly correlated and formed co-expressions.

By collecting co-expressed miRNA pairs, we constructed the miRNA co-expression 

networks for normal (GN) and cancer samples (GTi) respectively. We applied a difference 

function df (GN,GTi) to obtain the differentially co-expressed miRNA pairs between normal 

and cancer samples. This function contains two parts. The first part was the symmetric 

difference of synergistic interaction sets in normal and cancer networks, as defined below:
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where E(GN) and E(GTi) is the set of co-expressions in network G from normal and tumor i, 
respectively. To decrease uncertainty, we additionally considered the second function, which 

calculates the differences between PCC z-scores (standard scores) of co-expressed miRNA 

pairs produced by the first function. The difference of PCC z-scores is defined as below:

where r(a,b,S) is the PCC between miRNA a and b on condition S; S can be normal or one of 

the examined cancer types.  and σ(r)S are the mean PCC and standard deviation of PCC 

for all paired miRNAs in condition S, respectively. The PCC z-score difference of paired 

miRNAs a and b between normal and cancer can then be defined as ΔZr(a,b) Zr(a,b). In this 

study, we set one as the cut-off for ΔZr(a,b).

After applying these two functions, we could obtain the set of miRNA differential co-

expressions termed as DGTi in cancer i. Furthermore, we divided interactions in DGTi into 

the two groups shown below:

where DGL|Ti represents those co-expressions formed in normal samples but lost in cancer i; 
DGL|Ti contains those co-expressions gained in cancer i but not in normal samples. Finally, 

we defined DGL(m) or DGG(m) as an assessment of the specificity or generality of the 

miRNA differential co-expression across cancer types. The bracketed m represents the 

number of cancer types in which the differential co-expression was observed. In other 

words, a miRNA differential co-expression with a larger m value was observed in more 

cancer types and therefore can be more general for cancer development. We further divided 

miRNA differential co-expressions into four groups by changing signs of PCCs: losing 

positive (LP) or negative (LN) and gaining positive (GP) or negative (GN). For example, 

losing positive co-expression of lung cancer were formed by miRNA pairs with positive co-

expressions in control samples but losing co-expressions in lung cancer samples. Finally, the 

cross-cancer miRNA differential co-expression network contained 507 nodes (mRNAs) and 

2,036 edges between miRNAs (losing positive co-expression in the four used cancer types). 

The descriptive statistics of miRNA differential co-expression are listed in Table S1.

In this study, we examined two network properties of miRNA, i.e. degree and clique level, in 

the cross-cancer miRNA differential co-expression network. The degree is the number of 

connecting partners of one miRNA in the network. We defined those miRNAs with the top 

10% highest degree as hubs in the network. Clique level is the size of the largest clique in 

which the observed miRNAs participate. Clique is a complete graph structure in network.
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Calculation of co-cancer probability and the classifier for predicting potentially involved 
cancer types of miRNAs

We used the Jaccard index to investigate the level co-involvement between miRNAs in 

cancer. We termed this index as the co-cancer probability between miRNAs. The co-cancer 

probability between two miRNAs measured the proportion of shared cancer types and was 

defined as |Cm1∩Cm2|/|Cm1∪Cm2|. Cm was denoted as the set of cancer types that were 

reportedly involved with the observed miRNA m in the miRCancer database. Notably, we 

only analyzed the co-cancer probability between cancer-associated miRNAs, i.e. both |Cm1| 

and |Cm2| were required to be greater than 1.

For a given miRNA m, we obtained a set of cancer types (Cm) that were reportedly affected 

by m in the miRCancer database. In addition, we obtained another set of cancer types (Cmp), 

which were reportedly influenced by m’s partners in the network. By using Cmp as the gold 

standard, we further divided Cmp into two groups: 1) false: not observed in Cm, and 2) true: 

observed in Cm and designated as a binary classifier. Moreover, for a given cancer type t in 

Cmp, the number of m’s partners that reportedly participated in t could be determined, and 

we denoted this number as nt. Furthermore, utilizing nt as the varied discrimination 

threshold, we drew the receiver operating characteristic (ROC) curve for the binary 

classifier. The performance of the classifier in precisely categorizing the Cmp was evaluated 

by plotting the sensitivity and 1-specificity at all varied discrimination thresholds, followed 

by calculating the area under the curve (AUC).
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Fig. 1. 
Differential co-expression among miRNAs. (A) The PCC P-value distributions of expression 

profiles in the control and the four cancer samples. (B) The distributions of miRNA 

differential co-expression in the four cancer types. Among four types of miRNA differential 

co- expression, losing positive co-expression was the most frequently observed in each of 

the four cancer types. The four differential co-expression categories are losing positive (LP), 

losing negative (LN), gaining positive (GP), and gaining negative (GN) co-expression, 

respectively. (C) The co-cancer miRNAs were defined as those paired miRNAs reported to 

be differentially expressed in the same cancer type according to the miRCancer database. 

The numbers in parentheses are the number of cancer types in which miRNA pairs losing 

their positive co-expression. The “NoChange” category contains non-differentially co-

expressed (PCC P-value > 0.01) miRNA pairs. The significance of each bar was tested by 
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Fisher’s exact test (***: P ≤ 1e-30, **: P ≤ 1e-20, *: P ≤ 1e-10; green asterisk: 

underrepresented, red asterisk: overrepresented).
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Fig. 2. 
The cross-cancer miRNA differential co-expression network. (A) The red links are 

connected by two cancer-associated miRNAs sharing at least one cancer type. Node size 

represents the degree of miRNAs in the network. The network was organized by the clique 

levels of miRNAs. The miRNAs in the innermost circle possess the highest clique level, 7, 

and the clique levels then descend from the inner toward outer circles. (B) The hub miRNAs 

significantly enriched with the cancer-associated miRNAs and participated in more cancer 

types than other miRNAs. (C) The clique level of miRNA positively correlates with the 

proportion of cancer-associated miRNAs and the number of miRNA-involved cancer types. 

In (B) and (C), the red bars show the significantly overrepresented cancer miRNAs in the 

corresponding categories of miRNAs (P < 0.001, Fisher’s exact test), and the green bars 

denote those significantly underrepresented (P < 0.001, Fisher’s exact test). The yellow 
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circles show the significantly higher number of miRNA-participated cancer types compared 

to miRNAs that form no cliques (P < 0.001, Wilcoxon rank sum test).
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Fig. 3. 
Losing positive co-expression predicts miRNA-regulated cancer and uncovered cancer-

associated miRNAs. (A) The AUC distribution of all miRNAs, hub miRNAs, and non-hub 

miRNAs. (B) and (C) The cancer types in which (B) miR-20b-5p and (C) miR-130b-3p 

partners in the network are involved. The cancer types are reportedly associated with the (B) 

miR-130b-3p or (C) miR-20b-5p connecting partners in the network were listed along with 

the X-axis. The number of interacting partners that were reported to be differentially 

expressed in the corresponding cancer type is shown on the Y-axis.
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Fig. 4. 
The two largest maximum cliques and their regulatory pan-cancer activated functional 

modules. (A) The two largest maximum cliques (size 7), M1 and M2, in the proposed 

network. These two cliques share six miRNAs. Accordingly, we tagged them by their 

exclusive miRNAs. M1 was tagged by miR-130b-3p and M2 by miR-106a-5p. Red nodes 

denote the cancer-associated miRNAs, and red edges between two miRNAs losing positive 

co-expression in the four cancer types. Notably, all member miRNAs in these two maximum 

cliques are cancer-associated miRNAs. The miRNAs associated with more cancer types are 

represented by darker red. (B) (C) The two identified miRNA-regulated functional modules, 

(B) DNA replication and (C) Mitosis. In these two modules, green octagons are miRNAs, 
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red circles are their predicted targets, and the other grey circles are genes that possess at 

least two PPIs with the targets. The purple edges are miRNA regulations, and the grey edges 

are PPIs between genes. (D) (E) The Kaplan-Meier of 10-year survival curves for two pan-

cancer activated functional modules in five used cancer types. Patients were grouped into 

lowly (green) and highly (red) expressed groups based on the average expression levels of 

genes in the identified modules. The P-values were derived from the Cox’s regression model 

with age as an explanatory variable. The number of patients in each group was labeled on 

the lower left corner of each panel. (D) DNA replication. (E) Mitosis.
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