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Abstract

Lung cancer causes more deaths than breast, colorectal and prostate cancers combined. Despite 

major advances in targeted therapy in a subset of lung adenocarcinomas, the overall 5-year 

survival rate for lung cancer worldwide has not significantly changed for the last few decades. 

DNA repair deficiency is known to contribute to lung cancer development. In fact, human 

polymorphisms in DNA repair genes such as xeroderma pigmentosum group C (XPC) are highly 

associated with lung cancer incidence. However, the direct genetic evidence for the role of XPC 

for lung cancer development is still lacking. Mutations of the Kirsten rat sarcoma viral oncogene 

homolog (Kras) or its downstream effector genes occur in almost all lung cancer cells, and there 

are a number of mouse models for lung cancer using these mutations. Using activated Kras, 

KrasLA1, as a driver for lung cancer development in mice, we showed for the first time that mice 

with KrasLA1 and Xpc knockout had worst outcomes in lung cancer development, and this 

phenotype was associated with accumulated DNA damage. Using cultured cells, we demonstrated 

that induced expression of oncogenic KRASG12V led to increased levels of reactive oxygen 

species (ROS) as well as DNA damage, and both can be suppressed by anti-oxidants. Thus, it 

appears that XPC may help repair DNA damage caused by KRAS-mediated production of ROS.
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Introduction

Lung cancer is the leading cause of cancer-related death worldwide, claiming more than 1.5 

million lives every year (which exceeds the combined mortality from breast, prostate and 

colorectal cancers) (Siegel et al., 2015). Lung cancer is understood to be a largely 

environmental disease, with cigarette smoking as a major (but not the only) risk factor. 

Patients with advanced stage of lung cancer, which represents 75% of all new cases, have a 

median survival time of only 10 months. Thus, understanding the molecular basis of lung 

cancer has been a major focus in cancer research.

There are a number of genetic alterations in lung cancer, and specific gene mutations are 

associated with a given subset of tumors (Cooper et al., 2013). For example, mutations of 

RAS or its upstream/downstream effectors occur almost in every lung cancer cell, and 

expression of activated KRAS in mice has been a robust model for lung cancer 

development, particularly non-small cell lung cancer (NSCLC). Furthermore, targeted 

therapy towards growth factor receptor gene mutations in NSCLC has significantly 

improved the quality of life in a subset of lung cancer patients (Robert et al., 2015; Thomas 

et al., 2015; Thress et al., 2015; Tricker et al., 2015; Ugurel et al., 2015; Weber et al., 2015; 

Yang et al., 2015a, 2015b). In addition, gene mutations in the p53 and RB/p16 pathways are 

common in lung cancer (Cooper et al., 2013).

Amounting evidence indicate that decreased expression of DNA repair protein XPC, which 

is responsible for global nucleotide excision repair (NER), is correlated with poor outcomes 

of lung cancer patients (Wu et al., 2007a). Xpc deficient mice also develop several types of 

cancer, such as lung, liver and skin cancers, after exposure to carcinogens or UV irradiation 

(Cheo et al., 1996; Berg et al., 1998; Cheo et al., 2000; Friedberg et al., 2000; Hollander et 

al., 2005). Because most of these mice developed tumors after 15 months, it has been 

suggested that XPC’s effects in tumor development were through regulation of NER system. 

In human population studies, Xpc Lys939Gln polymorphism is highly associated with 

development of lung cancer (Hu et al., 2005; Lee et al., 2005; Vogel et al., 2005; Matakidou 

et al., 2006; Jin et al., 2014). Despite the significance of XPC in lung cancer, there is still no 

direct genetic evidence to demonstrate the significance of XPC for lung cancer development. 

XPC was originally regarded as nucleotide excision repair molecule, but recent studies have 

shown that NER factors including XPC contribute to the repair of oxidative DNA lesions 

including 8-oxo-7,8-dihydroguanine (Menoni et al., 2012; Parlanti et al., 2012). It is not 

known how XPC is involved in cancer development.

In this study, we use mutant Kras-driven lung cancer model to test the effect of XPC 

deficiency on DNA damage, tumor development and mouse survival in mice. We also tried 

to identify the underlying molecular mechanisms using inducible expression of activated 

RAS in cultured cells.
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RESULTS

XPC deficiency promotes KRAS-mediated tumor development

To understand the role of XPC in lung cancer development, we examined Kras-mediated 

tumor development in mice with or without Xpc expression. In KrasLA1 mice, we found all 

mice developed tumor in the lung, which is similar to a previous report (Johnson et al., 

2001). The phenotype became more severe when Xpc gene was knocked out (Fig. 1 and 2). 

Based on the survival time, we found that KrasLA1/ Xpc−/−mice all died whereas less than 

40% of Xpc+/+/KrasLA1 mice died at 40 weeks. As expected, Xpc−/−mice without KrasLA1 

and the control mice had no mortality within the same period of time (Fig. 1).

Further examination indicated that all dead mice had lung cancer and aberrant growth in 

intestine and skin epithelium. For lung cancer, we observed different stages of tumor, 

including adenomas, adenocarcinomas as well as mixed tumor types (Fig. 2). The tumors 

were mostly adenocarcinomas in 2-month-old Xpc−/−/KrasLA1 mice (Fig. 2D) whereas the 

same aged mice with KrasLA1 had mostly adenomas (Fig. 2C). For Xpc−/−mice, we did not 

observe any tumors even after one year, which is consistent with a previous report that 

Xpc−/−mice only develop spontaneous lung tumors at an old age ( > 15 months) after 

exposure to carcinogens (Cheo et al., 1997, 2000; Hollander et al., 2005). These data suggest 

that unrepaired oncogenic gene mutations resulting from the defective DNA repair system in 

Xpc−/− mice may be responsible for tumor development. Based on BLISS independence 

analysis, we observed a more than additive effect (synergy) between Xpc loss and oncogenic 

Kras gene expression in development in Aberrant crypt foci (ACF; see Fig. S1 for a typical 

ACF image). We found that Xpc−/−KrasLA1 mice, on average, had >15 ACF whereas 

KrasLA1mice had only 5 ACF on average (Fig. 3). No ACF lesions were found in Xpc−/−or 

the control mice within the same period of time. Taken together, these data indicate that Xpc 

deficiency accelerates KrasLA1-mediated tumor development.

Effects of Xpc on production of ROS and genomic DNA damage

Next we tried to determine the molecular basis by which XPC deficiency promotes Kras-

mediated tumor development. COMET assay is a reliable way to measure DNA damage 

(Dusinska and Collins, 2008). Using COMET assay, we found that Xpc loss results in 

elevated levels of DNA damage, including single and double strand breaks in both the 

tumor-prone lung tissue (Fig. 4) and lymphocytes (data not shown). We further confirmed 

elevated frequency of Hprt gene mutation in cells with XPC knockout cells, suggesting that 

an increased DNA damage is associated with an elevated gene mutation rate (Fig. S2). The 

effect of Xpc loss on DNA damages is consistent with the role of XPC in DNA repair in 

previous studies (Friedberg et al., 2000).

To determine the effect of Kras expression on DNA damage in lung tissues, we performed 

COMET assay, and found that KrasLA1 positive mice had an elevated level of DNA damage 

in the lung tissue (Fig. 4). More interestingly, Xpc−/−KrasLA1 mice had much more damaged 

DNAs in the lung tissues than either Xpc−/−or KrasLA1 mice (Fig. 4). Based on BLISS 

analysis (Gu et al., 2013), we found that the DNA damage in the Xpc−/−KrasLA1 mice were 

greater than the additive value of DNA damage from both Xpc−/−mice and KrasLA1 mice. 
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These results suggest that XPC deficiency synergizes with KrasLA1 in inducing DNA 

damage, possibly through loss of DNA repair regulation in lung cancer development.

Induced expression of activated RAS increases ROS and DNA damage

The DNA damage detected in our studies likely came from internal insults within the cell 

because no DNA damage was observed in wild type tissues (Fig. 4). Previous studies from 

other groups have shown that oncogenic KRAS increases the level of ROS that can lead to 

DNA damage (Weinberg et al., 2010). Production of 8-deoxogunine and 4-hydroxynonenal 

(4-HNE) are important markers for oxidative stress and generation of ROS (Yang et al., 

2003; Logan et al., 2014; Zhong and Yin, 2015). We examined the level of 8-deoxogunine 

and 4-HNE in lung tissues in all four groups of mice (wild type, Xpc−/−, KrasLA1, and 

Xpc−/−KrasLA1), and found that Xpc−/−KrasLA1 mice had the highest level of 8-

deoxogunine and 4-HNE (Fig. 5). The close association of ROS with DNA damage supports 

our hypothesis that elevated production of ROS may be responsible for KrasLA1-mediated 

DNA damage during lung cancer development.

To determine whether induced expression of oncogenic RAS can induce ROS, we used lung 

epithelial BEAS-2B1 cells with inducible expression of KRASG12V. Following induction of 

KRASG12V, cells were loaded with H2DCF-DA to assess changes in the ROS level. Fig. 

6A show that ROS levels were increased by 100% at 8 hours and by 200% by 24 hours after 

KRASG12V induction. When anti-oxidant N-acetyl cysteine (NAC, 10 mmol/L) was added, 

no elevation of H2DCF-DA fluorescence was detected (Fig. 6A), confirming that induced 

expression of RASG12V did induce ROS production. We further detected DNA damage in 

these cells by the COMET assay, and found that DNA damage was significantly elevated 

following KRASG12V expression. DNA damage was observed after induction of 

KRASG12V, suggesting that ROS production occurred before DNA damage occurrence (Fig. 

6B). Confirming this mechanism, we found that NAC significantly reduced the level of 

DNA damage in KRASG12V-expressing cells. These results suggest that activated KRAS is 

sufficient to induce the cellular ROS level and subsequently to increase genomic DNA 

damage.

Taken all the data together, we have provided genetic evidence to support the critical role of 

XPC in maintenance of genomic stability in oncogenic Kras-expressing lung tissues. Our 

data demonstrate a synergy between Xpc loss and oncogenic Kras expression in promoting 

lung tumor development. We have evidence to suggest that these two genes act through 

regulation of ROS-mediated DNA damage.

DISCUSSION

Our studies have provided genetic evidence for XPC-KRAS interactions in the development 

of lung cancer. In this report, we have evidence to indicate that activated KRAS can 

stimulate the production of ROS, leading to an increase in DNA damage. Our genetic study 

supports that Xpc loss increases oxidatively damaged DNA and promotes KRAS-mediated 

lung cancer development. In our studies using cultured cells, we demonstrated that activated 

RAS increases DNA damage levels via ROS production within the cancer cell because 

antioxidant effective in decreasing both ROS and DNA damage (Fig. 6). Based on these 

Zhang et al. Page 4

J Genet Genomics. Author manuscript; available in PMC 2016 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data, we propose that in addition to downstream signaling such as phosphoinositide-3-kinase 

(PI3K), protein kinase B (a serine/threonine-specific protein kinase; AKT), and mitogen-

activated protein kinase (MAPK), activated KRAS has significant effects on ROS 

production and DNA damage changed in lung cancer. Based on this model, we predict that 

strategies to enhance XPC functions may be effective in prevention of KRAS-mediated lung 

cancer development, and enhancing XPC functions may also help cancer treatment.

It is known that expression of XPC can be suppressed by p53 through transcriptional 

regulation of the XPC promoter (Adimoolam and Ford, 2002; Sengupta and Harris, 2005; 

Wu et al., 2007b; Hastak et al., 2012). In addition, the mutual interactions between XPC and 

p53 have been reported (Krzeszinski et al., 2014). Based on these data, we predict a role of 

XPC in p53-associated tumors, such as head and neck cancers and lung squamous cell 

carcinomas. Whether XPC knockout indeed plays a critical role in other cancer models 

await further experimental evidence.

It is not clear how XPC suppression promotes KRAS-driven tumor development. It is 

known that XPC is an important DNA repair gene for nucleotide excision repair pathway 

(NER), particularly global genomic DNA repair (Friedberg et al., 2000). Our results suggest 

that it is likely that the DNA damage in KRAS-mediated tumors were caused by ROS 

production. Oxidatively damaged DNA is primarily repaired by base excision repair 

processes (BER). How does XPC deficiency affect ROS-mediated DNA repair? In the last 

few years, increasing evidence indicate that XPC may be involved in repairing of oxidative 

DNA damages, either through NER or BER (Melis et al., 2011). NER is known to recognize 

and repair bulky DNA adducts and helix-distorting structures. It is known that several 

oxidative DNA lesions have structures similar to helix-distorting structures. It is thus 

feasible to speculate that NER DNA repair pathway can also repair oxidative DNA 

damages. Based on the fact that xeroderma pigmentosum group A (XPA) null mice do not 

have the similar phenotypes as the XPC null mice (Melis et al., 2008), XPC may have 

functions outside of the NER pathway. Indeed, XPC-hHR23B complex is shown to function 

as a co-factor for BER machinery to repair 8-hydroxyguanosine-related lesions (D’Errico et 

al., 2006; Melis et al., 2013). The exact molecular links between XPC and the BER 

machinery remains to be established.

At present, it is still not clear how activated RAS induces ROS production. A previous study 

indicates that activated RAS alters mitochondrial metabolism by supporting the pentose 

phosphate pathway and production of glycolytic ATP and ROS induction (Weinberg et al., 

2010). Other studies indicate that ROS production is dependent on NADPH Oxidase 1/4 and 

Ras-Related C3 Botulinum Toxin Substrate 1 (RAC1) (Trachootham et al., 2009; Lu et al., 

2012; Ogrunc et al., 2014; Park et al., 2014; Wang et al., 2015). It is still not very clear 

whether ROS production in KrasLA1-expressing cells occurs all in mitochondria. In addition 

to DNA damage, ROS is also known to induce cell proliferation through activation of 

several cell proliferation pathways, such as MAP extracellular signal-regulated kinases 

(ERK) (Melis et al., 2011). The exact role of KrasLA1 in ROS production, DNA damage and 

the consequent tumor development remains to be delineated.
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MATERIALS AND METHODS

Animal Studies

All animal studies were approved by the Institutional Animal Care and Use Committees in 

University of Texas Medical Branch (Galveston, TX) and Indiana University (Indianapolis, 

IN). KrasLA1 mice were generously provided by the Emice Program in National Cancer 

Institute (Jackson et al., 2001), and Xpc−/−C57BL/6 mice were generously provided by Dr. 

Errol Friedberg (Cheo et al., 1997). To obtain Xpc−/−KrasLA1 mice, Xpc−/−mice were first 

mated with KrasLA1 mice, and resulting Xpc+/−KrasLA1 mice mated each other to generate 

mice with the following four genotypes: wild type, Xpc−/−, KrasLA1, and Xpc−/−KrasLA1. 

Mice were provided with normal food and water, and a 12 h light–dark cycle. All 

genotyping of mice was performed by PCR with specific primers using previously reported 

procedures (Fan et al., 2014). For survival analysis, 8 mice each from wild type, Xpc−/−, and 

KrasLA1, and 13 mice from Xpc−/−KrasLA1 were used to monitor animal viability for 60 

weeks. The low gastrointestinal part of mouse were stained with 0.1% methylene blue and 

counted under a dissecting microscope (40×). Aberrant crypt foci (ACF) were identified by 

elevated appearance from the surrounding mucosa and categorized as small (1–3 crypts per 

focus) and large ACF (4 or more crypts per focus). Total number of ACF was counted as the 

sum of the small and large number of ACF per group. Five mice were included in each 

group for ACF study.

Histology and Immunohistostaining

Histology was performed according to a previously published procedure (Fan et al., 2014) 

after paraffin embedding and hematoxylin & eosin staining. 4-HNE antibodies (Cat# 

HNE-13-M) were purchased from Alpha Diagnostic International Inc., and anti-8-oxo-dG 

(Clone 2E2) antibodies were purchased from Trevigen (Gaithersburg, MD, USA). Tissues 

were processed according to the procedures provided by the vendor. The primary antibodies 

were diluted 1:200 in 10% fetal bovine serum (FBS)/PBS at 4°C overnight for 

immunofluorescent staining. Before antibody staining, tissue sections were processed and 

blocked with 10% FBS for 3 hours to prevent non-specific staining. The secondary 

antibodies (goat anti-mouse IgG proteins labeled with Alexa Fluor 488 and 596 from 

Molecular probes) were incubated for 1h at room temperature (1:300 dilution in 10% FBS/

PBS), and the nucleus was stained with 4′,6-diamidino-2-phenylindole (2 μg/mL) before 

being viewed under microscope.

The Single Cell Gel Electrophoresis assay

The Single Cell Gel Electrophoresis assay (SCGE, also known as COMET assay) was 

performed using the Trevigen™ COMET assay kit (Trevigen, Gaithersburg, MD). Changes 

in DNA strand breaks in the freshly harvested tissues or cells were determined using neutral 

(double-strand breaks, DSBs) and alkaline (SSBs) electrophoretic conditions (Wickliffe et 

al., 2003). DNA was stained with SYBER Green and >200 cells were analyzed for each data 

point, using the COMET Assay IV v4.2 system (Perceptive Instruments, Suffolk, UK). Tail 

moment (TM) of exfoliated lung epithelial cells or lymphocytes from each group (n = 5 for 

experimental groups and n = 3 for the control group) was quantitatively measured for 

evidence of DNA damage.
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Hprt gene mutation analysis

The mutation analysis was performed according to a previous procedure using the Hprt 

cloning assay as described in Meng et al. (Meng et al., 1998). In brief, same number of cells 

from each group was grown in the presence of increasing concentrations of 6-thioguanine 

for 7–10 days. The number of surviving colonies was counted to score the mutation 

efficiency.

Cell culture

Lung epithelial BEAS-2B1 cells were generously provided by Dr. Cutis Harris (Reddel et 

al., 1993), and were cultured in DMEM with 10% fetal bovine serum (FBS). Cells with 

inducible expression of KRAS were generated with LacSwitch eukaryotic expression system 

(Strategene, La Jolla, CA), and maintained in 150 μg/mL hydromycin B. Isopropyl-1-thio-b-

D-galactopyranoside (IPTG, Life Technologies, Inc.) at 5 mmol/L was used to induce 

KRASG12V expression in the cells. N-acetyl cysteine (NAC) at 5 or 10 mmol/L was used to 

suppress the production of reactive oxygen species (ROS).

Cellular ROS analysis

2′–7′-dihydro-dichlorofluorescein diacetate (H2DCF-DA, Invitrogen Co., Carlsbad, CA, 

USA) was used to determine cellular ROS levels according to previous publications 

(Boldogh et al., 2003a, 2003b, 2005). In short, cells on microscope cover slips were placed 

in a thermo- chamber and loaded with 10 μmol/L (final concentration) H2DCF-DA for 15 

min. After induction of KRAS expression for 8, 24 and 28 hours, cells were washed with 

medium pre-warmed to 37°C and fluorescent images captured using a Photometrix 

CoolSNAP Fx digital camera mounted on a NIKON Eclipse TE 200 UV microscope. 

Fluorescence intensities of > 200 cells were determined by Metamorph™ software 

(Universal Imaging Corporation). To confirm the results in cultured cells, cells were grown 

to 70% confluence in 24 well plates and loaded with 50 μmol/L H2DCF-DA at 37°C for 30 

minutes. DCF fluorescence was recorded in an FLx800 (Bio-Tek Instruments Inc., 

Winooski, VT, USA) microplate reader (with 485 nm excitation and 528 nm emission).

Statistical analyses

Kaplan-Meier curves were generated using the SPSS program. Hprt MFs were analyzed by 

univariate ANOVA followed by post hoc mean comparisons (Bonferroni-corrected), using 

the SPSS program (SPSS, Chicago, IL). A P value < 0.05 was used to determine statistical 

significance. Comparison of two groups was done using Student’s t test (two-tail analysis), 

with a P value < 0.05 as statistically significant. BLISS independence analysis was 

performed to evaluate the synergistic effect between Xpc loss and KrasLA1 expression in 

DNA damage in lung tissues using a previously reported method (Berenbaum, 1978; Gu et 

al., 2013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Kaplan-Meier curves of different groups of mice
Mice from four groups (8 mice each for the control, Xpc−/−, KrasLA1 groups and 13 mice 

for Xpc−/−KrasLA1 group) were monitored for 60 weeks, and their surviving time was 

recorded. The data were analyzed using Kaplan-Meier analysis.
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Fig. 2. Lung tissue morphology in different groups of mice
Lungs were sectioned and processed for Hematoxylin and eosin staining and photographs 

were taken at 100× magnification. A shows a normal lung morphology from the control 

group; B shows lung morphology from Xpc knockout mice; C shows adenoma morphology 

from KrasLA1 mice; and D shows adenocarcinoma morphology from Xpc−/−KrasLA1 mice.
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Fig. 3. Development of ACF in mice with different genetic background
The number of aberrant crypt foci (ACF) was visualized after special staining (see methods 

for details). No ACFs were observed in Xpc−/−and the normal control mice, while 

Xpc−/−KrasLA1 mice had a significantly higher number of ACF than those from 

Xpc+/+KrasLA1 mice (P value < 0.05).
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Fig. 4. DNA damage analysis in lung tissues from 2-months old mice with different genetic 
alterations
A: Fresh lung tissues from the control, Xpc−/−, KrasLA1 and Xpc−/−KrasLA1 mice were 

processed to measure DNA damage using the COMET assay. Bronchial epithelial cells were 

isolated and subjected to COMET assay. For each sample, 200 independent cells were 

evaluated. The difference between the control mice and the other three groups (Xpc−/−, 

KrasLA1 or Xpc−/−KrasLA1) were significant (with a P value <0.05; as indicated by *). Data 

from the Xpc−/−KrasLA1 mice were significantly higher than mice with a single gene 

mutation (Xpc−/−or KrasLA1) (with a P value < 0.05, indicated by **) or the sum from two 

single mutant mice. According to BLISS independence analysis, Xpc loss and KrasLA1 

expression had a more than additive effect (synergy) on induction of DNA damage.
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Fig. 5. Detection of relative ROS in lung tissues using the amount of 4-HNE and 8-deoxogunine 
as markers
Specific antibodies to 8-deoxogunine and 4-HNE were used to detect the relative level of 

ROS in lung tissues by immunofluorescent staining (A shows 8-deoxogunine, and B shows 

4-HNE). Lung tissues from the Xpc−/−KrasLA1 mice had the highest levels of 8-

deoxogunine and 4-HNE than other groups. The control mice were shown in upper A and B. 

Representative images from Xpc−/−KrasLA1 and the control mice were shown.
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Fig. 6. The effect of induced expression of KRASG12V on ROS and DNA damage in lung 
epithelial cells
Lung epithelial BEAS-2B1 cells were engineered to express KRASG12V under the control of 

IPTG. We monitored the relative ROS level by H2DCF-DA after induced expression of 

KRASG12V for 24 hours. NAC (N-acetyl-L-cysteine, 10 mmol/L) was used to decrease the 

ROS level. A: Changes in the levels of H2DCF-DA in cultured cells under different 

conditions. B: The levels of DNA damage as shown by COMET assay. Tail moment was 

used to express level of DNA damage. In the presence of NAC, KRASG12V failed to induce 

tail moment, suggesting that KRASG12V induces DNA damage through ROS production. * 

indicates statistical significance from other groups (P value < 0.05).
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