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Abstract

Background—Tetralogy of Fallot (TOF) is the commonest cyanotic form of congenital heart 

disease. In 80% of cases, TOF behaves as a complex genetic condition exhibiting significant 

heritability. As yet, no common genetic variants influencing TOF risk have been robustly 

identified.

Methods and Results—Two hundred and seven haplotype-tagging single nucleotide 

polymorphisms in 22 candidate genes were genotyped in a test cohort comprising 362 

nonsyndromic British white patients with TOF together with 717 unaffected parents of patients 

and 183 unrelated healthy controls. Single nucleotide polymorphisms with suggestive evidence of 

association in the test cohort (P<0.01) were taken forward for genotyping in an independent 

replication cohort comprising 392 cases of TOF, 218 unaffected parents of patients, and 1319 

controls. Significant association was observed for 1 single nucleotide polymorphism, rs11066320 

in the PTPN11 gene, in both the test and the replication cohort. Genotype at rs11066320 was 

associated with a per-allele odds ratio of 1.34 (95% confidence interval [CI], 1.19 to 1.52; 

P=2.9×10−6) in the total cohort of TOF cases and controls; this remained highly significant after 
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Bonferroni correction for 207 analyses (corrected P=0.00061). Genotype at rs11066320 was 

responsible for a population-attributable risk of TOF of approximately 10%.

Conclusions—Common variation in the linkage disequilibrium block including the PTPN11 

gene contributes to the risk of nonsyndromic TOF. Rare mutations in PTPN11 are known to cause 

the autosomal dominant condition Noonan syndrome, which includes congenital heart disease, by 

upregulating Ras/mitogen-activated protein kinase (MAPK) signaling. Our results suggest a role 

for milder perturbations in PTPN11 function in sporadic, nonsyndromic congenital heart disease.
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Congenital heart disease (CHD) affects approximately 1% of live births and is a major 

source of morbidity and mortality in childhood. Among CHD phenotypes, Tetralogy of 

Fallot (TOF) is the most common cyanotic defect, affecting approximately 3 per 10 000 

newborns.1 TOF is characterized by the presence of a ventricular septal defect between the 

anterior and posterior limbs of the trabecular septal band, overriding of the aortic valve due 

to anterocephalad deviation of the outlet septum, right ventricular outflow tract obstruction, 

and right ventricular hypertrophy. TOF is considered a malformation of the cardiac outflow 

tract. Although most cases of TOF now undergo complete repair in infancy, there is 

substantial late morbidity, in particular, from pulmonary valvular insufficiency and atrial 

arrhythmia.

Approximately 20% of postnatally diagnosed TOF occurs in the setting of chromosomal 

conditions (notably 22q11 deletion syndrome), or other multisystem malformation 

syndromes (eg, Alagille syndrome).2 Recurrence risk studies in the families of the remaining 

≈80% of sporadic cases indicate a significant complex genetic component to the risk of 

TOF.3,4 Rare variants in cardiac transcription factors such as Nkx2.5 and Tbx1 have been 

shown in previous studies to account for small proportions of the population-attributable risk 

of TOF.5,6 As yet, there is minimal evidence of association between common variation in 

any candidate gene and TOF risk.

We carried out a genetic association study in nonsyndromic cases of TOF to investigate the 

effects of common variation in 22 candidate genes on disease risk. During cardiac 

development, cells are added to the arterial pole of the primary heart tube from the anteriorly 

situated second heart field; in the fully developed heart, the progeny of cells derived from 

the primary heart field are essentially restricted to the left ventricle while other structures, 

including the outflow tract, are derived from the second heart field.7 We selected candidate 

genes because of previous evidence (from transcriptional studies, syndromic forms of CHD 

or mouse models), indicating their potential importance in the second heart field during 

cardiac development.8
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Methods

Patient and Control Recruitment

White patients of British ancestry (adults or children) diagnosed with tetralogy of Fallot 

(TOF) were recruited from congenital heart disease units in Bristol, Leeds, Leicester, 

Liverpool, Newcastle, Oxford, and London, United Kingdom. Appropriate ethical 

committees in the recruiting centers approved the study. All patients (or their parents, if the 

patient was a child too young to provide consent) gave informed consent. Patients with 

recognized syndromes associated with CHD (such as 22q11 deletion, Noonan syndrome 

[NS], or Down syndrome) were excluded. When possible, healthy parents of the patients 

were also recruited for use in a family-based association approach. When more than 1 

member of the family was affected with TOF, we attempted to collect all the affected 

individuals in the family, but such families were very rare. There were no families recruited 

in whom TOF or other CHD appeared to be segregating as a Mendelian trait.

In addition to review of the clinical records, all patient samples entered into this study 

underwent screening for 22q11 deletion using a commercially available Multiplex Ligation-

dependent Probe Amplification (MLPA) kit (MRC-Holland) before genotyping was carried 

out, and the sample was excluded from analysis if a deletion was confirmed. Since complete 

trios (a case and both parents) were only available for about one third of cases, additional 

healthy British white controls, recruited as previously described,9,10 were genotyped. 

Although controls did not undergo echocardiography or clinical assessment for CHD, any 

misclassification due to undiagnosed TOF in the controls would be extremely unlikely to 

have occurred. The total population comprised 754 cases, of which approximately one third 

had both parents available, and 1502 additional unrelated controls. The population was 

randomly subdivided into approximately equal-sized discovery and replication cohorts. To 

provide additional security that allele frequencies in our control population were 

representative of the healthy UK population, we also obtained genotypes for any single 

nucleotide polymorphisms (SNPs) showing significant association with TOF from 5376 

common controls used in the Wellcome Trust Case-Control Consortium 2 project 

(www.wtccc.org.uk) for comparison.

Genotyping

Two hundred and seven tagSNPs were identified within 22 candidate genes for TOF. 

Candidate genes and numbers of SNPs typed are shown in Table 1; a full list of SNPs is 

provided in online-only Data Supplement Table 1. TagSNPs were identified in the genic 

region plus 15 Kb upstream and downstream of each gene, using the Phase II SNP data from 

the HapMap CEU samples of Northern and Western European ancestry (www.hapmap.org). 

The Tagger utility in the Haploview package was used to generate a list of tagSNPs 

capturing the common variation at each locus, using a pairwise approach, aiming to capture 

all SNPs with a minor allele frequency of >0.05 with r2>0.8.

Genotyping was carried out using 3 platforms. The majority of SNPs were typed using a 

SEQUENOM MALDI-TOF instrument, as previously described.11 The optimal plex-level 

for each genotyping reaction and the forward, reverse, and extension primers for each SNP 
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in these reactions were determined using RealSNP software (www.sequenom.com). SNPs 

were typed in a discovery cohort comprising 213 complete trios, 149 nontrio cases, and 183 

unrelated controls. Seven SNPs not typable using SEQUENOM (rs13262643, rs9986272, 

rs1441642, rs3735816, rs7673205, rs186233, rs2970899) were typed using a proprietary 

system involving competitive allele-specific PCR (KASPar, KBioScience). SNP rs750472 in 

the FoxH1 gene was typed using an Applied Biosystems 7900HT Real-Time PCR System 

with Sequence Detection System software version 2.3 and predesigned ABI TaqMan probes. 

Primers and conditions for SNP typing are available on request. SNPs that were associated 

with TOF risk at the level P<0.01 in the discovery cohort were genotyped in a replication 

cohort, including 70 case-parent trios and 322 nontrio cases together with 1319 unrelated 

controls.

Statistical Analysis

Quality control of genotypes in the discovery cohort was carried out using PLINK 

software.12 Association analysis was carried out using a likelihood-based approach 

implemented in the UNPHASED program, as this program has the capacity to incorporate 

data from complete and incomplete trio families, unrelated cases, and unrelated controls to 

give an overall probability value for association.13,14 We examined the multiplicative 

(additive on the log scale) model and present our results as per allele odds ratios with 95% 

confidence intervals.15 To make a conservative allowance for multiple testing, we subjected 

the P values for the SNPs genotyped in the entire cohort (N=6) to a Bonferroni correction 

for 207 analyses (the number of SNPs genotyped at the screening stage); we accepted 

P<0.05 after Bonferroni correction to indicate significant association. We calculated the 

population-attributable risk of TOF for any significantly associated SNP using the formula

Results

Demographics of the population are summarized in Table 2. At the screening stage, 12 SNPs 

were excluded from analysis for having a minor allele frequency <0.05 in our population, 18 

SNPs were excluded for missing <10% of genotypes, and 39 individuals were excluded for 

missing >10% of genotypes. Among the remaining 188 SNPs, none failed Hardy-Weinberg 

equilibrium at a threshold of P<0.001. Q/Q plots for the SNP association tests showed no 

overall departure from the expected distribution. (See online-only Data Supplement Figure 

1.) All SNPs passing quality control had frequencies in our control population that were 

concordant with HapMap data from the CEU population. Six SNPs showed suggestive 

association with TOF risk at a threshold of P<0.01 in the discovery cohort and were typed in 

the replication cohort.

Among those 6 SNPs, there was significant association with TOF risk at P<0.01 in the 

replication cohort for 1 SNP, rs11066320, which is in intron 6 of the PTPN11 gene (online-

only Data Supplement Figure 2). In the entire population, rs11066320 was associated with 

an odds ratio for TOF of 1.34 (95% confidence interval [CI], 1.19 to 1.52; P=2.9×10−6) per 
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copy of the minor allele (Table 3). There was no deviation from Hardy-Weinberg 

equilibrium at this SNP (at P<0.05 threshold) in cases, parents, or unrelated controls. The 

minor allele frequency at rs11066320 was 0.42 in our control population, which 

corresponded precisely with the frequency in the WTCC2 control cohort of healthy British 

subjects genotyped using genechip technology, providing additional security that the result 

was not due to systematic genotyping error. Allele and genotype frequencies at rs11066320 

in the entire population are shown in Table 4. The point estimate of the odds ratio (OR) 

suggests that the rs11066320 genotype was responsible for a population-attributable risk of 

TOF of ≈10%. A maximally conservative estimate (to allow for the winner’s curse 

phenomenon), using the lower 95% CI of the OR, suggests a PAR of at least 5%. There was 

no evidence for association of any other SNP with the risk of TOF at the P<0.05 

significance level (after Bonferroni correction), in the combined test and replication cohorts.

Discussion

This gene-focused association study of common variants in 22 genes of importance in 

outflow tract development shows evidence for association between the rs11066320 SNP in 

the PTPN11 gene and risk of TOF. In our total cohort of 754 cases and 1502 controls, 

rs11066320 genotype was associated with a per allele relative risk of 1.34 (95% CI, 1.19 to 

1.52; P=2.9×10−6). The P value for association remained highly significant after application 

of a Bonferroni correction (acknowledged to be a conservative approach to multiple testing). 

This study is the first to provide robust evidence that common genetic variation influences 

the risk of TOF; we calculate that genotype at rs11066320 accounts for at least 5% of the 

population-attributable risk of the condition.

Most previous genetic studies investigating sporadic (rather than syndromic or Mendelian) 

CHD have focused on the detection of rare variants through sequencing. Such studies have 

provided evidence that rare coding sequence mutations in several genes including Nkx2.5, 

GATA4, Tbx1, and SMAD6 can be found in small numbers of patients (typically <1%) with 

different CHD phenotypes.5,6,16-18 Rare copy number variants at several loci in the genome 

have also been shown to affect the risk of nonsyndromic TOF.19,20 Before the modern 

surgical era, the adverse consequences of a diagnosis of CHD are likely to have selected 

strongly against genetic variants conferring even a small additional risk of CHD. Moreover, 

since severe CHD is an uncommon condition, the acquisition of sufficiently large cohorts of 

patients with homogeneous phenotypes to confer adequate power to detect the low odds 

ratios typically associated with common SNPs is challenging. These considerations may 

account for the limited number of studies of common variation and CHD risk in the 

literature to date. Several studies have investigated the C677T SNP at the MTHFR gene that 

is associated with lower plasma folate levels and a higher risk of neural tube defect, but 

results remain inconclusive.21 A previous investigation of common variation in the ISL1 

gene showed evidence for association of 2 different haplotypes with CHD risk in a cohort 

with mixed phenotypes22; we were unable to confirm this association in our cohort of 

patients with TOF, possibly reflecting the different phenotypic composition of the cohorts.

The rs11066320 SNP has not been previously associated with developmental diseases, and 

its function is unknown. The A allele at rs11066320 tags a long-range (1.6 Mb) haplotype at 
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chromosome 12q24 that is associated with blood platelet count and with the risks of 

myocardial infarction, hypertension, and a variety of autoimmune diseases, including celiac 

disease, type I diabetes, multiple sclerosis, and systemic lupus erythematosus.23-28 The risk 

haplotype for all these conditions, including TOF, shows evidence of having been subject to 

positive selection in Europeans that occurred some 3600 years ago; this has been 

hypothesized to be owing to enhanced infectious disease resistance.23 Our result adds to the 

already remarkable disease pleiotropy associated with the 12q24 chromosomal region.

PTPN11 is the strongest candidate gene for TOF among the 15 located within the 1.6-Mb 

haplotype tagged by rs11066320 (listed in online-only Data Supplement Table 1). PTPN11 

is a nontransmembrane member of the protein-tyrosine phosphatase family. These proteins 

function in intracellular signaling cascades by modulating the phosphotyrosine content of 

their target molecules.29 PTPN11 consists of 2 tandem SRC homology 2 (SH2) domains, 

which facilitate binding of SHP2, the protein encoded by PTPN11, to phosphotyrosine 

residues on its targets and a carboxy-terminal PTPase catalytic domain. The N-terminal SH2 

domain regulates SHP2 activity through conformational changes that occur when 

phosphopeptides are encountered.30

PTPN11 missense mutations that result in gain of function are present in >50% of patients 

with NS (OMIM 163950).31 NS is an autosomal-dominant dysmorphic syndrome, with an 

estimated incidence of between 1/1000 and 1/2500. It has variable phenotypic expression, 

involving a characteristic facial appearance, short stature, variable cognitive defects, and 

cardiac malformation. Seven genes, of which PTPN11 is the most frequently mutated, have 

been shown to be causative of NS; mutations in these genes cause upregulation of RAS-

MAPK signaling, which is thought to be the common pathway leading to the NS 

phenotype.32 The characteristic cardiac abnormalities observed in NS are pulmonary 

stenosis (1 of the component features of TOF) and hypertrophic cardiomyopathy, although 

other defects, including TOF (reported in 4% of patients in 1 study), also occur.33 

Lentigines, ECG abnormalities, Ocular hypertelorism, Pulmonary stenosis, retARDation of 

growth and deafness (LEOPARD) is a much rarer distinct syndrome, with an outflow tract 

cardiac phenotype that also results from mutations in PTPN11 that increase downstream 

RAS-MAPK signaling (OMIM 151100). By contrast with these 2 syndromes, inactivating 

mutations in PTPN11 (frameshift and nonsense) cause the autosomal dominant bone disease 

metachondromatosis (OMIM 156250), a condition which is not characterized by CHD.34 

We therefore hypothesize that the common associated variant we describe upregulates SHP2 

activity (either directly or through linkage disequilibrium with a causative SNP), to a lesser 

degree than mutations that cause NS, and thereby leads to a moderate increase in TOF 

susceptibility. SHP2 is expressed at high levels in neuromuscular tissues in postnatal life but 

only at modest levels in readily accessible sources of RNA such as blood (http://

www.proteinatlas.org/ENSG00000179295/normal); further tissue-based studies will 

therefore be required to confirm this hypothesis.

It is highly unlikely that our result is artifactual, owing to the inclusion of substantial 

numbers of unrecognized patients with NS in our TOF cohort. The most common NS 

mutation, c.922A>G, has an estimated frequency in the population of around 0.0001, with 

all other mutations at least an order of magnitude less common; by contrast, the frequency of 
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the associated allele at rs11066320 was 0.42 in the control population, which indicates that 

even if complete linkage disequilibrium (LD) (measured as D′) were present, the correlation 

(r2) between rs11066320 and any NS-causative mutation would be negligible. Additionally, 

TOF is not the typical presentation of NS, only occurring in around 4% of patients. Finally, 

patients in this study had been clinically classified as nonsyndromic and were from families 

without evidence of Mendelian segregation of CHD.

Some limitations of our study merit comment. TOF is not an entirely homogeneous 

phenotype; for example, there is heterogeneity regarding aortic arch position and presence of 

aberrant subclavian vessels. Our study did not have sufficient power to examine whether the 

genes we studied were responsible for particular subtypes of TOF. Based on animal model 

data and evidence from human single-gene disease, PTPN11 is the most likely gene 

influencing TOF risk among the 15 present in the 1.6-Mb region of 12q24 tagged by 

rs11066320; however, further functional assessment will be required to determine precisely 

how the haplotype affects TOF risk. Finally, since the biology of the second heart field 

(SHF) remains rather sparsely characterized, our candidate genes cannot be considered to 

have captured all potential for common variation in SHF-expressed genes to affect TOF risk.

With respect to the clinical implications of our work, genotype at rs11066320 accounted for 

an insufficiently large relative risk to suggest a role for genotyping the SNP as an adjunct to 

genetic counseling in families in which a case of TOF has occurred. Moreover, further 

studies involving much larger numbers of cases will be necessary to determine whether 

rs11066320 genotype interacts with other genetic factors (such as rare copy number variants 

or de novo mutations) to affect TOF risk. It will also be of interest to establish whether there 

is a relationship between PTPN11 genotypes and other common CHD phenotypes. Our 

demonstration that a common genetic variant affects TOF risk suggests that GWAS 

approaches in larger cohorts may result in the identification of additional loci.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CLINICAL PERSPECTIVE

Known genetic syndromes such as Down and DiGeorge syndromes explain 

approximately 20% of cases of congenital heart disease. There remains a significant 

familial predisposition to congenital heart disease among the remaining ~80% of cases 

that are sporadic; 5% to 10% of these can be attributed to rare copy number variants in 

the genome, but other genetic risk factors remain largely unknown. No common genetic 

risk factors for congenital heart disease (defined as alleles with >5% frequency in the 

population) have as yet been robustly identified. We carried out a candidate-gene 

association study of tetralogy of Fallot (TOF), the most common cyanotic congenital 

heart disease phenotype. We found strong evidence of association between a common 

single nucleotide polymorphism in the PTPN11 gene (rs11066320) and TOF risk, which 

we replicated in a second independently ascertained cohort. Each copy of the risk allele 

increased the risk of TOF by ~30%. Sixty-four percent of the population carries 1 or 2 

copies of the risk allele. Rare gain-of-function mutations in the PTPN11 gene cause 

Noonan syndrome, which is a multisystem malformation syndrome in which pulmonary 

stenosis and TOF both occur. The long-range haplotype where the risk allele occurs, 

which spans PTPN11 and 14 other genes on chromosome 12q21, has been shown by 

others to be also associated with coronary artery disease, hypertension, blood platelet 

count, and a variety of autoimmune diseases. Although the relative risk of TOF conferred 

by rs11066320 alone is too small for genotype to be useful in risk profiling, larger studies 

incorporating genomewide data may discover additional loci.
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Table 1
Twenty-Two Candidate Genes for Tetralogy of Fallot Investigated in this Study

Gene Location (Based on NCBI36/hg18) No. of Exons
Region Investigated

(Gene, +/− 15 kb)
No. of SNPs
Genotyped

ACVR2A Chr2: 148 319 040 to 148 404 862 11 115.82 4

BOP (SMYD1) Chr2: 88148 497 to 88 194 015 10 75.52 27

CITED2 Chr6: 139 735 092 to 139 737 478 2 32.87 4

CRKL Chr22: 19 601 714 to 19 637 889 3 66.18 5

DHCR7 Chr11: 70 823 105 to 70 837 125 9 44.02 5

FGF10 Chr5: 44 340 854 to 44 424 541 3 113.69 1

FOLH1 Chr11: 49124 764 to 49 186 798 20 92.03 5

FOXH1 Chr8: 145 670 317 to 145 672 526 3 32.21 4

GATA4 Chr8: 11 599 162 to 11 654 918 7 85.76 51

HAND1 Chr5: 153 834 726 to 153 838 017 2 33.29 6

HAND2 Chr4: 174 684 228 to 174 687 953 2 33.726 21

HEY2 Chr6: 126 112 425 to 126 124 107 5 41.68 3

ISL1 Chr5: 50 714 715 to 50 726 314 6 41.6 5

MEF2C Chr5: 88 051 922 to 88 214 780 12 192.9 29

NKX2-5 Chr5: 172 591 744 to 172 594 868 2 33.125 3

PDGFRA Chr4: 54 790 204 to 54 859 168 23 98.97 1

PTPN11 Chr12: 111 340 919 to 111 432 099 16 121.18 5

SOX4 Chr6: 21 701 951 to 21 706 826 1 34.876 3

TBX1 Chr22: 18 124 226 to 18 151 110 10 56.89 1

TBX20 Chr7: 35 208 568 to 35 259 767 8 81.2 9

UFD1L Chr22: 17 817 702 to 17 846 726 12 59.02 7

VANGL2 Chr1: 158 636 991 to 158 665 088 8 58.1 8
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Table 2
Case and Control Populations Genotyped

Case Trio
Families

Non-Trio
Cases

Total Cases
(Trios Plus
Non-Trios)

Unrelated
Controls

Discovery cohort (207 SNPs) 213 149 362 183

Replication cohort (6 SNPs) 70 322 392 1319
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Table 3
Association of 6 SNPs With mAF >0.05 in Case and Control Populations and P<0.01 in 
the Discovery Cohort, in the Discovery and Replication Cohorts

SNP Gene
Discovery

Cohort P Value
Replication

Cohort P Value
Entire

Population P Value

Bonferroni
Corrected P Value
(207 Comparisons)

Odds
Ratio (95% CI),

Entire Population

rs11066320 PTPN11 0.004 0.0002 2.9×10−6 6.1×10−4 1.34 (1.19–1.52)

rs9385353 HEY2 0.001 0.7 0.08 NS 1.12 (0.99–1.27)

rs3095870 NKX2.5 0.005 0.76 0.14 NS 1.10 (0.97–1.25)

rs723166 FGF10 0.006 0.97 0.04 NS 1.16 (1.01–1.34)

rs121004 CRKL 0.01 0.71 0.08 NS 1.25 (0.97–1.60)

rs3729848 GATA4 0.01 0.97 0.16 NS 1.14 (0.95–1.37)

NS indicates not significant at P<0.05 after Bonferroni correction.
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Table 4
Genotype and Allele Frequencies for PTPN11 rs11066320

Genotypes Allele Frequencies

GG AG AA Total Samples G A

Cases 181 368 154 703 0.5192 0.4808

Parents 318 434 183 935 0.5722 0.4278

Unrelateds 498 698 252 1148 0.5849 0.4151
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