
Gene-gene and gene-environment interactions detected by 
transcriptome sequence analysis in twins

Alfonso Buil1,2,3,*, Andrew A Brown4, Tuuli Lappalainen1,2,3,5, Ana Viñuela6, Matthew N. 
Davies6, H.F Zheng7, J.B. Richards6,7, Daniel Glass6, Kerrin S. Small6, Richard Durbin5, 
Timothy D. Spector6, and Emmanouil T. Dermitzakis1,2,3,*

1Department of Genetic Medicine and Development, University of Geneva Medical School, 
Geneva, Switzerland. 2Institute of Genetics and Genomics in Geneva, University of Geneva, 
Geneva, Switzerland. 3Swiss Institute of Bioinformatics, Geneva, Switzerland. 4Wellcome Trust 
Sanger Institute, Hinxton, Cambridge, UK. 5Department of Genetics, Stanford University, 
Stanford, California, USA. 6Department of Twin Research, Kings College London, UK. 
7Department of Medicine, Human Genetics, Epidemiology and Biostatistics McGill University, 
Canada.

Understanding the genetic architecture of gene expression is an intermediate step in 

understanding the genetic architecture of complex diseases. RNA-seq technologies have 

improved the quantification of gene expression and allow measurement of allelic specific 

expression (ASE). ASE is hypothesized to result from the direct effect of cis regulatory 

variants, but a proper estimation of the causes of ASE has not been performed to date. In this 

study we take advantage of a sample of twins to measure the relative contribution of genetic 

and environmental effects on ASE and we found substantial effects of gene × gene (G×G) 

and gene × environment (G×E) interactions. We propose a model where ASE requires 

genetic variability in cis, a difference in the sequence of both alleles, but where the 

magnitude of the ASE effect depends on trans genetic and environmental factors that 

interact with the cis genetic variants.

Gene expression is a cellular phenotype that informs about the functional state of the cell. It 

is used as an intermediate phenotype between genetic variants and complex traits to help in 

the identification of causal genes affecting the variation of complex traits. Gene expression 

by itself is a complex trait that depends on genetic and environmental causes. Many 

researchers have studied the genetics of gene expression and thousands of expression 

quantitative loci (eQTLs) have been identified within different populations and tissues1-3. 
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Recently, epistatic interactions affecting gene expression have been described4, adding more 

complexity to the genetic architecture of gene expression. The use of RNAseq technologies 

to measure gene expression allows the estimation of allelic specific expression (ASE). ASE 

measures the difference in expression of two haplotypes of an individual at a specific 

genetic locus5-7 (Supplementary Fig. 1-A). While eQTLs are population based measures of 

the effect of genetics on gene expression, ASE is a more direct measure of how gene 

expression changes at the individual level. In addition, ASE is much less sensitive to 

technical parameters since such effects would affect both alleles equally. While ASE may 

occur in a stochastic way within each single cell, measurements from a population of cells 

for each individual represent the average behavior of the two alleles and, theoretically, are 

expected to result from the direct effect of genetic regulatory variants in cis. ASE is 

therefore expected to be much less influenced by environmental and experimental 

variability, accounting for approximately 70% of the variance1, which allows us to dissect in 

more detail the remaining 30% of genetic variability. In this study we dissect the underlying 

causes of ASE, by measuring the relative contribution of genetic and environmental factors 

and propose biological models of ASE action. To achieve these goals we sequenced the 

mRNA fraction of the transcriptome of ~400 female twin pairs (~800 individuals) from the 

TwinUK cohort in four tissues: fat, skin, blood and lymphoblastoid cell lines (LCL) using 

49bp paired-end sequencing in an Illumina HiSeq2000. We sequenced 766 fat samples, 814 

LCL samples, 716 skin samples and 384 blood samples and obtained 28M exonic reads per 

sample on average. Genotype information was imputed into the 1000 Genomes Phase 1 

reference panel. By constructing a quantitative measure of ASE and exploiting the twin 

structure, we can dissect the proportions of its variation which are due to distinct genetic and 

non-genetic causes.

Since our expectations are that cis eQTLs play an important role in ASE, we looked for cis 

eQTLs in the four tissues. We used a linear regression approach with SNPs in a 1Mb 

window each side of the TSS for each gene (see Methods). We identified 9166 significant 

ciseQTLs in fat, 9551 in LCLs, 8731 in skin and 5313 in blood (1% FDR).

We used the RNAseq data to estimate ASE for every individual at every transcribed 

heterozygous SNP in the four tissues separately. First we ran a test to localize statistically 

significant ASE sites; then we defined a quantitative phenotype that measures the amount of 

ASE at a site and looked for the variance components of that phenotype.

To assess if a heterozygous site shows statistically significant ASE we used a binomial test 

on the proportion of reference alleles versus total counts (see methods). Since ASE estimates 

are sensitive to read coverage and mapping bias, we restricted our analysis to sites with at 

least 30 reads that passed a rigorous filtering process to control for mapping bias and other 

confounders7 (see methods). We tested an average of 1582 sites per individual, 8% of which 

were statistically significant at FDR 10% (Supplementary Table 1). We identified 8013 ASE 

sites in fat, 10751 in LCL, 9538 in skin and 6827 in blood. About 80% of the ASE sites are 

in genes for which we also identified a cis eQTL (Supplementary Table 1). We assume that 

the genes with ASE without observed cis eQTL also have genetic variants in cis causing the 

allelic imbalance, but we did not have the power to find them due to small effect sizes or the 

variants having low frequency in the population or being involved in epistatic or gene-
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environment interactions. We cannot exclude the possibility that, in some cases, 

homeostatic / feedback mechanisms act to constrain total expression so that an imbalance in 

allelic expression does not change the total output.

To quantify genetic and environmental sources of variation in ASE we developed an 

extension of the classical variance components approach based on the correlations within 

MZ and DZ twin pairs. We defined a quantitative phenotype of ASE as the logit of the 

proportion of reference alleles. This measure is not dependent on the overall gene expression 

level and is not susceptible to give false interactions due to trans or environmental effects 

that increase the overall level of expression. We jointly analyzed all the sites in genes with at 

least one eQTL, where both siblings have at least 30 reads overlapping the site and ASE is 

statistically significant for at least one of the siblings. We estimated the correlation of the 

ASE phenotype within MZ and DZ twins and observed that the correlation among DZs was 

higher than half of the correlation among MZs (Figure 1). That could indicate a potential 

shared environment component, but in our case, it is more likely to be due to the fact that the 

cis eQTL has a large effect on ASE and our DZ twins are genetically more similar than 

random mating predicts at the ASE locus (mean Identical By State (IBS) coefficient at the 

eQTL for DZ twins is 0.9). Indeed, when we looked at correlation between DZ twins that are 

IBS=0.5 (and hence share half of the contribution of the additive eQTL of MZ twins) we 

observed that this correlation is less than half of the correlation between MZ twins (Figure 

1), indicating the potential presence of non additive genetic effects.

To incorporate these complexities in the model, we separated the twin pairs depending on 

the average genetic similarity genome wide (1 for MZ, 0.5 for DZ), genetic similarity at the 

locus based on the Identity By Descent (IBD) status in the cis region surrounding the gene, 

and the genetic similarity of the eQTL based on the IBS status at the eQTL locus. We 

estimated the correlations of the ASE phenotype for each category of twins and modeled 

these correlations as a function of six variance components (see methods).These components 

represent the proportions of variance in ASE that could be explained by environmental 

variation, by the top eQTL, by other variants in cis, by variants in trans, and by genetic 

interactions. As recombination is unlikely to have occurred within the cis window, cis 

epistatic interactions are generally not broken up within twin pairs and thus their 

contribution to variance is effectively additive. Instead we looked at calculating the 

proportion of variance explained by cis-trans interactions. We found that the heritability (the 

sum of all the genetic components, eQTL + cis + trans + interactions) of ASE ranges from 

62% to 88% (Figure 2). The effect of the best cis eQTL per gene accounts for 26% to 46% 

of the variance on ASE. That means that nearly half of the heritability of ASE is due to a 

common ciseQTL. The remaining is due to other genetic effects in cis (11% to 22% of the 

ASE variance) and genetic interaction effects (11% to 29% of the ASE variance). As 

expected by the biological assumptions, we did not observe significant additive trans effects. 

We found a significant effect of the shared environment only in blood (11% of the ASE 

variance). That could be due to the fact that blood is more heterogeneous than the other 

tissues, with variable proportions of different cell types in individuals and shared 

environment affecting the counts of different cell types. In the shared environment 

component we are likely picking up cell-type specific effects. We used 1000 bootstrap 

permutations to calculate confidence intervals of our variance components estimates (Figure 
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2). This approach is robust to different coverage thresholds and the presence of several ASE 

sites in the same gene (Supplementary Figs. 2 and 3). In summary, the main causes of ASE 

are genetic variants in cis, as expected, but between 38% and 49% of the variance in the 

ASE ratio is due to genetic interactions and environmental factors.

Our variance components model shows that genetic effects do not explain all the observed 

variance in ASE and that environmental factors can have an effect on ASE. Given the nature 

of the ASE which, contrary to total gene expression, is internally controlled, these 

environmental effects should be mainly mediated by true biological mechanisms mediated 

by epigenetic mechanisms and much less likely by technical and experimental effects. 

However, environmental/epigenetic effects alone cannot create allelic imbalance as ASE is 

averaged over a large population of cells so stochastic effect are equally distributed between 

the two alleles; to observe ASE a cisDNA sequence effect is required. We therefore 

postulated the existence of gene × environment (G×E) interactions affecting ASE.

To identify cases of G×E we used an analysis inspired by the classical discordant MZ twins 

analysis8-10. We defined the phenotype as the absolute difference in measured ASE between 

MZ twins, and looked for SNPs around the ASE site that were associated with this 

phenotype. Significant associations suggest the influence of environmental factors affecting 

ASE in a genotype dependent manner. After multiple testing correction, we found evidence 

of G×E in fat and LCLs but not conclusive results in skin and blood (Supplementary Table 

2, Supplementary Table 3, Supplementary Table 4 and Supplementary Table 5). One of the 

top hits in LCLs is the Epstein-Barr virus induced 3 gene (EBI3) (Figure 3 and 

Supplementary Fig. 4). That means that ASE at the EBI3 gene depends on the interaction of 

cis genetic variants and an environmental factor likely, in this case, to be related to the 

transformation process of the B cells with EBV. The two top hits in fat are ADIPOQ and 

ACSL1, two genes that code for Adiponectin and Long-chain-fatty-acid—CoA ligase 1 

proteins respectively (Figure 3 and Supplementary Fig. 4). These two proteins are 

functionally related: both participate in the gene ontology biological processes ‘response to 

fatty acid’ and ‘response to nutrient’, and both are known to be regulated by environmental 

factors such as diet and exercise in a genotype dependent manner11-14. Attempts to link it to 

environmentally affected phenotypes (BMI, glucose levels, insulin levels) did not show any 

significant associations, which is not surprising since these are phenotypes affected by the 

environment and not direct environmental measures. The analysis above suggests that 

environment can modulate the effect of SNPs on gene expression.

In conclusion, these results show a complex genetic architecture for cis-regulation of gene 

expression measured through ASE. We propose a model where the allelic imbalance in 

expression (ASE) requires genetic variability in cis, however, the magnitude of the ASE 

effect depends on trans genetic and environmental factors that interact with the cis genetic 

variants (Supplementary Fig. 1-B and Supplementary Fig. 1-C). Examples of interactions 

between cis and trans genetic variants affecting gene expression have been described 

recently4. Here we provide a global quantification of the magnitude of these effects. About 

38% to 49% of the variance of the observed ASE is not explained by additive genetic 

effects. This means that a substantial amount of the variance observed in ASE, and therefore 

in genetic regulation of gene expression, is due to G×G and G×E interactions. It is worth 

Buil et al. Page 4

Nat Genet. Author manuscript; available in PMC 2015 November 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



noting that our results show no additive trans effects on ASE. This does not mean that there 

are no additive trans effects affecting gene expression; it means that the trans effects 

affecting ASE are not additive. We found an example of G×E interaction on gene expression 

that has been widely described in the literature (Adiponectin), supporting the validity of our 

approach. However, the limitation on power due to the sample size prevented us discovering 

specific associations in most other cases. Allelic gene expression is the molecular phenotype 

closest to the action of genetic variation. The presence of widespread G×G and G×E 

interactions affecting this phenotype implies that G×G and G×E can be important in other 

complex phenotypes, including diseases. The proposed model has implications for the 

interpretation of the effect of GWAS genetic variants on complex diseases. About 80% of 

the GWAS signals are estimated to be regulatory variants. The search for G×G and G×E 

interactions conditioning on relevant biological models rather than whole genome agnostic 

searches is likely to recover a substantial fraction of genetic and non-genetic variance 

associated with disease risk.

Online Methods

Sample collection

The study included 856 Caucasian female individuals recruited from the TwinsUK Adult 

twin registry. Punch biopsies (8mm) were taken from a photo-protected area adjacent and 

inferior to the umbilicus. Subcutaneous adipose tissue was dissected from each biopsy, 

weighed and immediately stored in liquid nitrogen. Similarly, the remaining skin tissue was 

weighed and stored in liquid nitrogen. Peripheral blood samples were collected and 

lymphoblastoid cell lines (LCLs) were generated by Epstein Barr Virus transformation of 

the B-lymphocyte component by the European Collection of Cell Cultures agency.

The St. Thomas' Research Ethics Committee (REC) approved on 20th September 2007 the 

protocol for dissemination of data, including DNA, with the REC reference number 

RE04/015. On 12th of March of 2008, the St Thomas' REC confirmed this approval extends 

to expression data. Volunteers gave informed consent and signed an approved consent form 

prior to the biopsy procedure. Volunteers were supplied with an appropriate detailed 

information sheet regarding the research project and biopsy procedure by post prior to 

attending for the biopsy.

Genotying and imputation

Samples were genotyped on a combination of the HumanHap300, HumanHap610Q, 1M-

Duo and 1.2MDuo 1M Illumnia arrays. Samples were imputed into the 1000 Genomes 

Phase 1 reference panel (data freeze, 10/11/2010)15 using IMPUTE216 and filtered 

(MAF<0.01, IMPUTE info value < 0.8).

RNA processing

Samples were prepared for sequencing with the Illumina TruSeq sample preparation kit 

(Illumina, San Diego, CA) according to manufacturer’s instructions and were sequenced on 

a HiSeq2000 machine. Afterwards, the 49-bp sequenced paired-end reads were mapped to 

the GRCh37 reference genome17 with BWA v0.5.918. We use genes defined as protein 
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coding in the GENCODE 10 annotation19. We excluded samples that failed in the library 

prep or sequence process. We also excluded samples with less than 10 million reads 

sequenced and mapped to the exons. Finally we excluded samples in which the sequence 

data did not correspond with the actual genotype data. We ended with 766 samples for fat, 

814 for LCL, 716 for skin and 384 for blood (we had blood samples for only half of the 

individuals).

eQTL discovery

Exon quantifications—All overlapping exons of a gene were merged into meta-exons 

with identifier of the form “geneID_start.pos_end.pos”. We counted a read in a meta-exon if 

either its start or end coordinate overlapped a meta-exon.

Normalization—All read count quantifications were corrected for variation in sequencing 

depth between samples by normalizing the reads to the median number of well-mapped 

reads. We used only exons quantified in more than 90% of the individuals. We removed the 

effects of technical covariates regressing out the first 50 factors from PEER 20, including 

BMI and age in the model to preserve important biological sources of variation.

eQTL association—Since our data samples are twins, they are not independent 

observations and we needed to take that into account in our models. We used the two-steps 

strategy described in Aulchenko et al.21 First we kept the residuals of a mixed model that 

removed the effects of the family structure using the implementation in GenAbel R package. 

We then transformed those residuals using a rank normal transformation. Finally, we 

performed a linear regression of the transformed residuals on the SNPs in a 1Mb window 

around the transcription start site for each gene, using MatrixeQTL R package 22. We did 

the association at the exon level and we kept the best association per gene.

Permutations—We permuted the quantifications of each exon 2000 times, keeping the 

best p-value per exon from each round. From these data, we adjusted the empirical FDR to 

1% according to the most stringent exon of each gene, stratifying the analysis on the number 

of exons for a given gene.

Sites Filtering in ASE

In all the ASE analyses we excluded sites that are susceptible to allelic mapping bias: 1) 

sites with 50bp mapability < 1 based on the UCSC mapability track, implying that the 50bp 

flanking region of the site is non-unique in the genome, and 2) simulated RNA-seq reads 

overlapping the site that show >5% difference in the mapping of reads that carry the 

reference or non-reference allele. To verify that the genotype is a true heterozygous, we used 

only sites with >=30 reads, and sites where both alleles are observed in RNAseq data7.

Binomial test for ASE

We assessed statistically significant ASE sites using a binomial test. We did a test for each 

heterozygous SNP in every individual to detect the presence of statistically significant allelic 

imbalance. For each site-individual we counted the number of reads covering each allele and 

calculated a binomial test comparing the observed proportion of reference allele counts with 
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the expected proportion. In theory, this expected proportion should be 0.5 but mapping bias 

can change it a little bit. To correct for systematic bias in allelic ratios we calculated the 

overall reference to total allele ratio for each individual for each SNP base combination. 

These ratios were then used as the expected ratios in the binomial test. We called significant 

ASE sites using a 10% FDR threshold. We assess the robustness of our significant ASE calls 

in four ways. First, we evaluated the concordance of ASE among tissues by measuring ASE 

of ASE significant sites from one tissue in another tissue in the same individual and 

observed a replication rate about 70% in the three tissues with complete sample size 

(Supplementary Fig. 5). We then analyzed 5 samples of the GEUVADIS project that where 

sequenced between 2 and 7 times in different laboratories7,23. We observed that the ASE 

ratio is quite stable for coverage of 30 reads or more (Supplementary Fig. 6). We also 

observed that the agreement in ASE significant calls is stable for different coverages 

(Supplementary Fig. 7). Finally, we analyzed two LCL samples (from the Geuvadis 

Project7) following the same protocol and analysis pipeline as the one described in the 

present paper and compared the results to the ASE ratios obtained from a new technique that 

uses microfluidic multiplex PCR and sequencing (mmPCR)24. The experimental and 

statistical analysis of the two samples was independently performed in the two different 

laboratories. We found a very good agreement between the results we obtained using 

RNAseq and the new mmPCR technique. The replication rate is about 80-82% and the 

correlation among the ASE ratios for sites that are significant using RNAseq is 0.86 

(Supplementary Fig. 8). These observations show a high degree of replicability of ASE 

measures.

Quantification of ASE

The measure we used for the variance components analysis of ASE is the logit of the 

percentage of reference alleles. Being p = REF _COUNT /TOTAL_COUNT the percentage 

of reference allele at a site for an individual, the measure of ASE is:

This measure is not dependent on the overall gene expression level and thus is not 

susceptible to give false interactions due to trans effects or environmental effects that 

increase the overall level of expression (Supplementary Fig. 9 and Supplementary Fig. 10).

IBD and IBS calculations

IBD—We calculated the haplotypes in a 1Mb window around the TSS of each gene and 

counted the number of haplotype alleles that are shared between the twin pairs at each locus.

IBS—We estimated IBS for each twin pair at each locus based on the eQTL-ASE site 

haplotype. For each site, we counted the number of alleles in the eQTL-ASE site haplotype 

that are equal between the pair.
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The difference between the IBS an the IBD estimates is that for the IBD we take into 

account the information of a 1Mb haplotype and for the IBS estimates we use only the 

haplotype with two SNPs: the eQTL and the ASE site.

Variance Components Models

Classical variance components models in twins model the phenotypic correlation between 

MZ twins and DZ twins as a function of the additive genetic variance and the shared 

environment variance25:

and

where A represents the additive genetic effects and C the effects due to the common 

environment between the twin pair (events that affect each member of a twin pair in the 

same way). The individual environmental effect (events that occur to one twin but not the 

other) would be E = 1 –cormz. From the two equations above, we get that heritability can be 

estimated as:

Here, we extend this model to incorporate new sources of variation:

- Aqtl: additive effect due to the best eQTL

- Acis: other genetic additive effects in cis

- Atrans: additive genetic effects in trans

- I: epistatic interaction between trans and cisgenetic effects

Where A = Aqtl + Acis + Atrans + I

Then, our model has six variance component: 1) variance due to the effect of the major cis 

eQTL (the IBS status at this locus), 2) variance due to the rest of the genetic variants in cis 

(including the effect of rare variants, captured by the IBD status), 3) variance due to genetic 

variants in trans (the genome-wide IBD), 4) variance due to non-additive genetic effects 

(genetic interactions), 5) variance due to the shared environmental effect and 6) variance due 

to the individual environmental effect.

The equations of the extended model are:
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Where:

cormz is the correlation within MZ twins

cordz_ibd1 is the correlation within DZ twins that are IBD=1 at the gene

cordz_ibd05_ibs1 is the correlation within DZ twins that are IBD=0.5 at the gene and IBS=1 at the eQTL

cordz_ibd05_ibs05 is the correlation within DZ twins that are IBD=0.5 at the gene and IBS=0.5 at the eQTL

cordz_ibd0_ibs1 is the correlation within DZ twins that are IBD=0 at the gene and IBS=1 at the eQTL

cordz_ibd0_ibs05 is the correlation within DZ twins that are IBD=0 at the gene and IBS=0.5 at the eQTL

cordz_ibd0_ibs0 is the correlation within DZ twins that are IBD=0 at the gene and IBS=0 at the eQTL

To calculate these correlations we used sites covered by at least 30 reads, showing 

significant ASE in genes with at least one cis eQTL. Since the number of individuals that 

have ASE at a given site is small, we analyzed all the sites together to get a global estimate 

of the variance components. This strategy has been used previously with gene expression 

data1,26.

To solve the system of equations we used the non-linear optimization package Rsolnp from 

the R statistical environment 27. We estimated the solution that minimizes the quadratic 

errors, forcing the variances components to be positive.

Genotype by Environment Interaction

For every ASE site with data for at least 50 MZ twin pairs we calculated the Mann-Whitney 

test:

for all the SNPs in a 1Mb window around the transcription start site of the gene holding the 

ASE site. ASE_distance is the absolute value of the difference in the ASE phenotype 

between the two siblings of the MZ pair and snpi represents the genotype of one SNP. Since 

we are looking for an effect on ASE we expect a similar behavior for the two homozygous 

genotypes. Therefore, for the association analysis we coded the genotypes in two categories: 

homozygous and heterozygous. To correct for multiple testing we calculated the number of 

effective tests and applied the Bonferroni correction based on these number of tests. Since 

MZ twins are genetically identical, a difference in ASE between two MZ siblings has to be 

caused by environmental/epigenetic causes. A significant association in our tests suggests 

the existence a G×E interaction affecting ASE. It is worth noting that the associated SNP 

genotype is not equivalent to the existence of ASE as other variants may be contributing to 
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ASE as well. There are cases of homozygous pairs with ASE and heterozygous pairs without 

ASE and that, in all cases, the difference in ASE is larger for the heterozygous 

(Supplementary Fig. 11). Finally, the existence of ASE does not imply a significant G×E 

interaction as shown in Supplementary Fig. 12.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ASE correlation among twin pairs for different categories of genetic similarity. MZ: 

monozygotic twins; DZ: dizygotic twins; DZibs05: DZ twins with identical by state (IBS) 

equal to 0.5 at the eQTL locus. The 95% confidence intervals were calculated by using 1000 

bootstrap permutations.
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Figure 2. 
Variance components for ASE for the model with cis × trans interaction: ‘H2’ (equal to eqtl 

+ cis + cis.trans + trans) is the heritability of ASE, ‘eqtl’ is the proportion of variance 

explained by a common eQTL, ‘cis’ is the proportion of variance explained by other variants 

in cis, ‘cis.trans’ is the proportion of variance explained by interactions between cis and 

trans genetic variants, ‘trans’ in the proportion of variance explained by genetic variants in 

trans, ‘c’ is the proportion of variance explained by the shared environment and ‘e’ is the 

proportion of variance explained by the individual environment. The 95% confidence 

intervals where calculated using 1000 bootstrap permutations.
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Figure 3. 
G×E examples discovered using discordant MZ twins analysis. MZ twin pairs show a 

different ASE effect on some genes depending on the genotype of specific SNPs. The Y axis 

shows the ASE difference between MZ twins. Since MZ twins are genetically identical, this 

association reflects the interaction of the SNP with an unknown environment. Boxplots 

represent the difference in ASE in MZ twin pairs that are heterozygous (in green) and 

homozygous (in orange) at the SNP of interest. A) ASE in gene ACSL1 shows G×E 

interaction with SNP r334710824 in Fat; B) ASE in gene ADIPOQ shows G×E interaction 

with SNP rs4686817 in Fat; C) ASE in gene EBI3 shows G×E interaction with SNP 

rs67782188 in LCLs.
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