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Abstract

Motivation: Genome-wide association studies revealed that most disease-associated single

nucleotide polymorphisms (SNPs) are located in regulatory regions within introns or in regions

between genes. Regulatory SNPs (rSNPs) are such SNPs that affect gene regulation by changing

transcription factor (TF) binding affinities to genomic sequences. Identifying potential rSNPs is cru-

cial for understanding disease mechanisms. In silico methods that evaluate the impact of SNPs on

TF binding affinities are not scalable for large-scale analysis.

Results: We describe affinity testing for regulatory SNPs (atSNP), a computationally efficient

R package for identifying rSNPs in silico. atSNP implements an importance sampling algorithm

coupled with a first-order Markov model for the background nucleotide sequences to test the sig-

nificance of affinity scores and SNP-driven changes in these scores. Application of atSNP with

>20 K SNPs indicates that atSNP is the only available tool for such a large-scale task. atSNP pro-

vides user-friendly output in the form of both tables and composite logo plots for visualizing SNP-

motif interactions. Evaluations of atSNP with known rSNP-TF interactions indicate that atSNP is

able to prioritize motifs for a given set of SNPs with high accuracy.

Availability and implementation: https://github.com/keleslab/atSNP.

Contact: keles@stat.wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies have been instrumental in identify-

ing single nucleotide polymorphisms (SNPs) associated with large

numbers of phenotypes. The vast majority of association SNPs are

in non-coding regions, suggesting that they may have regulatory

roles in deriving the phenotype (Maurano et al., 2012). In particular,

regulatory SNPs which alter binding affinity of transcription factors

and affect gene expression constitute an important class of such

SNPs (Pai et al., 2015). A standard in silico approach for identifying

rSNPs is by evaluating how the SNP-driven nucleotide change im-

pacts binding affinity of TFs to the region surrounding the SNP

(Macintyre et al., 2010; Riva, 2012; Thomas-Chollier et al., 2011;

Andersen et al., 2008). Specifically, the DNA sequences around each

SNP are scored against a library of TF motifs with both the reference

and the SNP alleles using position weight matrices (PWMs) (Stormo

et al., 1982) of the motifs. SNPs with significantly different scores

between the reference and SNP alleles are then hypothesized as

rSNPs.

We describe atSNP, an R package that carries out the following

tasks for every SNP-motif combination of the input data after ex-

tracting genome sequences of small windows (630 bps) around the

SNP positions: (i) computing affinity scores for both alleles; (ii) stat-

istical testing for allele-specific affinity scores; (iii) statistical testing

for changes in affinity scores between alleles. A few existing tools

can perform various subsets of these tasks (Table 1). The most dis-

tinctive feature of atSNP is its ability to accommodate large scale

analysis (e.g. over>20 K SNPs). is-rSNP has the most similar func-

tionality to atSNP; however, is-rSNP (both 1.0 and 2.0) can only
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analyze at most 20 SNPs at a time. Similarly, TRAP takes as input

only one SNP. Although rSNP-mapper can take as input larger num-

ber of SNPs, it lacks critical calculations such as the significance of

SNP-driven affinity change. FIMO is not designed for evaluating

SNP impact on affinity scores; however, it enables P-value computa-

tion for affinity scores and can be used to compare scores under

different alleles. However, due to computational reasons, FIMO can

only accommodate outputting results thresholded by a small pre-

specified significance level for large SNP sets. In our hands with a 24

AMD Opteron 2.2 GHz processor, a FIMO run for 26 100 SNPs

against a single PWM without thresholding could not finish within

24 hours whereas atSNP required less than 5 minutes. The main

computational burden of both FIMO and is-rSNP is the computa-

tion of the exact P-values by enumerating all possible sequences and

computing their scores under the null hypothesis. atSNP utilizes an

importance sampling technique to overcome this challenge

(Supplementary Materials).

2 Implementation

Supplementary Figure S1 summarizes the main inputs and outputs

of atSNP. atSNP includes a motif library of 2065 PWMs from the

ENCODE project (Kheradpour and Kellis, 2014) and the JASPAR

core motif library (Mathelier et al., 2014). In addition, it allows

user-defined motif libraries in a variety of formats, e.g. MEME for-

mat (Grant et al., 2011) or other PWM libraries from the JASPAR

database (Mathelier et al., 2014). atSNP accesses genome data of

the input organism through the Bioconductor BSGenome package

(Pages, 2014) and thus can analyze data from a variety of organisms.

It computes the binding affinity score for each subsequence overlap-

ping the SNP position in either strand and reports the maximum of

these as the affinity score of the sequence. In order to evaluate the

significance of these scores, atSNP first estimates a null distribution

for the scores by a first-order Markov model using the subsequences

surrounding the SNP positions (default 6 30 bps of the SNP pos-

itions). P-value computations for both the allele-specific scores and

between-allele score differences are carried out using importance

sampling algorithms adapted from Chan et al. (2010)

(Supplementary Materials). We compared the P-values computed by

atSNP with those computed by FIMO (Grant et al., 2011) and illus-

trated that the importance sampling method drastically improves

computational time without sacrificing accuracy (Supplementary

Materials).

atSNP produces as output a data.table listing the affinity

score, P-value, and allele-specific matching position for each SNP-

motif pair. This R data structure provides powerful functionality for

querying and integrating additional data sources. Furthermore,

atSNP provides composite logo plots for directly visualizing the SNP

effects on motif matches as in Figure 1.

3 Example

To demonstrate atSNP’s computation efficiency, we evaluated the

regulatory potential of 26 100 SNPs from the Psychiatric Genomics

Consortium (Gratten et al., 2014) against a library of 10 motifs.

Genome subsequences around the SNP positions were obtained

from the human genome version hg19 with the BSgenome package

(Pages, 2014). atSNP ran to completion in 7 min and 15 s of wall

clock time using 10 parallel threads on a server with 24 AMD

Opteron 2.2 GHz processors and in 23 min and 4 s when using only

a single thread. We also analyzed the same dataset with FIMO for a

much simpler task of calculating P-values of subsequences overlap-

ping each SNP position. FIMO required 2.5 h to complete at the

P-value threshold of 0.1. Since is-rSNP does not support batch exe-

cution of large sets of SNPs, we did not include it in this run-time

comparison. We further performed numerical comparisons and

evaluations with known rSNP-TF interactions between atSNP and

FIMO and is-rSNP and illustrated that atSNP’s results are both

accurate and robust against false positives (Section 4 of

Supplementary Materials). A sample SNP-motif interaction in

Figure 1 also highlights that atSNP prevents potential false positives

by allowing different matching positions with the reference and SNP

alleles.

Table 1. Comparison of existing in-silico rSNP detection tools
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is-rSNP (Macintyre et al., 2010) � � � � �

RAVEN (Andersen et al., 2008) � �

rSNP-MAPPER (Riva, 2012) � �

TRAP? (Thomas-Chollier et al., 2011) � � �

FIMO?? (Grant et al., 2011) � � � �

?TRAP takes as input only one SNP at a time.
??FIMO scans sequences for occurrences of motifs and is not readily a

rSNP tool.
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Fig. 1. A composite logo plot for rs9512730-M00470 (TFAP2) pair from atSNP.

The SNP location is within the dashed box. The P-values for the binding affin-

ity of the best matches with the SNP and reference alleles are 2.29e�3 and

4.9e�4, respectively. The P-value for the affinity change is 0.058 (ranked

1450th among all the 26 100 SNPs). If we compare the binding affinities of the

reference and SNP allele sequences based on the matching position on the

reference allele only, there is a big score change induced by the SNP. This is

likely to be a false positive, because shifting 1 bp to the left results in a match-

ing subsequence with the SNP allele. atSNP allows the matching positions on

both alleles to be different and thereby avoids such potential false positives
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