
Group comparison of spatiotemporal dynamics
of intrinsic networks in Parkinson’s disease

Tara M. Madhyastha,1 Mary K. Askren,1 Jing Zhang,2 James B. Leverenz,3

Thomas J. Montine2 and Thomas J. Grabowski1,4

Recent advances with functional connectivity magnetic resonance imaging have demonstrated that at rest the brain exhibits

coherent activity within a number of spatially independent maps, normally called ‘intrinsic’ or ‘resting state’ networks. These

networks support cognition and behaviour, and are altered in neurodegenerative disease. However, there is a longstanding per-

spective, and ample functional magnetic resonance imaging evidence, demonstrating that intrinsic networks may be fractionated

and that cortical elements may participate in multiple intrinsic networks at different times, dynamically changing alliances to adapt

to cognitive demands. A method to probe the fine-grained spatiotemporal structure of networks may be more sensitive to subtle

network changes that accompany heterogeneous cognitive deficits caused by a neurodegenerative disease such as Parkinson’s

disease. Here we tested the hypothesis that alterations to the latent (hidden) structure of intrinsic networks may reveal the

impact of underlying pathophysiologic processes as assessed with cerebrospinal fluid biomarkers. Using a novel modelling

approach that we call ‘network kernel analysis’, we compared fine-grained network ensembles (network kernels) that include

overlapping cortical elements in 24 patients with Parkinson’s disease (ages 45–86, 17 male) and normal cognition or mild cognitive

impairment (n = 13), and 21 cognitively normal control subjects (ages 41–76, nine male). An omnibus measure of network dis-

ruption, calculated from correlations among network kernels, was correlated with cerebrospinal fluid biomarkers of pathophysio-

logical processes in Parkinson’s disease: concentrations of a-synuclein and amyloid-b42. Correlations among network kernels more

accurately classified Parkinson’s disease from controls than other functional neuroimaging measures. Inspection of the spatial maps

related to the default mode network and a frontoparietal task control network kernel showed that the right insula, an area

implicated in network shifting and associated with cognitive impairment in Parkinson’s disease, was more highly correlated

with both these networks in Parkinson’s disease than in controls. In Parkinson’s disease, increased correlation of the insula

with the default mode network was related to lower attentional accuracy. We demonstrated that in an omnibus sense, correlations

among network kernels describe biological impact of pathophysiological processes (through correlation with cerebrospinal fluid

biomarkers) and clinical status (by classification of patient group). At a greater level of detail, we demonstrate aberrant involve-

ment of the insula in the default mode network and the frontal frontoparietal task control network kernel. Network kernel analysis

holds promise as a sensitive method for detecting biologically and clinical relevant changes to specific networks that support

cognition and are impaired in Parkinson’s disease.
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Abbreviations: DMN = default mode network; DAN = dorsal attention network; FPTC = fronto-parietal task control network;
ICA = independent components analysis

Introduction
Recent functional connectivity MRI work has demon-

strated that at rest, the brain exhibits coherent activity

within a number of spatially independent maps, normally

called ‘intrinsic’ or ‘resting state’ networks (Fox and

Raichle, 2007; Cole et al., 2014). These networks support

cognition and behaviour, and are altered in neurodegen-

erative disease. Thus, decline in cognition may be inter-

preted in the context of disruption of the networks that

support higher-order processes (e.g. memory and executive

function), a property that has been pivotal in understand-

ing the progression of neurodegenerative disease. An ex-

ample is the default mode network (DMN), which has a

role in memory encoding and retrieval. Hippocampal ac-

tivation is normal when DMN deactivation is normal, and

hippocampal ‘hyperactivation’ occurs when DMN deacti-

vation is abnormal (Miller et al., 2008; Vannini et al.,

2011), possibly at early stages of Alzheimer’s disease

(Dickerson et al., 2005). This functional interaction of

the hippocampus (which is among the first structures to

degenerate in preclinical Alzheimer’s disease), and the

DMN in memory encoding brings some clarity to the

basis for the progression of memory-related symptoms in

Alzheimer’s disease.

The situation in Parkinson’s disease is more complex

than in Alzheimer’s disease. Cognitive impairment is pre-

sent in about one-third of patients with Parkinson’s disease

at the time of initial diagnosis and ultimately afflicts the

vast majority. The disease mechanisms underlying cognitive

impairment and dementia in Parkinson’s disease are an

unclear mix of intrinsic processes related to regional accu-

mulation of a-synuclein (encoded by SNCA) and loss of

nigrostriatal and midbrain dopaminergic neurons, and pro-

cesses of Alzheimer’s disease, characterized by regional

accumulation of amyloid-b and pathologic tau species.

Psychometric testing has demonstrated impairment in vary-

ing domains in patients with Parkinson’s disease, with

some demonstrating an amnestic pattern (Cholerton et al.,

2014; Mata et al., 2014) and others impairment in execu-

tive and/or visuospatial function. Multiple pathophysiologic

processes converge to cause known deficits in lateral

frontoparietal networks that support attention and task

control, as evidenced by metabolic covariance analysis

(Eckert et al., 2007; Huang et al., 2007). In addition to

cerebral cortical dysfunction, impairment of multiple inter-

acting ascending control systems, including the dopamin-

ergic, noradrenergic, cholinergic and serotonergic systems,

contribute to cognitive deficits and are difficult to disentan-

gle (Mattila et al., 2001; Barone, 2010). Thus, the func-

tioning of intrinsic networks is a promising target for

understanding the heterogeneity of cognitive impairment

in Parkinson’s disease.

Networks that have been conceptualized as being import-

ant for attention include the (i) frontoparietal task control

network (FPTC), comprising anterior prefrontal, dorsolat-

eral prefrontal, dorsomedial superior frontal/anterior cingu-

late, anterior inferior parietal lobule, and anterior insular

cortices (Dosenbach et al., 2007); and (ii) dorsal attention

network (DAN), comprising frontal eye fields and intrapar-

ietal sulci (Corbetta and Shulman, 2002), and the salience

network (Seeley et al., 2007). These ‘task positive’ net-

works are typically thought of as being anticorrelated

with the DMN, but Spreng et al. (2010) demonstrated

that the FPTC flexibly coupled with the DMN or DAN

to support either internally- or externally-focused goal-

directed cognition. There is a high degree of inter-network

connectivity between the FPTC and the DMN and DAN,

suggesting its role in mediating engagement of these net-

works (Spreng et al., 2013). Dopamine plays an important

role in this mediation by enhancing coupling between the

FPTC and the DMN while reducing the coupling between

the FPTC and the DAN (Dang et al., 2012).

Disruption in engagement of the FPTC and DAN correl-

ates with visual misperceptions and hallucinations in

Parkinson’s disease (Shine et al., 2013). A failure to recruit

the DAN may lead to an over-reliance on the DMN for

interpretation of the ambiguous stimuli (Shine et al., 2014).

The anterior insula, which is hypothesized to play an

important role in ‘network switching’ (Menon and Uddin,

2010), was more highly activated when viewing bistable

precepts, and subjects with deficits had less bilateral grey

matter in the insula. The insula is affected in Parkinson’s

disease both by a-synuclein accumulation and disruptions

to neurotransmitter function and is an important target for

understanding non-motor symptoms in Parkinson’s disease

(Christopher et al., 2014a). Recent findings that insular

D2 receptor loss underlies executive dysfunction in

Parkinson’s disease with mild cognitive impairment

(Christopher et al., 2014b) suggest that changes to large-

scale network interactions together with changes to anterior

insular functional connectivity should be a hallmark of

Parkinson’s disease.

Although Lewy body pathology has been related to

dementia in Parkinson’s disease, (Braak et al., 2006)

comorbid Alzheimer’s disease pathology is common in

Parkinson’s disease dementia and may contribute to cogni-

tive symptoms in Parkinson’s disease (Irwin et al., 2012,

2013). It is widely thought that pathophysiological pro-

cesses of Parkinson’s disease and Alzheimer’s disease may

advance at different rates in different individuals to yield

unique patterns of cognitive impairment. One approach to
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assess the extent of Parkinson’s disease versus Alzheimer’s

disease in a given person is to quantify CSF biomarkers.

Indeed, Alzheimer’s disease is characterized by reduction in

CSF amyloid-b42 concentration and increase in total tau

and tau-P181 concentrations. The latter two are non-

specific changes that accompany neuronal injury from a

variety of disease mechanisms. Parkinson’s disease is char-

acterized by a reduction in CSF concentration of a-syn.

Increased cerebral amyloid by PET is correlated closely

with reduced CSF amyloid-b42 concentration in

Alzheimer’s disease (Fagan et al., 2006; Grimmer et al.,
2009). Newer PET imaging agents for pathological tau

are now coming into widespread use, while imaging

probes for a-synuclein are still under development. Thus

CSF biomarkers currently offer the most comprehensive

approach to anchor an analysis of systems alterations to

pathophysiological processes of Alzheimer’s or Parkinson’s

diseases (Montine et al., 2010; Stewart et al., 2014;

Buddhala et al., 2015).

In this study we apply a new methodological approach

that we developed to solve an important problem with

comparison of the spatiotemporal dynamics of intrinsic net-

works between groups. By spatiotemporal, we mean that

cortical regions may interact with multiple intrinsic net-

works at different times to respond to cognitive demands

(Spreng et al., 2010, 2013). Before we can meaningfully

measure and compare correlations between networks

(i.e. the degree to which the networks are simultaneously

coupled in one group relative to another), we must first

make sure that we are measuring the same ‘networks’ in

each group. The problem is illustrated in Fig. 1, a cartoon

of a red and blue network evolving over time. Figure 1A

shows anticorrelated red and blue networks. Figure 1B

shows activity in the red and blue networks becoming

more correlated as the two networks become less differen-

tiated. Finally, Fig. 1C shows breakdown of within-

network structure, illustrated by colouring the nodes of

the blue network and red network using light and dark

shades. Only one node within the red and the blue network

is ever fully active at a single time point. If controls are like

Fig. 1A and subjects with Parkinson’s disease are like Fig.

1B, we can describe changes to network correlations that

occur with Parkinson’s disease. However, if subjects with

Parkinson’s disease look like Fig. 1C, we must note that

their network structure has changed and that correlations

between networks cannot be fairly compared. Indeed, if

asked to identify networks from subjects like Fig. 1C, we

might decide that there were two networks: ‘Blue + Red’

and ‘Light Blue + Orange’ that were anticorrelated in the

same way as Fig. 1A. There are other possible differences in

dynamics, but only these three cases are relevant to this

study.

In this cartoon we have colour-coded the networks; in

reality, we determine the network structure from the

data. This structure is present in noisy data: it is a

hidden, or ‘latent’ structure, which must be obtained indir-

ectly from the signal at the network nodes. In Fig. 1,

regions of interest each belong only to one network.

However, regions of interest may participate in multiple

networks. Within these, there are common subsets of

regions with temporally coherent network activity that

may reflect some primitive of cognitive network function-

ing. For example, temporal functional mode analysis

demonstrated three visual subnetworks that were only par-

tially spatially overlapping and positively correlated (Smith

et al., 2012). We propose calling these subnetworks ‘net-

work kernels’ to distinguish them from large scale intrinsic

networks. We can equate network kernels across groups

and examine their correlations to quantify network

dynamics.

Here, we use a novel analytic approach to identify net-

work kernels in resting state functional MRI data from

participants with and without Parkinson’s disease, to deter-

mine to what extent the correlations of network kernels are

changed in Parkinson’s disease, and how they relate to CSF

biomarkers of Parkinson’s disease or Alzheimer’s disease

and to cognitive performance.

Materials and methods

Participants

This analysis includes 24 subjects with Parkinson’s disease,
diagnosed according to UK Brain Bank criteria (mean
age = 66, range: 45–86 years) and 21 subjects without
Parkinson’s disease (mean age = 62, range: 41–76) from a
study described previously (Madhyastha et al., 2014). See
Table 1 for sample characteristics. Patients with Parkinson’s
disease did not differ significantly from controls on age, edu-
cation, or Montreal Cognitive Assessment score (Nasreddine
et al., 2005). Thirteen participants with Parkinson’s disease
were classified via consensus conference as having mild cogni-
tive impairment (Cholerton et al., 2013), but this is based on
estimated decline from premorbid abilities, and there is little
variance in measured cognitive function. Parkinson’s disease
participants had significantly higher scores on the Unified
Parkinson’s Disease Rating Scale (UPDRS) motor subscale,
indicating greater motor impairment (Goetz et al., 2007)
[t(43) = �11.72, P50.001].

Males were over-represented in the Parkinson’s disease
group, consistent with higher incidence rates of Parkinson’s
disease in men (Wooten et al., 2004). Patients with
Parkinson’s disease ranged from Hoehn and Yahr (1967)
stage 1 to 2.5 with most at stage 2 (n = 19; bilateral involve-
ment without impairment of balance) and had been experien-
cing symptoms for an average of 8.27 years. At diagnosis, all
subjects reported asymmetric motor involvement with 18 more
affected on the right side. At the time of the scan and corres-
ponding neuropsychological evaluations, most patients with
Parkinson’s disease were taking dopaminergic medications
(29% were taking both levodopa and a dopamine agonist,
37% were taking only levodopa, 17% were taking only a
dopamine agonist, and 17% were taking no dopaminergic
medications). This study was approved by the University of
Washington Institutional Review Board. All participants pro-
vided written informed consent.
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Procedures

Participants completed two baseline scanning sessions, without
intervention, 1 to 3 weeks apart. Scans were performed after
morning doses of dopaminergic Parkinson’s disease medication
(if applicable). During each session, participants were scanned
while viewing a fixation cross at rest. Subjects were given the
Attention Network Test (Fan et al., 2005). This test is designed
to measure the alerting, orienting, and executive control net-
works by examining change in reaction time to identify the
orientation of an arrow surrounded by congruent or incongru-
ent arrows (a Flanker task) when preceded by different cate-
gories of cues. For this paper, we used overall accuracy for the
Flanker task (averaged across both baseline sessions, across all
conditions; Table 1) as a behavioural measure of attention in
controls and in Parkinson’s disease. Overall accuracy was
high, and marginally higher in controls than in Parkinson’s
disease (Mann-Whitney U = 332, P = 0.069); for details see
(Madhyastha et al., 2015).

Although lumbar punctures were not required as part of this
study, concentration of CSF biomarkers [including a-synuclein,
amyloid-b42, total tau, and tau phosphorylated at serine 181
(tau-P181)] was quantified with Luminex assay (Shi et al.,
2011) for 14 of the Parkinson’s disease participants as part

of the Pacific Northwest Udall Centre clinical core (obtained a
mean of 1.04 years prior to imaging).

Magnetic resonance imaging

Acquisition

Data were acquired using a Philips 3 T Achieva MR System
(Philips Medical Systems, software version 3.2.2) with a 32-
channel SENSE head coil. During each session, whole-brain
axial echo-planar images (43 sequential ascending slices, 3
mm isotropic voxels, field of view = 240 � 240 � 129, repeti-
tion time = 2400 ms, echo time = 25 ms, flip angle = 79�,
SENSE acceleration factor = 2) were collected parallel to the
AC-PC line for all functional runs. Each resting state scan was
300 volumes (12 min). A sagittal T1-weighted 3D MPRAGE
(176 slices, matrix size = 256 � 256, inversion time = 1100 ms,
turbo-field echo factor = 225, repetition time = 7.46 ms, echo
time = 3.49 ms, flip angle = 7�, shot interval = 2530 ms) with
1 mm isotropic voxels was also acquired for registration.

Processing

Functional images from both baseline sessions were processed
using a pipeline developed using software from FSL (Jenkinson

Figure 1 Cartoon illustration of brain networks evolving in time. Grey circles represent snapshots of a brain at each time point. Red and

blue circles represent nodes that are active in that time point within a red and blue network. Beneath each network cartoon is the timeline of the

corresponding functional MRI (fMRI) signals within each network. To the right of each cartoon is the corresponding correlation matrix, assuming that

the signal at each node (operationalized as a region of interest) is sampled precisely at each repetition time (TR). See text for description.
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et al., 2012), FreeSurfer (Fischl and Dale, 2000), and AFNI
(Cox, 1996). Processing steps for each analysis [network

kernel analysis and independent components analysis (ICA)]

were kept as similar as possible to improve the quality of

the analysis following FSL recommendations.
Data were corrected for motion using FSL MCFLIRT

(Jenkinson et al., 2002). The pipeline removed spikes using
AFNI, performed slice timing correction using FSL, and re-

gressed out time series motion parameters and the mean

signal for eroded (1 mm in 3D) masks of the lateral ventricles
and white matter (derived from running FreeSurfer on the T1-

weighted image). We did not regress out the global signal. We

did not perform bandpass filtering to avoid artificially inflating
correlations or inducing structure that was not actually present

in the data, and because resting state networks exhibit differ-

ent levels of phase synchrony at different frequencies (Niazy

et al., 2011; Handwerker et al., 2012). Factor analysis expli-
citly models error that might be introduced into correlations

by higher frequencies. Three dimensional spatial smoothing

was performed using a Gaussian kernel with a full-width at
half-maximum of sigma = 3 mm. Co-registration to the T1

image was performed using boundary based registration

based on a white matter segmentation of the T1 image
(epi_reg in FSL).

We performed a conventional group ICA and subsequent
dual regression of the resting state data. Data were prepro-

cessed as described above except that motion, CSF, and

white matter regressors were not removed from the data (be-
cause motion and physiological signals are accurately sepa-

rated from signal using ICA) (Salimi-Khorshidi et al., 2014).

A Temporally Concatenated Probabilistic Group ICA (TC-

GICA) was implemented using Multivariate Exploratory
Linear Decomposition into Independent Components
(MELODIC) Version 3.12 (Beckmann and Smith, 2004) to
generate large-scale components across all resting state scans
for all participants. A dual-regression approach implemented
in FSL (Filippini et al., 2009) was used to identify session-
specific time courses for each subject corresponding to the spa-
tial maps identified in the ICA, then to identify session-specific
spatial maps for each subject corresponding to these time
courses. Correlations between components were calculated
using the subject-specific time course for each component ob-
tained from the first stage of dual regression. Group compari-
sons of correlations were performed after Fisher’s z-
transformation to convert them to a normally distributed vari-
able. A group-level analysis comparing patients with
Parkinson’s disease to control subjects was performed by
non-parametric testing (5000 permutations) on the averaged
single-subject spatial maps from both sessions for the group-
level components of interest. Maps were thresholded at a
Bonferroni corrected probability of 0.05 with threshold-free
cluster-enhancement.

Overview of network kernel analysis

Network kernels were obtained from a factor analysis of the
blood oxygen level-dependent signal in a set of relevant re-
gions of interest. We selected MNI coordinates that have
been identified as nodes in the default mode network, dorsal
attention network, and frontoparietal task control network,
republished by Power et al. (2011) and derived from Raichle
(2001) and Dosenbach et al. (2007). Additionally, we obtained

Table 1 Demographics of sample

Parkinson’s disease Control Total

Demographics

n 24 21 45

Age at scan 66.08 (10.27) 61.90 (10.00) 64.13 (10.25)

Sex (number of males) 17 (71%) 9 (43%) 26 (58%)

Education (years) 16.17 (2.12) 15.90 (2.39) 16.05 (2.23)

Hoen and Yahr 2.04 (1–2.5)

Handedness (right) 20 19 39

Parkinson’s disease symptoms

Hoen and Yahr 2.04 (1–2.5)

Dominant side of motor symptoms 6 left/18 right

UPDRS Part I 9.78 (5.81) 9.78 (5.81)

UPDRS Part II 8.38 (5.08) 8.38 (5.08)

UPDRS Part III 23.12 (8.61) 0.81 (1.40) 12.71 (12.90)

UPDRS Part IV 1.88 (3.72) 1.88 (3.72)

Levodopa (current) 16 0 16

Dopamine agonist (current) 11 0 11

Time since symptom onset (years) 8.27 (4.80)

Cognitive

MoCA 26.38 (2.16) 27.29 (1.95) 26.80 (2.10)

Hopkins Verbal Learning Test 24.88 (5.71)

Golden Stroop (total correct) 189.92 (26.23)

Trails B (s) 75.22 (32.79)

ANT Attention (s) 97.01 (3.05) 98.36 (1.85)

ANT = Attention Network Test; UPDRS = Unified Parkinson’s Disease Rating Scale; MoCA = Montreal Cognitive Assessment.
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coordinates for a ‘salience’ network from Sridharan and col-
leagues (Sridharan et al., 2008; Menon and Uddin, 2010), and
for primary visual cortex and sensory cortex from the Harvard
Oxford Cortical Atlas. See Supplementary Table 1 for coord-
inates. We also obtained masks for the caudate, putamen, and
nucleus accumbens on an individual level using the Freesurfer
subcortical parcellation. For each coordinate, we created a
10 mm diameter mask in standard space and transformed
that to subjects’ native space to calculate mean subject-specific
time courses for each region of interest. The basal ganglia
masks were simply transformed to subjects’ native space to
obtain mean subject-specific time courses.

Network kernel identification

Normalized subject-specific time courses for all regions of
interest were concatenated across all subjects and input to an
exploratory factor analysis in a structural equation modelling
(SEM) framework (ESEM) (Asparouhov and Muthén, 2009)
implemented in Mplus (see Supplementary material for a more
detailed overview of these methods). This allowed us to con-
struct a factor model that described the structure of temporal
fluctuations in the selected regions of interest. In this context, a
factor is a mathematical description of a structured set of
correlated regions of interest that operate within larger net-
works. To convey the correspondence of factors to neural sys-
tems, we call these factors network kernels. The ESEM method
is exploratory, but provides access to typical SEM parameters,
including standard errors, goodness of fit statistics, compari-
sons of competing models, and multiple group analysis. We
used ESEM multiple group analysis to establish that the model
was identical for Parkinson’s disease and controls. This ensures
that network kernels are identical in each group. The number
of kernels is determined by a reproducible procedure that in-
volves inspecting model fit parameters. We use Geomin rota-
tion, a type of oblique rotation that allows us to model
correlated network kernels where nodes ‘belong’ to multiple
networks at different times (Browne, 2001).

We followed established procedures for testing for measure-
ment invariance, which ensure that the network kernels are the
same in both groups. After these criteria were met, we estab-
lished that the mean network kernel correlations differed
across in the two groups.

Network kernel analysis

Network kernels describe ‘weights’ of regions of interest whose
activity covaries. The normalized functional MRI signal at
each region of interest is the sum of these weights multiplied
by a score for each network kernel (for each repetition time
and for each subject), plus an error term. These scores repre-
sent the mean expression of each network in the subject during
that repetition time (e.g. how relatively high or low the signal
in that network was during that repetition time). We can use
these scores as regressors in a univariate General Linear Model
(GLM) analysis of the resting state data to identify cortical
regions that are more or less correlated with each network
(controlling for all other networks). The GLM was imple-
mented using FSL’s FMRI expert analysis tool (FEAT) version
6.0. Time series statistical analysis was carried out using FILM
with local autocorrelation correction (Woolrich et al., 2001).
Mean images (mean expression of each network) were

generated for each run for each participant and registered to
standard MNI space. Registered mean images were then car-
ried forward into higher-level models to generate a single mean
image for each participant across all runs. These images were
fed into a group comparison model using FMRIB’s Local
Analysis of Mixed Effects (FLAME) stage 1 (Beckmann
et al., 2003; Woolrich et al., 2004). Z-statistic images were
masked using a grey matter mask (probability of grey mat-
ter430%) and thresholded using clusters determined by
Z4 2.3 and a corrected cluster significance threshold of
P = 0.05 (Worsley, 2001).

Statistical analysis

Statistical analysis of network kernel scores was performed
using R version 3.1.1. We first tested for group differences
in the mean scores obtained at each session (the level of net-
work expression) using a multilevel model that allowed for
correlated random error within subjects at each session. We
then computed the partial correlations between network kernel
scores (i.e. the correlation between two network kernels con-
trolling for all others) for each individual. Using partial cor-
relations allowed us to better examine the relationship between
pairs of network kernels. All statistical analyses of partial cor-
relations were performed after Fisher’s Z transformation to
convert them to a normally distributed variable. Statistical
tests were corrected for multiple comparisons using
Bonferroni correction with a corrected P-value of 0.05
within the category of measures being examined. We examined
the relationship of a measure of network disruption derived
from partial correlations to CSF concentration of amyloid-b42

or a-synuclein as a primary analysis and examine the relation-
ship to CSF concentration of tau or tau-P181 as an explora-
tory analysis.

Results

Identification of network kernels by
exploratory factor analysis

Figure 2 shows the 10 network kernels (factors) that we

identified using exploratory factor analysis and the corres-

ponding spatial maps obtained for control subjects through

network kernel analysis. In the top panel, the size of the

spheres corresponds to the magnitude of the loadings for

each factor (Supplementary Table 2). In the bottom panel,

the spatial map is obtained by using the subject-specific

network kernel time courses as regressors in a GLM. The

model has very good fit by all standard measures

(see Supplementary material and Supplementary Table 3).

Crucially, this model fits the data better than a model that

constrained correlations between network kernels to be the

same in Parkinson’s disease and in controls. This allows us

to examine group differences in the temporal overlap of

network kernels (e.g. the difference between Fig. 1A and

B), knowing that the structure of the network kernels is

identical in both groups. The excellent spatial correspond-

ence between the magnitude of the contributions of the
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regions of interest to the network kernel and the spatial

map obtained from GLM analysis indicates that the net-

work kernel time courses reflect meaningful intrinsic net-

work activity, and are not driven by noise, physiological

signal, or other regions that are not included in our factor

analysis.

There were no differences in the level of network expres-

sion between Parkinson’s disease and controls, except for

the frontal FPTC component, which had higher expression

in Parkinson’s disease but was not significant after

Bonferroni correction for 10 comparisons (P = 0.031,

Pcorr = 0.309).

Conventional analysis methods are
not as sensitive to Parkinson’s
disease-related network disruption

A conventional ICA analysis of the data yielded 23 com-

ponents identified by visual inspection (M.K.A.) as neural

signals of interest (Kelly et al., 2010). Example components

are shown in Fig. 3 (see also Supplementary Table 4). We

calculated the pairwise partial correlations among subject-

specific time courses for each component (obtained from

the first stage of dual regression) for each subject

(Supplementary Fig. 2) and tested for group differences

on the Z-transformed correlations. Differences included

both increases and decreases in component correlations,

but no correlations were significant after Bonferroni correc-

tion for 253 comparisons (Supplementary Table 5). A dual

regression yielded no significant differences in the connect-

ivity within any of these networks after correction for mul-

tiple comparisons.

To objectively compare information available in meas-

ures derived from ICA and network kernel analysis, we

used a linear support vector machine with 10-fold cross-

validation to classify each of our subjects as Parkinson’s

disease or control, using resting state data alone. In this

method, the original sample is randomly partitioned into

10 equal size subsamples. Nine subsamples are used as data

for training the model, and the remaining subsample is

used as validation. This process is repeated 10 times, with-

holding a different subsample each time, to produce an

average estimation using all observations for both training

and validation data. Using stationary correlations between

the regions of interest used in this study, sensitivity was

0.82 [standard deviation (SD) = 0.29] and specificity was

0.11 (SD = 0.22). Using partial correlations between all

the cognition-related ICA components, we obtained sensi-

tivity of 0.65 (SD = 0.30) and specificity of 0.29

(SD = 0.19). Using partial correlations between network

kernels, sensitivity was 0.99 (SD = 0.03) and specificity

was 0.99 (SD = 0.05). This is evidence that there is infor-

mation obtained through functional overlap of networks

and their dynamics that is not captured by regional con-

nectivity alone, and that partial correlations of dynamic

kernels are more sensitive to Parkinson’s disease-related

changes than stationary correlations or partial correlations

among ICA-derived components.

Differences in correlations within and
between intrinsic networks are
related to concentrations of CSF
biomarkers

We computed the partial correlations between all pairs of

network kernels. Figure 4 shows the patterns of positive

and negative correlations between all network kernels in

controls (Fig. 4A), and differences among the DMN,

FPTC and DAN between Parkinson’s disease and controls

(Fig. 4B and C; see Supplementary Fig. 1 for Parkinson’s

disease). The blue or red outlined ellipses in in Fig. 4B and

C indicate partial correlations that are significantly higher

(blue) or lower (red), correcting for 45 comparisons, in

Parkinson’s disease than controls. Overall, there were

both increases and decreases in correlations among net-

work kernels in the DMN, FPTC, and DAN in

Parkinson’s disease compared to controls. There were no

significant group differences after correction for multiple

comparisons in Parkinson’s disease versus controls in cor-

relations of network kernels involving the basal ganglia or

primary visual cortex.

Looking first at the correlations within each intrinsic net-

work (Fig. 4B), we can see that correlations are decreased

in Parkinson’s disease within the DMN and FPTC.

However, if we look between these networks (Fig. 4C),

we can see that correlations are both increased and

decreased between kernels in the DMN and FPTC, the

FPTC and DAN, and the DMN and DAN. Considering

first the DMN and FPTC, we see decreased correlations

between the primary DMN kernel and the anterior and

posterior FPTC kernels. However, the left-lateralized

FPTC component has higher correlations with the first

DMN kernel and lower correlations with the hippocampal

DMN kernel. The hippocampal DMN kernel has lower

correlations with the posterior DAN and higher correl-

ations with the sensorimotor/DAN kernel. Finally, the fron-

tal FPTC kernel has higher correlations with the posterior

DAN and lower correlations with the sensorimotor/DAN

kernel. These patterns were reproduced at both sessions

(Supplementary material).

In the current sample, four subjects were not taking

dopamine agonists or levodopa. We tested for group dif-

ferences between these subjects and controls. We found the

same directional pattern of differences that were significant

in the entire Parkinson’s disease group (although only the

partial correlations involving the primary DMN kernel

and the correlation between the sensorimotor/DAN and

FPTC-frontal network kernels were significant in the sub-

group comparison after controlling for multiple

comparisons).

To determine whether these differences to the structure

of within and between intrinsic network connectivity are
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related to pathophysiological processes, as indexed by

CSF biomarkers, we computed the Euclidean distance

between the mean partial correlation matrix of controls

and the partial correlation matrix for each Parkinson’s

disease subject. This created, for each individual, a

metric of ‘network disruption’ that described the devi-

ation of the subject’s network configuration from that

of controls. Network disruption was highly correlated

with lower CSF levels of amyloid-b42 and a-synuclein

(Fig. 5) among the 14 participants with CSF.

Controlling for time between scan and CSF acquisition,

the correlation between CSF amyloid-b42 concentration

and network disruption was r(11) = �0.75, P5 0.001

(Pcorr = 0.005), and the correlation between CSF a-synu-

clein concentration and network disruption was

r(11) = �0.55, P = 0.025 (Pcorr = 0.05). We also calculated

the same metric of overall network disruption using the

mean partial correlations among the 23 cognitive compo-

nents identified in the ICA. Controlling for time between

scan and CSF acquisition, the correlation between CSF

amyloid-b42 concentration and network disruption was

significant r(11) = �0.63, P = 0.007 (Pcorr = 0.035), but

the correlation between CSF a-synuclein concentration

and network disruption was not (P = 0.77), suggesting

that the ICA-derived network disruption measure is less

sensitive to pathophysiologic processes indicated by

changes in CSF a-synuclein concentration. Neither

metric of overall network disruption correlated with

CSF concentrations of tau or tau-P181.

Because we expected that alterations in the relationship

of the right anterior insula would specifically contribute

to network disruption, we computed a more specific re-

gional measure of disruption as above, including only

partial correlations among network kernels in which

the right anterior insula participated (i.e. where the sig-

nificance of the corresponding factor loading was5 0.05

uncorrected). This included all factors except for the

DAN-SM and DAN-IPS (Supplementary Table 2), or

Figure 2 Network kernels identified in 24 subjects with Parkinson’s disease and 21 controls. All images follow radiological

convention (left is on the right). HC = hippocampus; ROI = region of interest.
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28 correlations. Controlling for time between scan and

CSF acquisition, the correlation between CSF a-synuclein

concentration and regional right insular network disrup-

tion was r(11) = �0.61, P = 0.009 (Pcorr = 0.045). The re-

lationship with CSF amyloid-b42 concentration was not

significant (P = 0.13). Insula disruption was related to

lower CSF concentration of tau-P181 [r(11) = �0.57,

P = 0.019] and marginally with lower CSF tau concen-

tration [r(11) = �0.50, P = 0.054].

In summary, we found widespread differences in the cor-

relations of network kernels between controls and

Parkinson’s disease, and the degree of network disruption

was related to CSF biomarkers.

The insula as a potential factor in
network disruption and cognitive
impairment in Parkinson’s disease

Figure 6 shows group differences in the DMN and FPTC

frontal network kernels, controlling for all network kernels.

We focused on these two network kernels because they are

the only ones that show group differences in the anterior

insula, an area of specific interest with respect to network

disruption. The anterior/ventral insula has greater correl-

ation in Parkinson’s disease than in controls to both the

DMN and FPTC frontal network kernels (green axial slices

in Fig. 6A and B). These clusters partially overlap, with the

DMN clusters being located more dorsal-anteriorly, and

the FPTC more ventrally (Fig. 6C).

There are additional group differences in the DMN.

A cluster located in the supramarginal gyrus is more corre-

lated to the default mode network in Parkinson’s disease,

and the left hippocampus and fusiform cortex is less corre-

lated to the default mode network in Parkinson’s disease.

We investigated whether the increased correlation of the

insula to these network kernels was related to attention.

We calculated the Spearman rank partial correlation of

the mean Z-score in the right insula cluster from each net-

work kernel and overall accuracy on the Attention

Network Test, controlling for age, in Parkinson’s disease

and controls. Higher accuracy is associated with a lower

Z-score in the DMN insular cluster in Parkinson’s disease

(P = 0.039) but not in controls (P = 0.39) (data shown

in Supplementary Fig. 3). The relationship between the

FPTC-frontal insular cluster and accuracy follows the

same direction but is not significant (Parkinson’s disease:

P = 0.18, control: P = 0.28).

Discussion
We propose a hypothesis-driven approach to identifying the

latent structure of intrinsic networks, and the alterations to

the dynamics of these networks, that might explain the

impact of different disease mechanisms on cognition in

patients with Parkinson’s disease. We demonstrated that

collectively, correlations among network kernels describe

the impact of specific pathophysiological processes (through

correlation with CSF biomarkers) and clinical status

(by classification of patient group).

Intrinsic networks, as defined by ICA analysis, are

clearly an organizing framework for network kernels,

but there are some differences. Figures 2 and 3 are ex-

amples of network kernels and a subset of identified ICA

components obtained from the same data. The default

mode, visual and putamen networks have direct

Figure 3 Selected components defined by melodic ICA.
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analogues as network kernels. However, other network

kernels incorporate areas that span intrinsic networks,

reflecting the spatiotemporal flexibility of their constitu-

ent nodes. Although within-network connectivity (in the

DMN and FPTC) decreased in Parkinson’s disease,

we did not observe a simple pattern of increases or

decreases in correlations between network kernels. This

is consistent with a more nuanced picture of spatiotem-

poral network behaviour that reflects the observed inter-

network connectivity (Spreng et al., 2010, 2013).

Network disruption may be caused by multiple patho-

physiological processes that affect ascending transmitter

systems, localized disease mechanisms in regions control-

ling switching, or compensatory circuit activation. We

show aberrant involvement of the right anterior insula,

a region implicated in network switching that is affected

by loss of dopamine receptors and synucleinopathy in

Parkinson’s disease, in both the DMN and the frontal

FPTC.

Network kernel analysis gives us a way to probe sensi-

tively alterations to within- and between- network struc-

ture. We anchored our analysis of intrinsic connectivity

changes to well-established CSF biomarkers of

Parkinson’s disease or Alzheimer’s disease. Greater network

disruption obtained from network kernel analysis was asso-

ciated with greater extent of one facet of Alzheimer’s dis-

ease and with the ‘synucleinopathy’ of Parkinson’s disease,

as indicated by reduced CSF concentrations of amyloid-b42

and a-syn. By comparison, overall network disruption

obtained from an ICA approach was associated with only

amyoid-b42. This agreement between methods (for CSF

amyloid-b42) is remarkable because both approaches

yielded unbiased ‘ominibus’ measures of network disrup-

tion, and included different cognitive networks. Lack of

agreement between methods for CSF a-synuclein may sug-

gest that the ICA-derived networks, including all identified

cortical networks, are less specific to a-synuclein pathology.

Indeed, increased disruption to only the correlations among

Figure 4 Correlations of network kernels. (A) Controls only (see Supplementary Fig. 1 for correlations of network kernels in Parkinson’s

disease); (B) differences between Parkinson’s disease (PD) and controls highlighting only within-network correlations. Correlations marked with

heavy blue or red lines are significantly higher or lower, respectively, in Parkinson’s disease. Correlations within the DMN and FPTC are lower in

Parkinson’s disease. (C) Correlations among kernels of the DMN, FPTC, and DAN intrinsic networks, highlighting only between-network

correlations. Between-network correlations show both increases and decreases for individual network kernels in Parkinson’s disease.
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network kernels involving the right anterior insula was spe-

cifically related to lower CSF a-syn, suggesting that net-

work disruption may reflect the pathophysiological

processes that underlie the accumulation of this neurotoxic

protein in this region of brain or other regions of brain

important to appropriate function of the right anterior

insula.

We found that omnibus measures of network disruption

were not related to CSF tau or tau-P181, but that higher

disruption surrounding the right anterior insula was related

to lower CSF tau. It is unclear whether CSF total tau

decreases (Zhang et al., 2008; Kang et al., 2013) or

remains unchanged in Parkinson’s disease (Buddhala

et al., 2015), and therefore difficult to predict how CSF

levels of tau might relate to network disruption.

Therefore our investigations of tau and tau-P181 and net-

work disruption are exploratory.

We validated the network kernel abstraction, and specif-

ically the correlations among network kernels, as a more

sensitive way of quantifying network alterations that dis-

criminate Parkinson’s disease from controls than correl-

ations between regions of interest or between ICA-derived

components. Sensitivity of network kernel analysis stems

from two methodological points: first, we used factor ana-

lysis to identify a latent structure of network kernels that is

identical in two groups, with respect to specific regions of

interest. A data-driven approach such as an ICA does not

make such a comparison, and group differences in structure

are confounded with group differences in expression.

Second, the latent structure allows regions of interest to

belong to multiple network kernels. This might more real-

istically represent the dynamically changing configuration

of networks. However, the selection of regions of interest

to include in the network kernel analysis is hypothesis-

driven and will affect what kernels are identified.

Motion can be a potential confound in a functional MRI

study. Reproducibility of the network kernel correlation

changes across two sessions, the near-perfect classification

ability of network kernel correlations to discriminate

Parkinson’s disease from controls, and the quality of the

spatial maps that we obtain from network kernel scores are

strong evidence that our group-level results are not driven

by motion. That said, it has been well established that even

low levels of motion perturb calculation of the within-

subject correlations we are interested in modelling (Power

et al., 2014). We must determine the optimal combination

of preprocessing techniques to enhance accuracy of meas-

urement using the network kernel approach before we can

longitudinally track changes in network correlations at the

individual level.

There are limitations to our study. First, it is possible that

some Parkinson’s disease-related network changes are com-

pensatory, occurring early in the disease process, and

others are pathological. An analogous example from

Alzheimer’s disease is hippocampal hyperactivation that

occurs early in the disease process. To characterize the spe-

cific patterns of change that occur that might relate to

altered cognition in Parkinson’s disease, and how these

are related to CSF biomarkers, longitudinal data will be

needed. Second, we identified network kernel structures

that are found at rest. These may change during task, or

in different populations, or had we used different regions

Figure 5 Correlation of CSF biomarkers to network dis-

ruption. Greater network disruption is correlated with greater

neuropathological change (indicated by lower CSF amyloid-b42 or

lower a-synuclein concentration).
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of interest for our analysis. The slow temporal resolution of

the blood oxygen level-dependent signal will affect the

modelled structure of network kernels and their correl-

ations. The structure of network kernels might be more

detailed if measured using accelerated multi-band acquisi-

tion (as in Smith et al., 2012). More research is necessary

to determine the structure of network kernels that explains

cognitive function. Third, because our subjects were taking

their normal medications, we cannot separate medication-

related effects from Parkinson’s disease-related effects. The

four unmedicated subjects in our sample showed the same

pattern of group differences as all Parkinson’s disease par-

ticipants (although not all differences were significant after

correction for multiple comparisons). This supports the

interpretation that these changes are related to pathological

processes, but is speculative. Last, our results are based on

a relatively small sample that will need to be replicated in a

separate larger cohort.

Although we have used network kernel analysis to exam-

ine large-scale measures of system disruption, the method

may prove to be an inherently more sensitive prognostic

indicator of subtle physiological change than behavioural

measures. Dynamic shifts in network configuration reflect

changing task demands and directly support performance

(Kelly et al., 2008; Spreng et al., 2010). The ability of the

brain to support cognitive function in the face of profound

injury, neuropathology, or developmental disruption

indicates that function is supported by multiple degenerate

neuronal systems (Damasio and Damasio, 1994; Noppeney

et al., 2004). Therefore, altered dynamics give us insight

into neural compensation in the face of systems degener-

ation. Network kernel analysis holds promise as a sensitive

method for detecting biologically and clinical relevant

changes to specific networks that support cognition and

are impaired in Parkinson’s disease.
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RA. What goes down must come up: role of the posteromedial
cortices in encoding and retrieval. Cereb Cortex 2011; 21: 22–34.

doi:10.1093/cercor/bhq051

Woolrich MW, Ripley BD, Brady M, Smith SM. Temporal

autocorrelation in univariate linear modeling of FMRI data.
Neuroimage 2001; 14: 1370–86. doi:10.1006/nimg.2001.0931

Woolrich MW, Behrens TEJ, Beckmann CF, Jenkinson M,

Smith SM. Multi-level linear modelling for FMRI group

analysis using Bayesian inference. Neuroimage 2004; 21:
1732–47.

Worsley KJ. Statistical analysis of activation images. In: Jezzard P,

Matthews PM, Smith SM, editors. Ch 14, Functional MRI: an intro-

duction to methods. Oxford University Press; 2001.
Wooten GF, Currie LJ, Bovbjerg VE, Lee JK, Patrie J. Are men at

greater risk for Parkinson’s disease than women? J Neurol

Neurosurg Psychiatr 2004; 75: 637–9.

Zhang J, Sokal I, Peskind ER, Quinn JF, Jankovic J, Kenney C, et al.
CSF Multianalyte Profile distinguishes Alzheimer and Parkinson dis-

eases. Am J Clin Pathol 2008; 129: 526–9. doi:10.1309/

W01Y0B808EMEH12L

2686 | BRAIN 2015: 138; 2672–2686 T. M. Madhyastha et al.


