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Abstract

Background: We sought to develop and validate clinically relevant, early assessment continuous tumor measurement–
based metrics for predicting overall survival (OS) using the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 data 
warehouse.

Methods: Data from 13 trials representing 2096 patients with breast cancer, non–small cell lung cancer (NSCLC), or 
colorectal cancer were used in a complete case analysis. Tumor measurements from weeks 0–6-12 assessments were 
used to evaluate the ability of slope (absolute change in tumor size from 0-6 and 6–12 weeks) and percent change (relative 
change in tumor size from 0–6 and 6–12 weeks) metrics to predict OS using Cox models, adjusted for average baseline 
tumor size. Metrics were evaluated by discrimination (via concordance or c-index), calibration (goodness-of-fit type 
statistics), association (hazard ratios), and likelihood (Bayesian Information Criteria), with primary focus on the c-index. All 
statistical tests were two-sided.

Results: Comparison of c-indices suggests slight improvement in predictive ability for the continuous tumor measurement–
based metrics vs categorical RECIST response metrics, with slope metrics performing better than percent change metrics 
for breast cancer and NSCLC. However, these differences were not statistically significant. The goodness-of-fit statistics for 
the RECIST metrics were as good as or better than those for the continuous metrics. In general, all the metrics performed 
poorly in breast cancer, compared with NSCLC and colorectal cancer.

Conclusion: Absolute and relative change in tumor measurements do not demonstrate convincingly improved overall 
survival predictive ability over the RECIST model. Continued work is necessary to address issues of missing tumor 
measurements and model selection in identifying improved tumor measurement–based metrics.

The Response Evaluation Criteria in Solid Tumors (RECIST) is the 
current standard methodology for assessing changes in tumor 
size in clinical trials of solid tumors (1–2). RECIST categorizes 

change in tumor measurements into four groups: complete 
response (CR), complete disappearance of all lesions; partial 
response (PR), at least 30% reduction from baseline sum for 
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target lesions; progressive disease (PD), at least 20% increase 
from the lowest sum of measurements (and at least 5 mm abso-
lute increase, in RECIST version 1.1) or new lesion recorded (with 
additional FDG PET assessment, in version 1.1); and stable dis-
ease (SD), neither sufficient shrinkage to qualify as PR/CR nor 
sufficient increase to qualify as PD. Concerns over the high fail-
ure rate in Phase III trials has led to pursuing alternatives to 
RECIST response as a Phase II endpoint.

In order to make more complete use of detailed tumor meas-
urements, several alternative approaches have been proposed. 
These include the use of continuous tumor measurement–
based metrics representing the absolute change in tumor size 
(eg, log ratio of the sum of tumor measurements at week 8 vs 
at baseline [3–5]); the relative change in tumor size (eg, between 
the baseline and first assessment or between the first and sec-
ond assessments [6–7], and averaged overall assessments [8]); 
and time to tumor growth (eg, using a tumor size model [5]). 
Although some of these alternatives have been evaluated using 
clinical data, none has been evaluated with a large database 
across multiple studies. We previously reported that alternative 
cutpoints for defining the four RECIST-based groups (CR, PR, PD, 
and SD) and alternative classifications (eg, CR/PR vs SD vs PD 
or CR/PR/SD vs PD) provided no meaningful improvement over 
RECIST response in predicting overall survival (OS) (9). While 
Karrison et  al. (3) and Jaki et  al. (4) discussed their proposed 
endpoints in the context of designing phase II trials and the 
associated savings in sample size and Suzuki et al. (6) evaluated 
endpoints based on statistical significance of hazard ratio esti-
mates, none of these directly evaluated the predictive ability of 
the endpoint on OS as the primary goal.

In this work, we seek to develop and validate simple, clini-
cally relevant metrics for predicting OS based on continuous 
summaries of longitudinal tumor measurements. Specifically, 
we wish to evaluate the tumor measurement–based metrics 
alone, without adjusting for other patient characteristics, in 
order to understand their potential as phase II endpoints and 
to compare with the current RECIST-based response endpoints, 
which are based strictly on tumor measurement–based changes. 
To this end, our goal is not to develop an individual’s risk predic-
tion model. The metrics we consider are motivated by clinical 
and intuitive appeal and are largely similar in principle to those 
previously proposed in the literature. We examine these met-
rics for their predictive ability in a large database, specifically 
data that were used to develop the RECIST version 1.1 guidelines 
(1–2). Predictive ability was assessed via discrimination using 
the concordance index (c-index [10]), as well as via measures of 
calibration, association, and likelihood.

Methods

Data from the RECIST 1.1 data warehouse, representing 13 tri-
als in three disease groups: breast cancer, non–small cell lung 
cancer (NSCLC), and colorectal cancer were used (1–2). The origi-
nal RECIST data warehouse included 16 trials that are described 
in (1–2). Twelve of the 13 trials had assessments at six and 12 
weeks; one trial had assessments at seven and 14 weeks. The 
raw data included 8062 patients with cycle-by-cycle, lesion-by-
lesion measurement data. Patients were excluded for several 
reasons: having either no recorded measurements or measure-
ments based on clinical evaluations only (n = 1782); lack of clean 
measurement data: no baseline measurements (n = 26), no post-
baseline measurements (n = 641), and conflicting responses or 
measurements recorded for the same assessment time (n = 278); 
and having lesions that were not consistently measured across 

all assessments (n = 11). After these initial exclusions, a patient 
was assigned “protocol-compliant” status if all observed meas-
urements were within two weeks of protocol-scheduled assess-
ments while the patient remained on active treatment. The data 
were then split into training (60%) and validation (40%) sets, 
with the split stratified on survival status, progression status, 
and protocol-compliant status. Patients were subsequently 
excluded for the following additional reasons: missing assess-
ments within +/- two weeks of week 6 or 12 (n = 3096) and hav-
ing disease progression for reasons other than progression of 
target lesions (n = 132).

Figure  1 is a CONSORT diagram showing flow of patients 
from the raw dataset to the final analysis dataset. The final 
dataset included 2096 patients for whom consistent tumor 
measurements (millimeters, mm) were available, representing 
patients with breast cancer (307), NSCLC (1243), and colorectal 
(546) cancer.

A 12-week landmark analysis was conducted. Specifically 
only patients who were alive and progression-free at 12 weeks 
postbaseline and who had measurements available at base-
line, six weeks, and 12 weeks were included in analyses. 
Measurements from baseline, six weeks, and 12 weeks were 
used. As reference for comparison, we fit a Cox model using the 
RECIST-based definition of response to represent the current 
practice. We also fit a Cox model with time-dependent progres-
sion status using data available over the entire follow-up (ie, no 
landmark analysis). This latter model represents the potentially 
best model because it utilizes all follow-up data, but practically 
does not suggest an obvious metric (eg, first slope or last slope) 
nor does it allow for early assessment (eg, at 12 weeks).

Cox proportional hazards models were used with a primary 
endpoint of OS. A separate model was fit for each disease group; 
each model was adjusted for average baseline size (mm/lesion), 
defined as the sum of all baseline measurements divided by the 
number of baseline lesions. The primary model assessment cri-
terion was discriminatory ability measured by the concordance 
index, or c-index (10). The concordance index measures the abil-
ity of a model’s predictions to differentiate patients with dif-
ferent survival outcomes. It ranges from 0 to 1.0, where values 
of 0.5 to 1.0 reflect good discrimination, a value of 0.5 reflects 
no discrimination (ie, random prediction), and values of 0 to 
0.5 reflect good “reverse” discrimination. For a more complete 
picture of predictive ability, we also summarized other aspects 
of predictive ability, namely measures of calibration (Hosmer-
Lemeshow [HL], type Goodness-of-Fit, comparing the observed 
vs predicted 1-year survival probabilities within deciles of 
predicted probabilities [11]), association (hazard ratios and P 
values), and likelihood (Bayesian Information Criteria [BIC]). 
Nonparametric bootstrapping with 1000 replicates was used to 
construct 95% confidence intervals (CIs) of the c-indices and HL 
statistics for a single model and of differences in c-indices and 
HL statistics between any two models. Discriminatory ability 
and calibration of models were validated externally. Specifically, 
the training model estimates were first applied to the validation 
set to obtain predictions, and the c-index and HL statistic were 
then calculated. The proportional hazards (PH) assumption was 
assessed by the method of Grambsch and Therneau (12). All sta-
tistical tests were two-sided.

Metrics

We considered two pairs of continuous metrics for predicting OS: 
slope (absolute change) and percent (%) change in tumor size. 
These metrics are simple to calculate and understand, clinically 
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relevant, similar in principle to those previously proposed in the 
literature, and motivated by intuitive appeal. Specifically, if we 
consider continuous measurements at three timepoints, then 
the absolute (and relative) change in tumor size between any 
two consecutive timepoints, as well as the baseline tumor size, 
is a simple summary statistic that captures the essential fea-
tures of the tumor size trajectory (Figure 2). Therefore, with mt 
denoting the measurement at week t (or within a +/- 2-week 
window) and Δt the actual time difference (in weeks) between 
measurements, we considered first slope (units: mm/w; defined 

as: (m6- m0)/Δt) and last slope (units: mm/w; defined as (m12- 
m6)/Δt), and first percent change in slope (units: 10%change/w; 
defined as: (10*(m6 – m0)/(Δt * m0)) and last percent change in 
slope (units: 10%change/w; defined as: (10*(m12- m6)/(Δt * m6)). 
We also included linear spline terms, with knots at first slope 
and last slope (or first percent change and last percent change) 
equaling 0. Including the spline terms allows for the hazard ratio 
associated with first slope (or last slope, first percent change, 
or last percent change) to differ according to whether the first 
slope (or last slope, first percent change, or last percent change) 
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Figure 1.  CONSORT Diagram showing the flow of patients from the original dataset to the final analysis dataset. NSCLC = non–small cell lung cancer.

Figure 2.  Hypothetical tumor size trajectory. Simple summary statistics that capture essential features of the trajectory include (absolute and relative) change in meas-

urements at consecutive timepoints and baseline tumor size.
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is positive or negative. The slope and the percent change model 
specifications are given below.

Slope Mode:
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In both models, λ(t) represents the hazard function for a 
patient, λ0(t) represents the baseline hazard function, and ave-
Baseline is the average baseline size (mm/lesion). The firstslope, 
lastslope, first%change, and last%change are the metrics as previ-
ously defined; and (X)+  =  X if X > 0 and  =  0 otherwise, ie, the 
linear spline term.

Results

The median OS for the 307 breast cancer patients was 
17.6 months, with a total of 205 deaths and a median survival 
of 532  days. The median OS for the 1243 NSCLC patients was 
11.2 months, with a total of 670 deaths. The median OS for the 
546 colorectal cancer patients was 15.2 months, with a total of 
236 deaths. The average baseline tumor sizes were 34.82, 43.36, 

and 41.33 mm for breast cancer, NSCLC, and colorectal cancer 
patients, respectively. The average changes in tumor size across 
all patients were -2.34, -3.68, and -3.24 mm between baseline 
and first (6-week) assessment and -1.45, -1.07, and -1.76 mm 
between the six- and 12-week assessment for breast cancer, 
NSCLC, and colorectal cancer, respectively; that is, we saw on 
average a decrease in tumor size over time across all patients. 
Detailed results for the training and validation set models are 
provided in Tables 1 and 2. We highlight results for the training 
set models below.

The distributions of average baseline size and the four met-
rics were roughly symmetric. No violations of the PH assumption 
were noted. For all three disease types, the slope and percent 
change models provided higher point-wise estimates for the 
c-indices than the RECIST models. The slope models performed 
slightly better than the percent change models for breast cancer 
and NSCLC patients. In particular, the pointwise c-indices for 
patients with breast cancer, NSCLC, and colorectal cancer in the 
slope models were 0.58 (95% bootstrap CI  =  0.53 to 0.65), 0.58 
(95% CI = 0.55 to 0.61), and 0.62 (95% CI = 0.58 to 0.68), respec-
tively; and in the percent change models, 0.55 (95% CI  =  0.52 
to 0.63), 0.57 (95% CI = 0.55 to 0.61), and 0.64 (95% CI = 0.59 to 
0.69). In comparison, the c-indices for the RECIST models were 
0.52 (95% CI = 0.49 to 0.61), 0.57 (95% CI = 0.54 to 0.60), and 0.60 
(95% CI = 0.55 to 0.61). However, for all three disease types, the 
bootstrap 95% confidence interval for the pairwise differences 
in c-indices comparing the slope vs RECIST, percent change vs 
RECIST, and slope vs percent change models included 0 (results 
not shown). The c-indices for the time-dependent models 
described in the Methods section (0.67 for all 3 diseases) were 
substantially higher than those for all three of the models (slope, 
percent change, and RECIST), suggesting theoretical potential 
for improvement in predictive ability (Tables 1 and 2; Figure 3).

Table 1.  Summary of hazard ratios from slope and percent (%) change models

Model and metric HR (P value)

Breast NSCLC Colorectal

Slope model training (n = 189) training (n = 746) training (n = 322)
Average baseline size, mm 1.00 1.00 1.00

(.39) (.16) (.19)
First slope, mm/w 0.89 0.98 1.04

(.0012) (.19) (.14)
(First slope)+* 1.10 1.50 0.93

(.68) (<.001) (.44)
Last slope, mm/w 1.04 0.95 1.01

(.46) (.077) (.71)
(Last slope)+* 2.01 1.26 1.54

(.036) (<.001) (<.001)

Percent (%) change model training (n = 182) training (n = 734) training (n = 320)
Average baseline size, mm 1.01 1.01 1.01

(.048) (.0067) (.10)
First % change, 10%/wk 0.57 1.14 3.97

(.14) (.43) (.0038)
(First % change)+* 2.69 2.61 0.28

(.47) (.48) (.056)
Last % change, 10%/wk 1.06 1.22 1.83

(.84) (.26) (.19)
(Last % change)+* 4.26 2.34 4.01

(.20) (.0035) (.095)

* Linear spline term (X)+ defined as (X)+ = X if X > 0 and = 0 otherwise. HR = hazard ratio; NSCLC = non–small cell lung cancer.
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In addition to model discrimination, we summarize other 
aspects of predictive ability for the models (Tables 1–2). Regarding 
calibration, all three models had similar goodness-of-fit 

statistics, with the slope model having slightly poorer calibra-
tion (larger HL statistic) than either the percent change or 
RECIST models. Again, the confidence intervals for the pairwise 

Table 2.  Summary statistics for slope and percent (%) change models*

Statistic

Breast NSCLC Colon

Slope % change Slope % change Slope % change

c-index
  Training (95% CI)† 0.58 (0.53 to 0.65) 0.55 (0.52 to 0.63) 0.58 (0.55 to 0.61) 0.57 (0.55 to 0.61) 0.62 (0.58 to 0.68) 0.64 (0.59 to 0.69)
  Externally vali-

dated
0.47 0.45 0.56 0.58 0.52 0.55

  RECIST‡ 0.52 0.57 0.60
  Time-dependent§ 0.67 0.67 0.67
HL
  Training 0.05 0.04 0.03 0.01 0.12 0.05
  Externally validated 0.48 0.35 0.04 0.07 0.11 0.16
  RECIST 0.05 0.01 0.04
BIC
  Training 1125.73 1079.59 4981.90 4823.78 1365.74 1370.51
  RECIST 2065.38 8845.70 2668.12

* Concordance (c-) index, Hosmer-Lemeshow goodness-of-fit statistic, and Bayesian Information Criteria, with comparison to RECIST model and time-dependent Cox 

model. BIC = Bayesian Information Criteria; CI = confidence interval; HL = Hosmer-Lemeshow; NSCLC = non–small cell lung cancer; RECIST = Response Evaluation 

Criteria in Solid Tumors.

† 95% CI for c-indices are bootstrap confidence intervals.

‡ RECIST model is fit to all data available from first 12 weeks in overall dataset (training and validation sets).

§ Time-dependent c-index is based on a Cox model with time-dependent progression status using all available data in overall dataset (training and validation sets), 

ie, using the time-dependent models described in the Methods section.
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Figure 3.  Concordance (c-) index across diseases using measurements from week 0-6-12 visits, for the slope model and the percent change model, in training (black 
solid circles) and external validation sets (black solid squares). The dotted lines represent 95% bootstrap confidence intervals (CIs) associated with the c-indices from 

the training set. For comparison, c-indices from the RECIST and time-dependent models are marked. Differences in disease-specific c-indices between models are not 

statistically significant, based on bootstrap 95% CIs of pairwise differences, including 0 (not shown). NSCLC = non–small cell lung cancer; RECIST = Response Evaluation 

Criteria in Solid Tumors.
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differences in HL statistics included 0.  In terms of likelihood, 
the slope and percent change models had similar BIC, but the 
RECIST model had higher BIC than either the slope or percent 
change models.

Measures of association were assessed by the hazard ratios 
and P values (Table 1). In general, most hazard ratios are close 
to 1, although there is no uniform pattern of association (eg, all 
positive or all negative) between the metrics and the hazard for 
death across the models and disease groups. The one exception 
is with the last slope spline term in the slope models. The haz-
ard ratio corresponding to this term is statistically significantly 
greater than 1 across all diseases and in both the training and 
validation set, which suggests that among patients with similar 
first slope values, the hazard ratio associated with an increase in 
last slope is higher for those for whom the last slope is positive 
(tumor growth) vs negative (tumor shrinkage).

The externally validated measures of discriminatory ability 
and calibration are presented in Table 2. The validated c-indi-
ces were lower than those from the training set, for all diseases 
and models, except for the percent change model in NSCLC. 
Specifically, for the slope and percent change models, the vali-
dated (training) c-indices were: 0.47 and 0.45 for breast cancer 
(training: 0.58 and 0.55), 0.56 and 0.58 for NSCLC (training: 0.58 
and 0.57), and 0.52 and 0.55 for colorectal cancer (training: 0.62 
and 0.64). The validated HL statistics were higher than those 
from the training set, for all diseases and models, except for the 
slope model in NSCLC. Specifically, for the slope and percent 
change models, the validated (training) HL statistics were: 0.48 
and 0.35 for breast cancer (training: 0.05 and 0.04), 0.04 and 0.07 
for NSCLC (training: 0.03 and 0.01), and 0.11 and 0.16 for colorec-
tal cancer (training: 0.12 and 0.05).

Discussion

This work was motivated by the need to identify and evaluate 
clinically relevant, easily assessable alternative metrics with 
improved predictive ability for overall survival. Our goal was 
to identify alternative tumor measurement-based metrics, and 
not to develop a risk prediction model. Previously we found that 
alternative categorical tumor measurement metrics provided 
no improvement over the current RECIST metrics in predicting 
survival (9). In this work, we sought to improve predictive abil-
ity through the use of continuous tumor measurement–based 
metrics. The primary evaluation of predictive ability was dis-
crimination (via the c-index), with secondary evaluations being 
calibration (goodness-of-fit), association (hazard ratios and P 
values), and likelihood (BIC). By reporting results of all of these 
measures, we hope to offer a more comprehensive understand-
ing of the predictive ability of the metrics. Evaluating any sin-
gle one of these measures alone, and specifically identifying a 
statistically significant association (eg, Suzuki et al. [6], Birchard 
et al. [13]), may be sufficient to identify a candidate for a new 
metric, but may not be sufficient to establish an improvement in 
predictive ability over RECIST. For example, from our results, we 
observe that although a metric is statistically significantly asso-
ciated with the hazard of death, it does not necessarily dem-
onstrate improved predictive ability over RECIST as assessed by 
discrimination.

The models for breast cancer perform poorly relative to 
those for NSCLC and colorectal cancer. One possible explana-
tion is that breast cancer patients have longer overall survival 
and often receive multiple lines of therapy, and thus a patient’s 
overall survival experience is affected by multiple treatment 
regimens. Our metrics utilize tumor measurements recorded 

from only the initial treatment, which fundamentally lim-
its their ability to predict OS. Further, 22% (521) of the initial 
pool of breast cancer patients were excluded from our analy-
sis for having clinical examinations only; ie, response evalu-
ation was exclusively by physical exam and not by imaging 
measurements.

The following consistent trends emerged within each dis-
ease group. First, the fact that the hazard ratio corresponding 
to the last slope spline term is consistently statistically signifi-
cantly greater than 1 suggests that it may be important to dif-
ferentiate between whether the last slope is positive or negative 
(ie, tumor grows or shrinks between 6 and 12 weeks) in predict-
ing overall survival. Second, based on discrimination (c-index), 
the slope and percent change models have better discrimina-
tion than RECIST-based models; however, the 95% confidence 
intervals for the pairwise differences of c-indices consistently 
include 0.  Moreover, based on likelihood (BIC), the percent 
change models are slightly better than or similar to the slope 
models (smaller or similar BIC), but both in turn have lower BIC 
than the RECIST model. Based on calibration (HL goodness-of-fit 
statistic), neither the slope nor percent change model yields bet-
ter calibration than the RECIST model.

With the goal of early assessment, we additionally conducted 
a six-week landmark analysis using data available from baseline 
and six weeks only. However, these models performed no better 
than the 12-week models (results available upon request).

In addition to the two models we presented (slope and per-
cent change), we explored models with other continuous tumor 
measurement–based metrics that were also motivated by con-
sidering the tumor size trajectory in Figure  1. Specifically, we 
considered models with the following predictors: time to first 
tumor growth, indicator of inflection (change in curvature of 
the tumor growth trajectory), number of inflection points, sign 
of first or last slope (positive vs negative vs zero), and number 
of cycles with stable disease (SD). These metrics suffer some 
methodological challenges (eg, time to first tumor growth is not 
well-defined if a patient’s tumor never grows). More importantly, 
however, none of these other metrics ultimately was brought 
forward, given concerns over a desire for model simplicity 
and interpretability, clinical relevance, and multicollinearity. 
Regarding multicollinearity, although there was evidence of a 
relationship between the first and last slopes (percent changes) 
(Supplementary Figure 1, available online), we kept both in the 
final model because of clinical relevance and improved discrimi-
natory ability over a model with only first or last slope (percent 
change).

There are some important limitations to our analysis, many 
of which also apply to previous work on identifying alternative 
endpoints. First, our results are generalizable at most to the 
three disease groups we considered: breast cancer, non–small 
cell lung cancer, and colorectal cancer. Second, we conducted 
a landmark analysis and therefore only included patients who 
were alive and progression-free at 12 weeks. In contrast, we 
could have used a time-dependent Cox model with slope as 
the time-dependent covariate. However, the time-dependent 
model would neither allow for early (eg, 12-week) assessment 
of endpoint nor would it yield a well-defined and readily inter-
pretable metric (eg, “slope between baseline and six weeks” has 
a well-defined interpretation, whereas “slope at time t” is not 
well defined). Third, we conducted a complete case analysis, 
which only included patients who had complete measurement 
data from baseline, week 6, and week 12. For purposes of evalu-
ating the metrics, such a complete case analysis may introduce 
bias because those patients with incomplete measurement data 
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might represent a sicker population. In particular, the general-
izability of our results is still limited, as is the case with other 
previous work in this area (eg, [5,6]). We are currently exploring 
using nonlinear mixed effects models of tumor growth in order 
to impute missing measurements (eg, [14]) and will reevalu-
ate our models based on the larger (imputed) dataset. Fourth, 
although we evaluated and compared the metrics based on 
measures of discrimination, calibration, likelihood, and asso-
ciation, we focused on discrimination (via the c-index). The 
question of what is the most appropriate approach to evaluate 
and compare non-nested predictors of survival remains open. 
We are currently employing a resampling-based approach to 
assess the “true positive (negative) rate” of our metrics. We 
believe this will serve as another measure of predictive abil-
ity, and one that can potentially directly inform on how these 
new metrics may address the concern over high failure rates in 
Phase III trials. Fifth, 85% of the patients from the raw dataset 
had to be excluded because of not having protocol-compliant 
measurement data, a fact that poses a major limitation not 
only to our models but to any model for predicting survival 
using these data (and likely using any real-world clinical tri-
als data). To explore the potential effect of this attrition on 
our results, we conducted a sensitivity analysis that included 
only the subset of studies with a high degree of compliance 
(Supplementary Table 1, available online). Moreover, our mod-
els did not account for patients developing new lesions, pro-
gressing because of clinical reasons and not from growth of 
target lesions, and going off study because of toxicity with 
no measurements after that time. This remains an important 
challenge to address in order to make any model practically 
relevant. Finally, we note that as survival increases and effec-
tive second- and later-line therapies become available in many 
diseases, the ability for any metric based only on first-line 
therapies to predict OS will become increasingly difficult (15). 
Another reason for the relatively low predictive ability of these 
metrics could be how tumor size is measured. Measurements 
are typically done through CT imaging, which is based on tis-
sue size and density but does not convey crucial information 
about function, which may potentially better predict survival. 
Functional-based measurements coupled with tumor meas-
urement–based metrics may be used in the future for evaluat-
ing tumor burden in clinical trials.

In conclusion, the slope and percent change models do not 
demonstrate convincingly improved OS predictive ability over 
the RECIST model. Although point estimates of discrimination 
for the slope and percent change models are higher than those 
for the RECIST model, the 95% confidence intervals for pairwise 
differences in c-indices included 0. Ongoing work is addressing 
missing tumor measurements and model selection methods 
and assessing clinical utility of alternative endpoints.
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