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We aimed to characterize genotype–phenotype correlations and establish baseline clinical data for peripheral neuropathies caused

by mutations in the myelin protein zero (MPZ) gene. MPZ mutations are the second leading cause of Charcot–Marie–Tooth

disease type 1. Recent research makes clinical trials for patients with MPZ mutations a realistic possibility. However, the clinical

severity varies with different mutations and natural history data on progression is sparse. We present cross-sectional data to begin

to define the phenotypic spectrum and clinical baseline of patients with these mutations. A cohort of patients with MPZ gene

mutations was identified in 13 centres of the Inherited Neuropathies Consortium - Rare Disease Clinical Research Consortium

(INC-RDCRC) between 2009 and 2012 and at Wayne State University between 1996 and 2009. Patient phenotypes were

quantified by the Charcot–Marie–Tooth disease neuropathy score version 1 or 2 and the Charcot–Marie–Tooth disease paediatric

scale outcome instruments. Genetic testing was performed in all patients and/or in first- or second-degree relatives to document

mutation in MPZ gene indicating diagnosis of Charcot–Marie–Tooth disease type 1B. There were 103 patients from 71 families

with 47 different MPZ mutations with a mean age of 40 years (range 3–84 years). Patients and mutations were separated into

infantile, childhood and adult-onset groups. The infantile onset group had higher Charcot–Marie–Tooth disease neuropathy score

version 1 or 2 and slower nerve conductions than the other groups, and severity increased with age. Twenty-three patients had no

family history of Charcot–Marie–Tooth disease. Sixty-one patients wore foot/ankle orthoses, 19 required walking assistance or

support, and 10 required wheelchairs. There was hearing loss in 21 and scoliosis in 17. Forty-two patients did not begin walking

until after 15 months of age. Half of the infantile onset patients then required ambulation aids or wheelchairs for ambulation. Our

results demonstrate that virtually all MPZ mutations are associated with specific phenotypes. Early onset (infantile and childhood)

phenotypes likely represent developmentally impaired myelination, whereas the adult-onset phenotype reflects axonal degeneration

without antecedent demyelination. Data from this cohort of patients will provide the baseline data necessary for clinical trials of

patients with Charcot–Marie–Tooth disease caused by MPZ gene mutations.
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Introduction
Charcot–Marie–Tooth disease (CMT), or hereditary motor

sensory neuropathy (HMSN), is the most common in-

herited neuromuscular disorder, affecting 1 in 2500

people (Skre, 1974). CMT type 1B (CMT1B) is caused by

mutations in the myelin protein zero (MPZ) gene and is the

second most common form of the autosomal dominant her-

editary demyelinating neuropathy, collectively called CMT1

(Nelis et al., 1996; Saporta et al., 2011). More than 200

different disease-causing mutations in MPZ have been iden-

tified (Timmerman et al., 2014). Most patients with

CMT1B are thought to present with one of two distinct

phenotypes: one with extremely slow nerve conduction

velocities and onset of symptoms during the period of

motor development; the other with normal or near-

normal nerve conduction velocities and the onset of symp-

toms as adults (Shy et al., 2004). Because patients in the

latter group can clinically appear to have an axonal

neuropathy, they are also classified as having CMT2I

(OMIM), despite the fact that MPZ is only expressed by

myelinating Schwann cells and not by neurons (Trapp

et al., 2003).

The natural history and genotype–phenotype correlations

of CMT1B are poorly understood. We have followed pa-

tients with CMT1B at Wayne State University and the

Inherited Neuropathy Consortium (INC), which is a

member of the Rare Disease Clinical Research Network

(RDCRN) (http://www.rarediseasesnetwork.org/). The

INC currently includes 17 sites that evaluate patients

using standardized clinical, electrophysiological and genetic

measures. Our goal was to collect cross-sectional data to

characterize the phenotype of patients with different MPZ

mutations that can also be used as baseline data for longi-

tudinal natural history studies.

Materials and methods
Observational studies were performed on all patients with
MPZ mutations evaluated at Wayne State University between
1996 and 2011 as well as patients enrolled in the initial 13
centres comprising the INC between 2009 and 2012. History,
neurological examination and nerve conduction studies were
evaluated. Genetic testing was performed in all patients and/or
in first- or second-degree relatives to document mutation in
MPZ gene indicating diagnosis of CMT1B. First- or second-
degree relatives of genetically-defined CMT1B patients with a
CMT phenotype were assumed to have the same mutation.

CMT outcome assessment measures

The severity of peripheral neuropathy was evaluated in all adult
patients by the CMT neuropathy score (CMTNS) version 1 or 2
(Shy et al., 2005b; Murphy et al., 2011a). Both have been vali-
dated for composite measurement of impairment and assess
symptoms, signs and neurophysiology of CMT patients.
CMTNSv1 and CMTNSv2 are both composed of nine assess-
ments: symptoms (three items), signs (four items), and neuro-
physiology (two items). Each measurement is scored on a 0–4
point scale for a total possible score of 36. To compare impair-
ment for patients evaluated prior to 2011, we converted features
of the CMTNSv1 score into CMTNSv2 by using available data
for fine and gross motor abilities, neurological examinations, and
physiological studies. We were unable to directly convert tuning
fork data as only CMTNSv2 uses a Rydel-Seiffer tuning fork.
The CMT examination score was used for patients who did not
undergo electrophysiological testing. The CMT examination
score is calculated by the sum of the symptoms plus the signs
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in the CMTNS; it is therefore the CMTNS without the electro-
physiological testing. CMT paediatric scale is a reliable, valid,
and sensitive global measure of disability for children with CMT
from the age of 3 years (Burns et al., 2012). CMT paediatric
scale measures seven areas: strength, hand dexterity, sensation,
gait, balance, power, and endurance, and has a total score of 44.
As with the CMTNS, higher scores indicate greater disability.

Clinical electrophysiology

Motor and sensory nerve conduction velocities (NCVs) were per-
formed by standard techniques. Temperature was maintained at
32�C in the hands and feet for all visits. Surface electrodes were
used in all studies. The amplitudes of the compound muscle
action potential and sensory nerve action potential were recorded.

Statistical analysis

Patient characteristics, data from clinical examination, electro-
physiological examination and physical disability were ana-
lysed using descriptive statistics.

The institutional review board (IRB) at Wayne State
University and at each of the 13 centres comprising the INC,
approved the study.

Results

Characterization of cohort

We identified 103 patients (from 71 different families) with

CMT caused by mutations in the MPZ gene (39 males, 64

females). Baseline characteristics and clinical features of all

patients are summarized in Table 1. The age of patients

ranged from 3 to 84 years, with a mean age of 40 years.

Pedigrees were obtained in all patients. One family had five

members, three families had four members, four families

had three members, 11 families had two members, and 52

families had a single affected member evaluated although 29

of these had other affected members that we did not see.

Twenty-three families had only a single affected individual

(sporadic case). Phenotypes and ages of onset in individuals

within the same family were similar. The majority of pa-

tients were ambulatory, although most required orthoses or

walking aids. About 10% required the use of wheelchair for

ambulation. Optic nerve atrophy was noted in two patients

with G137S and I135T MPZ mutations. Hip dysplasia was

noted at birth in two patients with R98H and I135T MPZ

mutations. Those four patients were the only members of

their affected family members with optic atrophy or hip

dysplasia. Scoliosis was found in 17 patients. Hearing loss

was found in 21 patients; seven were infantile-onset (R98C,

R98H, S111C, S111P, I135T, G137S) and 14 were adult-

onset (R36W, H39P, I114fs, Y119C, T124M, R227S,

c.614 + 2T4G splice site mutation). The age of symptom

onset varied from 1 to 67 years old and the severity

varied widely (CMTNS from 1 to 33). Patients were separ-

able into infantile, childhood and adult onset groups clinic-

ally and by electrophysiology (Table 2).

The infantile onset group was characterized by a delayed

onset of walking independently until at least 15 months of

age (18–48 months), and the development of symptoms

before 5 years of age. Forty per cent of all patients fell

into this group; one-third were sporadic cases. Hip dysplasia

and optic nerve atrophy were observed only in this group;

scoliosis was found in 36% of infantile onset patients. The

mean CMTNS at the initial visit was 18. CMT paediatric

scale was performed in nine of the infantile onset children,

with a mean score of 23. Nineteen per cent of infantile onset

patients (eight patients) were in a wheelchair and 29% (12

patients) needed walking aids beyond ankle–foot orthoses.

Three patients required a wheelchair at ages 7, 50 and 55;

the age for wheelchair use was not recorded for the add-

itional five. The age at which 9 of 12 patients needed am-

bulation aids in addition to ankle–foot orthoses were 4, 10,

20, 20, 26, 27, 48, 49 and 55 with a mean of 29 years. The

mean ulnar motor NCV was very slow (12 m/s) with mod-

erately reduced compound muscle action potential ampli-

tude. Approximately 80% of patients in the infantile onset

group had ulnar motor NCV 4 15 m/s with the remaining

values all in the 16–25 m/s range. All patients in the infantile

onset group had absent radial sensory nerve action potential.

The childhood onset group was characterized by devel-

opmentally normal children who developed their initial

symptoms between the ages of 6 and 20 years; the mean

age of symptom onset was 10 years old. Only 7% of pa-

tients fell into this group. Their mean CMTNS was 12 at

the time of initial evaluation, typically in their late twenties.

A CMT paediatric scale was performed in three of the

childhood onset children with a mean score of 20. No pa-

tient in the childhood onset group required a wheelchair or

walking aid. The mean ulnar motor NCV was 28 m/s, all

within the slow range (15–35 m/s), with mildly reduced

compound muscle action potential amplitudes. The mean

radial sensory nerve action potential was 2.6 mV.

The adult onset group developed symptoms after the age

of 20 years. Approximately half of all patients were in this

group. The mean age of symptom onset was 40 years.

Their mean CMTNS was 10 at the time of evaluation,

Table 1 Demographic and clinical characteristics of

103 patients with CMT caused by mutations in the

MPZ gene

Characteristics Values

Age; mean � SD (range in years) 40 � 20 (3–84)

Age of symptom onset (range in years) 23 � 20 (1–67)

CMTES (n = 87) 9.4 � 5 (1–25)

CMTNS (n = 81) 13 � 7 (1–33)

CMTPedS (n = 12) 23 � 7 (13–42)

Orthoses (shoe insert/ankle bracing; n) 61 (25/36)

Walking assistance (n) 19

Wheelchair-dependent (n) 10

Foot, ankle, or toe surgery (n) 21

Data are mean � SD and range; CMTES = CMTexamination score; CMTPedS = CMT

paediatric score.
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which was usually in their fifties. Four per cent were wheel-

chair-dependent, and 13% needed walking aids in addition

to ankle–foot orthoses. The mean ulnar motor NCV was

44 m/s, with normal compound muscle action potential

amplitudes. About half of patients in this group had been

previously diagnosed as CMT type 2 due to reduced com-

pound muscle action potential amplitudes in their legs and

normal conduction studies. The mean radial sensory nerve

action potential was 11.8 mV.

Overall, the CMTNS was performed in 81 patients with

mean score of 13. Thirty-seven per cent had mild impairment

(CMTNS 4 10), 50% had moderate impairment (CMTNS

11–20) and 13% had severe impairment (CMTNS 420). The

CMTNS was plotted against age of initial visit for each of the

three clinical groups (Fig. 1). Derived data demonstrated a

linear correlation between CMTNS and age of the patient

for each clinical group. Thus, within each group, older pa-

tients had higher CMTNS. At any age, infantile onset patients

tended to be the most severely affected type. The CMT paedi-

atric scale was performed in 12 patients with mean of 23.

Individual CMT paediatric scale at the age of initial visit

behaved in a similar fashion as CMTNS, although the num-

bers of patients are small.

Electrophysiological findings

We investigated whether the ulnar motor NCV would be

useful in characterizing the aforementioned three groups of

patients. As shown in Table 3, patients were separated into

four groups according to motor NCV: very slow (415 m/s);

slow (16–35 m/s); intermediate slow (36–45 m/s); and

normal (445 m/s). Each group consists of �25% of all pa-

tients. Neither temporal dispersion nor conduction block

was recorded in any patient. Different electrophysiological

findings were observed in different age of onset groups.

Very slow motor NCV was only observed in patients with

infantile onset. Intermediate and normal motor NCV was

only observed in patients with adult onset. Patients who had

slowing of conduction velocity were more severely affected

when compared to patients who had intermediate or normal

conduction velocity. Figure 2 shows a linear correlation be-

tween age of symptom onset and ulnar motor NCV: pa-

tients who had slowing of conduction velocity were more

severely affected in early life when compared to patients

who had intermediate or normal conduction velocity.

Absent radial sensory responses were observed in all pa-

tients in infantile onset group, 57% in childhood onset

group and only 7% in adult onset group. The mean

radial sensory response was 2.6 mV in childhood onset

and 11.8 mV in adult onset patients (Table 2).

Genotype

We found 47 different MPZ mutations in 71 kindreds. Of

these, 15 were new mutations compared to the ones sum-

marized in the Inherited Peripheral Neuropathies mutation

database http://www.molgen.ua.ac.be/CMTMutations and

reviewed by us previously (Shy et al., 2004). Table 4 lists

the particular MPZ mutations, according to the infantile,

childhood and adult onset phenotypes. Affected individual

Table 2 Clinical and electrophysiological characteristics classified by age of symptom onset of 103 patients with

CMT caused by mutations in the MPZ gene

Characteristics Infantile onset

0–5 years

Childhood

6–20 years

Adult

521 years

P-value

Number of patients 42 8 53

Age at first visit (years) 28 � 18 29 � 12 50 � 16

Sporadic case, n (%) 14 (33) 2 (25) 7 (13)

Age of symptom onset (years) 3.4 � 4 10.4 � 2.7 40 � 14

Dexterity problems, n (%) 31 (74) 5 (63) 26 (49) 0.09

Orthoses, n (%) 30 (71) 2 (25) 29 (56) 0.03

Walking assistance, n (%) 12 (29) 0 7 (13) 0.08

Wheelchair-dependent, n (%) 8 (19) 0 2 (3.8) 0.04

Foot surgery, n (%) 32 (76) 8 (100) 31 (59) 0.1

Optic nerve atrophy, n (%) 2 (4) 0 0

Hip dysplasia; n (%) 2 (4) 0 0

Hearing loss, n (%) 7 (17) 0 14 (26) 0.2

Scoliosis, n (%) 15 (36) 0 2 (3.8) 50.0001

CMTES (n = 87) 11.7 � 6 7.4 � 3.5 7.9 � 4.3 0.001

CMTNS (n = 81) 18 � 6.3 11.9 � 4.4 9.9 � 5.6 50.0001

CMTPedS (n = 12) 23.4 � 8.4 (n = 9) 19.5 � 0.7 (n = 3) 0.04

Ulnar MNCV (m/s) 12 � 5.9 28 � 9.4 44 � 9.6

Ulnar CMAP amplitude (mV) 2.7 � 3 5.6 � 3 6.8 � 2.4

Ulnar SNAP amplitude (mV) 0.08 � 0.3 1.85 � 2.3 8.36 � 9.0

Radial SNAP amplitude (mV) 0 2.6 � 4.2 11.8 � 7

Patients with absent SNAP 100% 57% (4/7) 7% (3/43)

Data are mean � SD; CMTES = CMT examination score; CMTPedS = CMT paediatric score; MNCV = motor NCV; SNAP = sensory nerve action potential.
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members within the same family always had a similar

phenotype based on clinical presentation, age of onset, clin-

ical severity, disease progression, and nerve conductions.

Patients from different families with the same mutations

also presented with similar phenotypes with the exception

of two mutations: Ser78Leu and Arg98His. A schematic

diagram of the amino acid sequence of MPZ protein and

its putative secondary structure with the mutations known

to cause neuropathy is shown in Fig. 3, updated from our

earlier version (Shy et al., 2004).

Discussion
We found 47 different MPZ mutations that cause either

infantile, childhood or adult onset phenotypes in 103 pa-

tients. Only two of the 47 mutations were found in more

than one of these groups. Thus, there appears to be char-

acteristic genotype–phenotype correlations in CMT1B, con-

firming and extending our previous study of 13 patients

with eight mutations (Shy et al., 2004). In that paper, we

also reviewed the literature and found many mutations

caused either an infantile or adult onset phenotype (Shy

et al., 2004). However, our present study also identifies a

smaller group of mutations that cause a ‘classic’ CMT1

phenotype, with childhood onset phenotype and demyeli-

nating physiology. Because we have now evaluated the pa-

tients with standardized outcome measures, we are able to

comment on the severity of neuropathy caused by the dif-

ferent mutations. Infantile onset patients were typically the

most severely affected and the age of onset correlated with

severity. Overall age also correlated with severity in this

cross-sectional analysis, suggesting that CMT1B is progres-

sive in all three phenotypic groups.
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Figure 1 CMTNS at initial visit in 81 patients with CMT caused by mutations in the MPZ gene.

Table 3 Clinical manifestation and severity classified by ulnar motor NCV of 76 patients with CMT caused by

mutations in the MPZ gene

Ulnar MNCV (m/s)

Very slow 4 15 Slow 16–35 Intermediate 36–45 Normal 445 P-value

n (%) 20 (26) 17 (22) 17 (23) 22 (29)

Mean age (years) 32 35 39 58 50.0001

Mean age onset (years) 4.9 � 4 18.8 � 17 29 � 13 45 � 12 50.0001

Delay walking 20 6 0 0 50.0001

Age of onset

Infantile (n = 25) (%) 20 (80) 5 (20) 0 0 50.0001

Childhood (n = 6) (%) 0 6 (100) 0 0

Adult (n = 45) (%) 0 6 (13) 17 (38) 22 (49)

CMTNS (n = 66) 17.4 � 5.6 16 � 12.7 8.5 � 5 10 � 6.2 50.0001

CMTPedS (n = 6) 26 � 2.8 16 � 5 21 � 2.8 — 0.16

Data are mean � SD or n = number; CMTES = CMT examination score; CMTPedS = CMT paediatric score; MNCV = motor NCV.
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The current nomenclature for MPZ mutations remains

confusing as patients with NCV 538 m/s are classified as

CMT1B and those with NCV 438 m/s are classified as

CMT2I by OMIM. Moreover, cases that present in infancy

have been said to have Dejerine–Sottas syndrome whereas

others have been diagnosed with congenital hypomyelina-

tion. Dejerine–Sottas syndrome was originally used to diag-

nose severely affected children with autosomal recessive

CMT (Dejerine, 1893; Martin et al., 1999). Harding and

Thomas (1980) subsequently noted that severely affected

infants represented a heterogeneous group and many such

patients have turned out to have de novo mutations in

dominantly inherited genes such as MPZ (reviewed in Shy

et al., 2005a). Alternatively, congenital hypomyelination is

a pathologically based term originally used to describe per-

ipheral nerves with absent or severely disrupted myelin sug-

gesting a developmental failure of peripheral nervous

system myelination (Lyon, 1969; Karch and Urich, 1975;

Kennedy et al., 1977). Similar pathological features have

been reported from sural nerve biopsies of patients with

congenital hypomyelination or Dejerine–Sottas syndrome.

Moreover the same patient has been diagnosed with con-

genital hypomyelination in one publication (Becker, 1978)

and Dejerine–Sottas syndrome in another (Bell, 1935).

Ultimately, we believe that all of these classifications

make it harder to focus on the pathogenic processes under-

lying these neuropathies. Perhaps the most useful way to

characterize phenotypes associated with MPZ mutations is

to simply classify them according to the age of presenta-

tion, severity of disease and pathological features.

Our data add to the evidence that MPZ mutations act in

different ways to cause infantile, childhood, or adult onset

neuropathy. Mutations that cause infantile phenotypes

likely disrupt the developmental process of myelination to

the extent that normal myelin sheaths are never formed.

This idea is supported by morphological observations of

nerve biopsies from patients with infantile onset mutations

(Warner et al., 1996; Gabreels-Festen et al., 1999; Mandich

et al., 1999; Nelis et al., 1999; Mersiyanova et al., 2000;

Eggers et al., 2004) and the very slow motor NCV in in-

fantile onset cases (often 510 m/s). In childhood onset

cases, myelin sheaths are more fully formed, although still

abnormal, as evidenced by NVCs that are in the 20–25 m/s

range (Miller et al., 2012). Finally, myelin sheaths are nor-

mally formed in adult onset cases, and the degeneration of

myelinated axons causes neuropathy in adults (De Jonghe

et al., 1999; Li et al., 2006). Why particular mutations

cause these phenotypes is not understood. Mutations

within specific cellular domains of the MPZ gene have no

apparent prediction of phenotypic severity.

Reviewing the various mutations listed in Table 4 and

Fig. 3 can provide some guidance as to which particular

mutations will cause infantile or adult onset neuropathy.

Mutations that introduce a cysteine into the extracellular

loop of MPZ would be predicted to disrupt disulphide

bridging that would be essential for its 3D structure

(Shapiro et al., 1996) and would therefore prevent myelin-

ation. Indeed when the Ser63Cys mutation is introduced

into mice, ectopic disulphide bonds in trans retard initial

wrapping of myelin (Avila et al., 2010). In our current

manuscript, Tyr82Cys, Arg98Cys, Ser111Cys and

Ser123Cys all cause infantile onset disease. However,

Tyr119Cys allows myelination to develop and causes an

adult onset neuropathy. Moreover, while Arg98Cys

causes infantile disease it appears to do so by activating

an intracellular process called the unfolded protein re-

sponse rather than by disrupting myelin wrapping (Patzko

et al., 2012; Saporta et al., 2012). Therefore, how a novel

cysteine would cause neuropathy in CMT1B is more com-

plicated than initially perceived. Pathogenic pathways in

Figure 2 Correlation between age of symptom onset and ulnar motor NCV (MNCV) in 76 patients with CMT caused by

mutations in the MPZ gene.
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Table 4 Forty-seven different MPZ mutations in 103 patients.

Nucleotide Amino acid Patients Families References

Infantile onset

c.151-171del p.P50-57 del 1 1 This report

c.156C4G p.Phe52Leu 1 1 This report

c.188C4T p.Ser63Phe 1 1 Blanquet-Grossard et al., 1995; Mostacciuolo et al., 2001; Lee et al.,

2004, 2005
c.193A4G p.Thr65Ala 2 1 Kochanski et al., 2004

c.194C4A p.Thr65Asp 1 1 This report

c.233C4T p.Ser78Leu* 2 2 Latour et al., 1995; Bort et al., 1997; Fabrizi et al., 2000; Boerkoel et al.,

2002; Keckarevic-Markovic et al., 2009
c.245A4G p.Tyr82Cys 1 1 Himoro et al., 1993; Mitsui et al., 1994; Haites et al., 1998; Silander

et al., 1998; Boerkoel et al., 2002; Numakura et al., 2002
c.268G4C p.Asp90His 1 1 This report

c.292C4T p.Arg98Cys 2 2 Gabreels-Festen et al., 1996; Kirschner et al., 1996; Meijerink et al.,

1996; Rouger et al., 1996; Warner et al., 1996; Bort et al., 1997;

Komiyama et al., 1997; Phillips et al., 1999; Hattori et al., 2003; Lee

et al., 2004; Bai et al., 2006; Mandich et al., 2009; Baets et al., 2011
c.292C4T p.Arg98Trp 1 1 This report

c.293G4A p.Arg98His* 2 2 Hayasaka et al., 1993b; Gabreels-Festen et al., 1996; Kirschner et al.,

1996; Meijerink et al., 1996; Rouger et al., 1996; Lagueny et al., 1999;

Ohnishi et al., 1999; Mersiyanova et al., 2000; Young et al., 2001;

Watanabe et al., 2002; Shy et al., 2004; Lee et al., 2005; Mandich

et al., 2009
c.308G4A p.Gly103Glu 1 1 Fabrizi et al., 2001

c.329G4A p.Gly110Asp 2 1 Ekici et al., 2000; Huehne et al., 2003

c.331T4C p.Ser111Pro 2 1 This report

c.332C4G p.Ser111Cys 2 1 Mandich et al., 2009

c.335T4C p.Ile112Thr 1 1 Haites et al., 1998; Sorour and Upadhyaya, 1998; Murphy et al., 2011b

c.341T4C p.Ile114Thr 1 1 Warner et al., 1997

c.367G4T p.Gly123Cys 1 1 Boerkoel et al., 2002; Shy et al., 2004

c.389A4G p.Lys130Arg 1 1 Gabreels-Festen et al., 1996; Tachi et al., 1996; Yoshihara et al., 2000;

Shy et al., 2004
c.397C4G p.Pro133Ala 1 1 This report

c.400G4C p.Asp134His 1 1 This report

c.402C4G p.Asp134Glu 1 1 This report; Mersiyanova et al., 2000 reported c.402C4A that also

results in p.Asp134Glu
c.404T4C p.Ile135Thr 4 1 Roa et al., 1996; Tyson et al., 1997; Mersiyanova et al., 2000

c.409G4A p.Gly137Ser 4 1 Roa et al., 1996

c.410G4A p.Gly137Asp 2 2 Ostern et al., 2014

c.424G4T p.Val142Phe 1 1 This report

c.499G4A p.Gly167Arg 1 1 Hayasaka et al., 1993a; Tachi et al., 1994; Takashima et al., 1999;

Simonati et al., 2002; Hattori et al., 2003; Shames et al., 2003;

Cartwright et al., 2009
c.643C4T p.Gln215stop 1 1 Warner et al., 1996; Mandich et al., 1999, 2009; Shy et al., 2004

Total 42 32

Childhood onset

c.188_190delCCT p.Ser63 del 3 1 Kulkens et al., 1993; Gabreëls-Festen et al., 1996; Numakura et al.,

2002; Hattori et al., 2003
c.233C4T p.Ser78Leu* 2 1 Latour et al., 1995; Bort et al., 1997; Fabrizi et al., 2000; Boerkoel et al.,

2002; Keckarevic-Markovic et al., 2009
c.293G4A p.Arg98His* 2 2 Hayasaka et al., 1993b; Gabreels-Festen et al., 1996; Kirschner et al.,

1996; Meijerink et al., 1996; Rouger et al., 1996; Lagueny et al., 1999;

Ohnishi et al., 1999; Mersiyanova et al., 2000; Young et al., 2001;

Watanabe et al., 2002; Shy et al., 2004; Lee et al., 2005; Mandich

et al., 2009
c.646_647dupA p.Thr216fs 1 1 This report

Total 8 5

Adult onset

c.106A4T p.Arg36Trp 1 1 Burns et al., 2006

c.116A4C p.His39Pro 15 6 Shy et al., 2004; Li et al., 2006; Souayah et al., 2007; Kilfoyle et al., 2006

report a c.117A4C
c.131C4T p.Ser44Phe 2 2 Marrosu et al., 1998; Shy et al., 2004; Benedetti et al., 2010

c.136delG p.Val46fs 1 1 This report

c.208C4T p.Pro70Ser 4 3 Laura et al., 2007; Benedetti et al., 2010

(continued)
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the cell also do not tightly correlate with clinical pheno-

type. Activation of the unfolded protein response correlates

with an infantile onset neuropathy with Arg98Cys, but re-

sults in a childhood onset neuropathy with Ser63Del

(Pennuto et al., 2008; Miller et al., 2012) or adult onset

neuropathy with Thr124Met (Shy, unpublished results).

Finally, mutations that disrupt amino acids that are par-

ticularly important for MPZ’s role as an adhesion molecule

(Shapiro et al., 1996) do not correlate with particular

phenotypes. Variable severity also occurs in CMT1A, the

most common form of CMT, but rarely to the extent

described in CMT1B (Thomas et al., 1997; Fridman

et al., 2015). It has been hypothesized that modifier genes

(Brewer et al., 2014), inflammation or other factors may

influence disability in CMT1A (Fledrich et al., 2012).

However, we think it unlikely that these factors can explain

the different phenotypes of CMT1B. Variable disability in

CMT1A occurs with one common mutation, the duplica-

tion on chromosome 17 (Lupski et al., 1991; Timmerman

et al., 1992). In the patients with CMT1B, however, there

are different mutations and we believe that it is the specific

mutation that determines whether there is an early, child-

hood or adult onset and whether the patient has profound

demyelination or axonal changes on nerve conduction stu-

dies. This is supported by our findings that the phenotypes

are almost completely mutation-specific. Whether there is

additional variability in progression for given mutations

will be determined in longitudinal studies. This would

enable us to better determine whether modifier genes, in-

flammation or environmental factors contribute to the

ultimate disease course. Determining why particular muta-

tions cause particular phenotypes remains an important

question to answer to understand the pathogenesis of

CMT1B.

Determining why adult onset mutations cause axonal de-

generation with minimal effects on myelin is a particularly

important question as its answer may provide clues that

explain axonal degeneration in demyelinating neuropathy

in general. Virtually all de/dysmyelinating neuropathies

have associated axonal degeneration that often correlates

more with the patient’s disability than the de/dysmyelina-

tion itself (reviewed in Scherer and Wrabetz, 2008). MPZ is

expressed only in myelinating Schwann cells, not neurons

(Lemke and Axel, 1985; Lemke, 1988). Because the adult

onset MPZ mutations damage axons with only minimal

effects on myelin, it suggests that axonal damage from

de/dysmyelination can be mechanistically separated from

the direct effects of damaged myelin, either by segmental

demyelination or developmental dysmyelination. This in

turn suggests that signalling pathways between myelin

and the axon may be appropriate therapeutic targets no

matter what is damaging the myelin. Bird et al. (1997)

have elegantly demonstrated axonal degeneration extending

into the dorsal columns in a family with an early onset case

of dysmyelinating CMT1B. They illustrate that axonal de-

generation also occurs with dys/demyelination, a well-

known finding in most dys/demyelinating neuropathies.

The degeneration of anterior horn cells in their study is

also noteworthy in that there is debate about whether

motor neuron cell bodies are affected along with axons in

Table 4 Continued

Nucleotide Amino acid Patients Families References

c.293G4A p.Arg98His* 4 3 Hayasaka et al., 1993b; Gabreels-Festen et al., 1996; Kirschner et al.,

1996; Meijerink et al., 1996; Rouger et al., 1996; Lagueny et al., 1999;

Ohnishi et al., 1999; Mersiyanova et al., 2000; Young et al., 2001;

Watanabe et al., 2002; Shy et al., 2004; Lee et al., 2005; Mandich

et al., 2009
c.296T4C p.Ile99Thr 1 1 Haites et al., 1998; Donaghy et al., 2000

c.306delA p.Val102fs 1 1 Sghirlanzoni et al., 1992; Warner et al., 1996; De Angelis et al., 2004;

Steck et al., 2006; Benedetti et al., 2010
c.341delT p.Ile114fs 3 1 This report

c.356A4G p.Tyr119Cys 4 2 Senderek et al., 2000

c.371C4T p.Thr124Met 5 4 Chapon et al., 1999; De Jonghe et al., 1999; Misu et al., 2000; Senderek

et al., 2000; Yoshihara et al., 2000; Hanemann et al., 2001; Numakura

et al., 2002; Hattori et al., 2003; Kurihara et al., 2003, 2004; Stojkovic

et al., 2003; Baloh et al., 2004; Rajabally and Abbott, 2005; Triggs

et al., 2006; Briani et al., 2008; Grandis et al., 2008; Gallardo et al.,

2009; Mandich et al., 2009
c.418T4A p.Ser140Thr 1 1 Street et al., 2002; Shy et al., 2004

c.434A4C p.Tyr145Ser 2 1 Leal et al., 2003; Starr et al., 2003

c.641G4A p.Arg214Glu 1 1 This report

c.681A4T p.Arg227Ser 1 1 Xu et al., 2001; Keckarevic-Markovic et al., 2009

c.706_708del AAG p.Lys236del 3 3 Street et al., 2002; Choi et al., 2004; Sowden et al., 2005

c.215 + 1G4C 5’-splice site 1 1 This report

c.614 + 2T4G 5’-splice site 3 1 Sabet et al., 2006

Total 53 34

*The same mutation has been found in patients in more than one clinical group.
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Figure 3 Mutations in the MPZ gene associated with inherited neuropathies. Adhesive interface, 4-fold interface and head-to-head

interface, marked with colour to the border of circle, refer to amino acid residues deemed essential for cis and trans adhesion between adjacent

myelin wraps. The numbering system for MPZ mutations includes the 29 amino acid leader peptide cleaved before insertion in the myelin sheath.

Mutations demonstrated by adding the letter represent amino acid change, arrows represent frameshift mutation and line represent nonsense

mutation. Mutations causing early onset phenotype are filled or noted with red colour, while those causing childhood onset phenotype are in

green, and those causing late onset phenotype are in blue (updated from Shy et al., 2004).
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these cases (Bird et al., 1997). However, patients from this

report differ from patients in our late ‘axonal’ group in that

the late onset group show little if any demyelination and

typically do not develop symptoms until adulthood.

Whether axonal damage in this later onset group occurs

by similar mechanisms to that in the early dysmyelinating

group is unknown.

We are presently in an era where rational therapies for

inherited neuropathies are possible and practical for pa-

tients with mutations in MPZ (Jang et al., 2012; Johnson

et al., 2012; Martinelli et al., 2013; Foley et al., 2014).

Curcumin derivatives have improved neuropathy in

Arg98Cys MPZ mice (Patzko and Shy, 2012; Patzko

et al., 2012) and pharmacological inhibition of Gadd34

(encoded by Ppp1r15a) improves the neuropathy of MPZ

Ser63del mice (D’Antonio et al., 2013). Organizations such

as the Charcot–Marie–Tooth Association (CMTA) are de-

veloping specific strategies to develop clinical trials for

CMT1B (http://www.cmtausa.org/). However, testing

therapies requires detailed, carefully developed natural his-

tory studies using validated outcome instruments performed

by trained personnel. Cohorts such as the participants in

the current manuscript can provide the baseline for longi-

tudinal natural history investigations using established and

novel outcome measures.
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