
StringTie enables improved reconstruction of a transcriptome
from RNA-seq reads

Mihaela Pertea1,2, Geo M Pertea1,2, Corina M Antonescu1,2, Tsung-Cheng Chang3,4, Joshua
T Mendell3,4,5, and Steven L Salzberg1,2,6,7

1Center for Computational Biology, Johns Hopkins University, Baltimore, Maryland, USA

2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland,
USA

3Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas,
Texas, USA

4Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical
Center, Dallas, Texas, USA

5Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas,
USA

6Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA

7Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA

Abstract

Methods used to sequence the transcriptome often produce more than 200 million short sequences.

We introduce StringTie, a computational method that applies a network flow algorithm originally

developed in optimization theory, together with optional de novo assembly, to assemble these

complex data sets into transcripts. When used to analyze both simulated and real data sets,

StringTie produces more complete and accurate reconstructions of genes and better estimates of

expression levels, compared with other leading transcript assembly programs including Cufflinks,

IsoLasso, Scripture and Traph. For example, on 90 million reads from human blood, StringTie

correctly assembled 10,990 transcripts, whereas the next best assembly was of 7,187 transcripts by

Cufflinks, which is a 53% increase in transcripts assembled. On a simulated data set, StringTie

correctly assembled 7,559 transcripts, which is 20% more than the 6,310 assembled by Cufflinks.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

Correspondence should be addressed to S.L.S. (salzberg@jhu.edu).

Accession codes. SRA: SRP041943.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

AUTHOR CONTRIBUTIONS
M.P. designed the StringTie method with input from S.L.S. M.P. and G.M.P. implemented the algorithms. C.M.A. ran all programs on
the RNA-seq data and tuned their performance. J.T.M. and T.-C.C. produced the kidney cell line data and gave feedback on
StringTie’s performance. M.P. and S.L.S. wrote the paper. S.L.S. supervised the entire project. All authors read and approved the final
manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

Published in final edited form as:
Nat Biotechnol. 2015 March ; 33(3): 290–295. doi:10.1038/nbt.3122.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints/index.html

As well as producing a more complete transcriptome assembly, StringTie runs faster on all data

sets tested to date compared with other assembly software, including Cufflinks.

Over the past decade, numerous studies have revealed an increasing degree of diversity in

the transcriptomes of higher eukaryotes1. Most transcribed elements are never translated into

proteins and are encoded by a myriad of non-protein-coding RNA genes (ncRNAs) that have

complex patterns of expression and regulation2. Further complicating the picture, more than

90% of transcripts of multiexon protein-coding genes, and about 30% of ncRNAs, undergo

alternative splicing3,4. We currently have a far from complete picture of the exonintron

structure of all transcripts in the human genome. For non-human species, the landscape of

alternative splicing is even less clear.

In recent years, gene discovery methodology has been revolutionized by RNA-seq, a high-

throughput assay that sequences transcribed genes5. Previous efforts to model genes de

novo, through recognition of splice sites, coding regions and other signals, have been

superseded by more accurate methods that use RNA-seq data as input. An RNA-seq run can

produce more than 200 million short reads, each of which is 100–150 base pairs (bp).

Assembling these short reads into full transcripts is a complex task. Not only do different

transcripts have highly variable sequence coverage, but also alternative transcripts from the

same locus can share exons, making it difficult to assemble multiple isoforms

unambiguously. Determining the quantities of all of these transcripts is also challenging,

even if we assume that the transcript structures are known. Exon sharing among transcripts,

ambiguous read mappings due to close paralogs and low levels of gene expression are all

factors that make the quantification task difficult6. In addition, incorrectly assembled

transcripts are a major obstacle to correct isoform abundance estimation.

Although a growing number of methods have been developed to solve either the transcript

identification problem (e.g., Trinity7, Oases8), the expression quantification problem (e.g.,

RSEM9, eXpress10) or both (e.g., IsoInfer11, Scripture12, Cufflinks13, SLIDE14, IsoLasso15,

iReckon16, Traph17), much work remains to produce consistent, highly accurate solutions. A

recent study18 of the current transcript reconstruction methods showed that even in cases

where these methods identified all constituent exons of a transcript, they often failed to

assemble the exons into complete isoforms. Moreover, the expression of multiple isoforms

and novel splice variants greatly affects the accuracy of transcriptome reconstruction. As a

result, more accurate methods for identifying novel transcripts are needed to reproduce more

complete transcriptomes. Here, we report a transcriptome assembly method named StringTie

that correctly identified 36–60% more transcripts than the next best assembler (Cufflinks) on

multiple real and simulated data sets. Using simulated data, we show that the expression

levels produced by StringTie also showed higher agreement with the true values.

There are two main approaches to the transcriptome assembly problem. A reference-based

or genome-guided transcriptome assembly algorithm uses alignments of reads to the genome

that are produced by a specialized spliced-alignment tool, such as TopHat2 (ref. 19) or

GSNAP20, to identify clusters of reads that represent potential transcripts. It then builds

transcript assemblies from these alignments. If paired-end reads are available, they improve

the ability of the assembler to link together exons belonging to the same transcript. A de

Pertea et al. Page 2

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

novo assembly approach does not need a reference genome and can, in theory, reconstruct

transcripts even from regions that are missing from a reference. This second approach is

technically more difficult because the presence of multicopy gene families, large variations

in expression levels and large numbers of alternatively spliced variants make assembly very

challenging without a reference genome. Owing to these factors, de novo transcriptome

assembly is generally less accurate than genome-guided assembly, and de novo methods are

primarily used for RNA-seq data sets from organisms that lack a sequenced genome21.

StringTie uses a genome-guided transcriptome assembly approach along with concepts from

de novo genome assembly to improve transcript assembly. Specifically, the inputs to

StringTie can include not only spliced read alignments, but also the alignments of contigs

that StringTie pre-assembles from read pairs. For clarity, we use the name StringTie+SR to

describe results that use both types of input data.

Using a mapping of reads to the reference genome, genome-guided transcript assemblers

cluster the reads and build graph models representing all possible isoforms for each gene.

One such model is a splice graph, in which nodes represent exons or parts of exons, and

paths through the graph represent possible splice variants (Supplementary Fig. 1).

Cufflinks13, which is the most widely used transcript assembler, uses an overlap graph, in

which the sequenced fragments are nodes and two nodes are connected if they overlap and

have compatible splice patterns. Cufflinks and other transcriptome assembly programs, such

as Scripture12, IsoLasso15, SLIDE14 and iReckon16, use various criteria to parse these

graphs. Cufflinks uses a parsimony-based algorithm that generates the minimal number of

transcripts that will explain all reads in the graph. Although the parsimony principle is

appealing, it does not consider transcript abundance, and it may not reconstruct the correct

set of isoforms, as illustrated in Supplementary Figure 2. Obviously, if the wrong transcripts

are generated, then their expression levels cannot be correct.

Rather than finding a minimal set of transcripts and then estimating their expression levels

separately as Cufflinks does, StringTie assembles transcripts and estimates their expression

levels simultaneously. StringTie first groups the reads into clusters, then creates a splice

graph for each cluster from which it identifies transcripts, and then for each transcript it

creates a separate flow network to estimate its expression level using a maximum flow

algorithm.

The maximum flow problem is a well-studied problem in optimization theory, but until now

it has not been used to solve the transcript quantification problem. A flow network is

currently used for transcriptome assembly and quantification by only one other method,

Traph17 (note, Traph uses a fundamentally different flow network formulation; for example,

it solves a minimum rather than maximum flow problem; see Supplementary Discussion for

details). Figure 1 illustrates the main differences between StringTie, StringTie+SR,

Cufflinks and Traph.

Although StringTie can be run using known gene coordinates to guide the assembly process,

here we focus on how accurately it can assemble and quantify transcripts, regardless of

whether prior annotation is known. We evaluated StringTie when it was run without

Pertea et al. Page 3

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

annotation, and compared its performance with Cufflinks13, IsoLasso15, Scripture12 and

Traph17, which along with MITIE22 are the only transcriptome assemblers than can be run

without annotation. We attempted to include MITIE, but excessive running time prevented

inclusion; after one month of computation, MITIE did not produce results for any of the data

sets included in this study. It is impossible to know with certainty which transcripts are

actually present in real data, so for initial comparisons of different assemblers we used

simulated data. Simulation allows us to evaluate how well each assembler captures both the

structure and the quantity of each gene and transcript, because the exact composition of a

simulated data set is known. We used Flux Simulator23 to generate 150 million 75-bp

paired-end reads, extracted from all RefSeq human transcripts as provided by the UCSC

Genome Browser24. Limitations of simulated data include an imperfect ability to model

sample preparation protocols and the distribution of reads across the genome25. Flux

Simulator tries to overcome these limitations by the use of parameterized models that

reproduce the common sources of systematic bias in each of the main steps in sample

preparation.

To test the ability of the different programs to assemble reads correctly in different

experimental setups, we simulated two data sets with different characteristics and different

read distributions. We generated the first data set (Sim-I) using the exact parameters

specified for a directional human RNA-seq protocol provided on the Flux Simulator web

page (http://sammeth.net/confluence/display/ SIM.) We generated a second data set (Sim-

II), in which we replaced the empirical fragment size distribution from Sim-I with a

parameterized normal N(250,20) distribution, because some transcriptome assemblers13

assume a normal distribution. Both data sets follow the default error model for reads and

incorporate the biases from common library preparations as modeled by Flux Simulator.

We mapped the simulated reads from each data set to the GRCh37/ hg19 human reference

genome using TopHat2 (ref. 19). The two resulting BAM alignment files were used as

inputs for StringTie, Cufflinks, Traph, Scripture and IsoLasso. We also assembled the paired

reads into “super-reads” using the MaSuRCA assembler26, which uses a k-mer index of all

reads to extend every read in both directions as long as this extension is unique. If two

paired reads were merged into the same super-read, we then aligned the full fragment to the

genome (as if it were one longer read). We include results from a separate run of StringTie,

denoted StringTie+SR, in which the input consists of a mixture of aligned super-read

fragments and alignments of unassembled reads.

To compute the accuracy of the transcriptome assemblers, we considered a transcript to be

correctly identified if its full intron chain was identified (i.e., all intron boundaries matched

exactly) and if the start of the first exon and the end of the last exon were <100 bp from the

actual start and end, respectively. We allowed this flexibility at the boundaries of the

transcript to reflect the drop-off in coverage that often occurs near the ends of transcripts,

and also the uncertainty (in the annotation) about the precise boundaries of the 3′ and 5′

UTR regions for many genes. We considered multi-exon transcripts to be correctly

assembled only if their strand was also correctly identified, and when strand-specific RNA-

seq data were used, we also required that single-exon transcripts were assigned to the correct

strand. The Cuffcompare program from the Cufflinks package uses the same matching

Pertea et al. Page 4

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sammeth.net/confluence/display/

criteria to label correctly assembled transcripts. If the read data only partially covered a

transcript (making it impossible to identify the full transcript from the input data alone), then

we considered the corresponding prediction to be correct if all partially covered parts of the

transcript were identified.

For example, the annotated transcript T had relatively few reads covering it (Fig. 1b). These

reads covered only the exons and partial exons shown as fragments F1 and F2. We

considered T to be correctly identified if a program’s output contained those two fragments.

We defined the sensitivity of a program as the number of transcripts that are identified

correctly out of all the ones that were expressed in the simulation experiment. We defined

the precision (or positive predictive value) of a program as the percentage of predicted

transcripts or transcript fragments (such as F1 and F2 in Fig. 1b) that matched the true

transcripts.

A comparison of StringTie, StringTie+SR, Cufflinks, Scripture, IsoLasso and Traph on the

two simulated data sets is shown in Figure 2. All programs had the same input, except for

StringTie+SR, which used the assembled super-reads as described above. Note that

Scripture had very low precision on both data sets because it tends to predict a far larger

number of splice variants for each gene than the other methods. On Sim-I, StringTie+SR

found 20% more true transcripts than the next-best programs, with 34% fewer false

positives. Not surprisingly, StringTie’s improvement is much higher on Sim-I than on the

cleaner Sim-II data set, where the fragment sizes followed a distribution that matched the

built-in assumptions of Cufflinks. Cufflinks in particular performed far better on Sim-II

compared with Sim-I, with sensitivity and precision just slightly below StringTie. All other

programs, however, were substantially lower than StringTie for both precision and

sensitivity on both data sets.

In principle, the other programs can also be provided with the aligned super-reads as input,

as done for StringTie+SR. We tried this strategy with Cufflinks (the best assembler other

than StringTie), and both its sensitivity and precision declined substantially on Sim-I,

whereas on Sim-II it made only marginal improvements (results not shown). By contrast,

StringTie+SR performed better than StringTie alone on both data sets, though only by a

small amount. The limited improvement is a consequence of the fact that the assembled

super-reads used here simply filled in the gap between a pair of reads.

The accuracies shown in Figure 2a represent all transcripts, including those that were only

partially covered by reads. We looked at how well the assemblers did for those transcripts

that were fully covered by reads, that is, transcripts present at relatively higher levels in a

given sample (Fig. 2b). Figure 2b and Supplementary Table 1 present the accuracy of all six

programs on these fully covered transcripts. Assembly accuracy was defined as above for

transcripts, and we introduce an analogous definition of gene-level accuracy; we considered

a gene to be correctly identified if at least one of its transcripts was correctly assembled.

Thus gene-level accuracy was always higher than transcript-level accuracy.

In most cases, the assemblers’ accuracies in Figure 2b followed the same ranking as in

Figure 2a, which included partially covered transcripts. StringTie+SR and StringTie

Pertea et al. Page 5

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

performed the best on both sensitivity and precision, followed by Cufflinks. For Sim-II,

StringTie+SR showed an increase of more than 5% over Cufflinks in both sensitivity and

precision. On Sim-I this increase was more than twice as great on both measures. On both

data sets, StringTie and StringTie+SR predicted at least one transcript perfectly matching the

annotation for over 80% of the genes.

It is worth noting that Cufflinks is designed to eliminate isoforms expressed at very low

levels, on the assumption that those isoforms may be incompletely spliced precursors or

other artifacts. By default, the Cufflinks threshold for filtering out low-abundance transcripts

is set to 10% of the most abundant isoform (computed separately for each gene). We tried

lowering this threshold for Sim-I and Sim-II, which slightly increased Cufflinks’ sensitivity

while reducing its precision by a comparable amount. Like Cufflinks, StringTie was also

designed to eliminate assembled transcripts with very low levels of expression. Figure 2a,b

shows StringTie’s accuracy when this filtering threshold was set to 10%, the same level as

used by Cufflinks. Interestingly, lowering the threshold to 5% for StringTie still yielded

better sensitivity and precision than Cufflinks yielded at the 10% threshold (Supplementary

Figs. 3 and 4). All other results presented here use the 10% filter for both Cufflinks and

StringTie (Supplementary Discussion and Supplementary Fig. 5).

Assembly of reads reproduces the exon-intron structure of genes, but we also need to

estimate how much of each transcript was present in the original cells. To evaluate the

transcript quantification performance of each program, we compared the estimated

expression with the known amounts of each transcript in the simulated data. Quantification

is measured by the number of pairs of reads (“fragments” where one or both ends of a

fragment are sequenced), which are normalized based on the total number of fragments

sequenced (measured in millions) and by the length of the transcript (measured in

kilobases), giving an estimate measured as fragments per kilobase of transcript per million

fragments (FPKM). With the exception of Scripture, all programs tested here use FPKM

values to estimate transcript abundances. StringTie also reports a read per base coverage for

each exon of a predicted transcript. Scripture produces RPKM values, which count reads

instead of fragments. As has been pointed out previously13, FPKM is preferable to RPKM in

the case of paired-end RNA-seq experiments, where in some cases one of the two reads

belonging to a fragment might be unmapped, possibly leading to underestimates of

expression. We obtained very similar results whether using FPKM or RPKM values

(Supplementary Table 2).

We computed the Spearman correlation coefficient between the true and estimated

expression levels for each set of transcripts. Specifically, we compared the expression level

of each predicted transcript with the true transcript that it matched. The Spearman

correlation first converts all values to ranks; that is, the FPKM values f1, f2, f3, … from

largest to smallest are converted to rank values 1, 2, 3, …, and these ranks are then

correlated to compare each method’s predictions with the true ranks. We found similar

results using Pearson correlation coefficients (Supplementary Table 3) with a log-

transformed version of abundances, that is, log2(x + 1), to prevent the correlation values

from being dominated by the most abundant transcripts and to avoid problems with zero

abundance counts.

Pertea et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Because the predicted transcripts do not always match the true transcripts, we compared the

quantification values as follows. First, if a predicted transcript P failed to match any true

expressed transcript, than we matched P with a transcript that had an expression level of

zero. Second, if a true transcript T was not covered (even in part) by any prediction, then we

matched T with a prediction that had an expression level of zero. If multiple predicted

transcripts (transfrags) were contained within a single true transcript, then we summed all

the reads assigned to the predicted transfrags and correlated this sum with the expression

level of the true transcript. Table 1 shows the correlations between true and predicted

expression levels for StringTie and the four other transcriptome assemblers tested in this

paper.

StringTie+SR and StringTie had similar performance, and both were substantially better

than Cufflinks (Table 1). Traph and IsoLasso performed far worse, and Scripture’s

expression levels consistently had a negative correlation with the true values. Scripture’s

negative correlation values are a result of its strategy of predicting far more transcripts than

are present in the actual data. (For example, on the Sim-II data, Scripture produced ~60

times as many incorrectly assembled transcripts as StringTie. Scripture’s estimated RPKM

values for these incorrectly assembled transcripts were also much higher than the estimated

FPKM values of the other assemblers; for details see Supplementary Table 4.) All programs

performed better when considering only the genes they predicted, ignoring genes that were

present but that they failed to predict (Table 1,ρpredicted versus ρall). However, the trends for

these genes remained the same, with StringTie well ahead of Cufflinks, and the other

programs far behind (Supplementary Discussion and Supplementary Figs. 6 and 7).

Real data provide a better test of each program’s performance because they have properties

that are not accurately captured by simulations. Repetitive regions in the human genome,

wide variance in GC content, isoform length and alternative splicing complexity are all

factors that influence performance27. However, we have no way of knowing, for real data

sets, precisely what genes and isoforms were expressed nor do we know their expression

levels. Nonetheless, we do have several well-curated sets of human genes, for which the

exon-intron structure has been evaluated and validated in multiple experiments. If a

predicted transcript matches one of these ‘known’ genes from end to end, then it is

reasonable to infer that the gene was indeed present in the real data, although its expression

level remains uncertain. Therefore, for our experiments on real data sets, we focused on

measuring how many of these well-curated genes were correctly predicted. We evaluated

each transcriptome assemblers’ predictions against a merged collection of all annotated

protein coding and noncoding genes (Online Methods).

Our real data included three human RNA-seq data sets from the ENCODE project28, all of

them strand-specific, and one unstranded RNA-seq data set that we generated for this study

using nuclear RNA from a human kidney cell line. We downloaded the ENCODE data sets

from the UCSC genome browser (http://genome.ucsc.edu/cgi-bin/hgFileUi?

db=hg19&g=wgEncodeCshlLongRnaSeq), and we chose them to represent three different

tissues: whole B cells in blood (GEO accession GSM981256), the cytosol of fetal lung

fibroblasts (GSM981244) and CD14-positive monocytes (GSM984609). These samples

contained 90 million 76-bp paired-end reads, 145 million 101-bp paired-end reads and 120

Pertea et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeCshlLongRnaSeq
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeCshlLongRnaSeq

million 76-bp paired-end reads, respectively. For our own data set, we used an RNA-seq

library, prepared with the standard unstranded Illumina TruSeq method and sequenced to

yield ~180 million 100-bp paired-end reads with an average fragment length of 177 bp. We

mapped reads using TopHat2, and assembled super-reads using MaSuRCA. Aligned paired

reads outputted by TopHat2 were provided to StringTie, Cufflinks, Scripture, IsoLasso and

Traph. For StringTie+SR, reconstructed fragments from super-reads assembled by

MaSuRCA were aligned by TopHat2 and provided as additional input. Note that Traph

would not run on any of these data sets and was not included in the results below.

Many of the transcripts produced by the various assemblers did not match any annotated

genes. Supplementary Table 5 shows the total number of transcripts predicted by each

transcriptome assembler. Because these were real data, we could not determine which if any

of these were false-positive predictions, both because the annotation databases were

incomplete and because we did not know which genes were truly present in the sample.

Nevertheless, we can evaluate sensitivity for known genes. If we counted all predictions not

matching the annotation as false positives, then all methods would be equally penalized for

excessive gene predictions. Using this approach, StringTie had substantially greater

sensitivity than all competing methods at detecting genes in the current human genome

annotation (Fig. 3). It obtained this relatively high sensitivity while at the same time having

a lower apparent false-positive rate (i.e., better precision) than Cufflinks, which was the

next-best assembler on all four real data sets.

As in the simulation experiment, we considered a gene to be identified correctly if the

assembler predicted the correct intron chain for at least one isoform. Overall, StringTie+SR

and StringTie performed very similarly, and both outperformed all other programs on all

four data sets, as measured both by sensitivity and precision at identifying annotated

transcripts. Figure 3 shows the accuracy of the various programs on fully covered

transcripts; these were transcripts for which all internal exons were fully covered by reads in

the input alignment, and each intron had at least one spliced read aligned across it. (See

Supplementary Table 6 for the exact number of fully covered transcripts in each data set.)

Because many overlapping splice variants are present at most loci, the number of transcripts

covered by reads is less than the number actually present in the sample. This explains the

low absolute sensitivity for all programs at the transcript level.

Table 1 shows the number of correctly identified genes and transcripts by the programs

tested on all four real data sets. StringTie+SR correctly predicted 27% more genes than were

predicted by the next most sensitive program. Compared with Cufflinks, StringTie+SR and

StringTie predicted 48% and 44% more known transcripts, on average, in these four data

sets. Notably, on the blood data set StringTie+SR predicted 60% more transcripts than

Cufflinks (11,489 versus 7,187, an increase of 4,302). All programs were run using their

default parameters. Changing these parameters tended to increase sensitivity while lowering

precision, although in some cases we were able to obtain a slightly better accuracy

(Supplementary Table 7). However, the improvements in accuracy were not consistent

across all four data sets when using the same set of parameters, and they were never close to

the levels achieved by StringTie.

Pertea et al. Page 8

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Table 1 also shows that on all four data sets, Scripture produced almost as many transcripts

(though fewer genes) matching the annotation as StringTie+SR. As reflected by Scripture’s

performance on the simulated data, this sensitivity at the transcript level derived from its

strategy of predicting a near-exhaustive list of all possible splice variants for a given gene.

This is reflected in the statistic that whereas the other programs assembled an average of

1.6–2.0 transcripts per locus, Scripture predicted an average of 21.6 transcripts per locus

across the four real data sets.

StringTie and StringTie+SR took less than 30 min to complete on the two sets of simulated

data, whereas the other four programs took between 81 min (Cufflinks) and 48 h (Traph).

On the real data sets, StringTie required from 35–76 min and was more than three times

faster than the fastest of the other four programs, and in some cases over 50 times faster.

Wall clock and CPU times for all assemblers on all data sets are shown in Supplementary

Tables 8 and 9, respectively.

All of the transcriptome assemblers have a large memory footprint. These memory

requirements are usually unavoidable for transcrip-tome assembly owing to the vast amount

of RNA-seq data that need to be processed in memory at once. For example, in highly

expressed transcripts, the bundle of reads that come from the same gene locus can easily

total over 2 million reads. To store and analyze these reads requires alignment start and end

positions, positions of mismatches and indels, strand information and mate pair information.

On the four real data sets used here, the maximum memory used by StringTie varied

between 1.6 gigabytes (GB) and 12 GB. Cufflinks, IsoLasso and Scripture had memory

requirements ranging from 6.4 to 26.6 GB on the same data (Supplementary Table 10).

It is feasible that StringTie was superior to Cufflinks because it did a better job at identifying

the dominant transcript for a gene locus. Alternatively, it might have had an advantage on

genes with larger numbers of exons or genes with more isoforms. To tease apart these

hypotheses, we analyzed the genes that were found by StringTie but not by Cufflinks, and

vice versa, on all four of the real data sets. Approximately 70% of the transcripts correctly

identified by Cufflinks were also found by StringTie (Supplementary Table 11). Cufflinks

found an average of ~2,000 transcripts that StringTie missed, whereas StringTie assembled

~5,000–8,400 transcripts that Cufflinks missed. On all data sets, the transcripts found

uniquely by StringTie had a significantly higher number of exons than the ones uniquely

identified by Cufflinks (two-sample t-test, P < 4.6 × 10−9 on all four data sets;

Supplementary Fig. 8). The StringTie-only transcripts also tended to be expressed at lower

levels (Supplementary Fig. 9). We also looked at genes for which either StringTie or

Cufflinks identified at least one correct isoform. Among these, StringTie had a higher

proportion of genes with three or more correctly assembled isoforms (Supplementary Fig.

10). Thus, StringTie was better at reconstructing at least three types of genes: (i) those at

low abundance; (ii) those with more exons and (iii) those with multiple isoforms.

StringTie uses a network flow algorithm to assemble and quantify RNA-seq reads.

Compared with other leading methods on both simulated and real data, StringTie was

substantially more accurate at both assembly and quantitation of gene transcripts, recovering

more expressed transcripts while demonstrating higher precision than the other programs.

Pertea et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The main reason for StringTie’s accuracy is the network flow algorithm. StringTie can also

use aligned de novo assembled fragments that combine pairs of reads into a longer sequence.

This optional preprocessing step provides a modest additional improvement in accuracy.

The main reason underlying the greater accuracy of StringTie most likely derives from its

optimization criteria. By balancing the coverage (or flow) of each transcript across each

assembly, it incorporates depth of coverage constraints into the assembly algorithm itself.

When assembling a whole genome, coverage is a crucial parameter that must be used to

constrain the algorithm; otherwise an assembler may incorrectly collapse repetitive

sequences. Similarly, when assembling a transcript, each exon within an isoform should

have similar coverage, and ignoring this parameter may produce sets of transcripts that are

parsimonious but wrong. Genes with a large number of splice variants are especially

difficult to reconstruct precisely (see Supplementary Fig. 11 for an example of a complex

multi-isoform gene showing that of those programs tested, StringTie assembled three of the

isoforms correctly, and none of the other programs captured any of the isoforms).

StringTie is a transcript assembler that uses the optimization technique of maximum flow in

a specially constructed flow network to determine gene expression levels, and does so while

simultaneously assembling each isoform of a gene. And unlike other transcript assemblers, it

incorporates alignment to both a genome and a de novo assembly of reads. We envisage that

users could replace Cufflinks with StringTie in most RNA-seq analysis pipelines and expect

substantial improvements in transcript assembly coupled with faster performance.

ONLINE METHODS

RNA-seq library preparation and sequencing

Nuclear RNA was prepared from HEK293T (kidney) cells. Briefly, cells were lysed on ice

for 5 min in 10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and

nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA isolation

using the miRNeasy kit according to the manufacturer’s instructions (Qiagen). The RNA-

seq library was created using the Illumina TruSeq RNA Sample Preparation Kit v2 with the

standard protocol, and sequenced on one lane of the HiSeq 2000 platform (100 bp, paired-

end). Data are available at NCBI as accession number SRP041943. The database of

annotated protein coding and noncoding genes (41,409 genes and 171,904 transcripts in

total) was produced by merging all annotated genes from the RefSeq database29, the UCSC

Browser24 and the Ensembl database30.

Identification and quantification of transcripts

StringTie’s approach to reconstructing the transcriptome is depicted in Figure 1 and, in more

detail, in Supplementary Figure 12. The initial step is similar to other reference-based

transcriptome assemblers, in the sense that it relies on the output of a specialized spliced-

alignment program. However, StringTie incorporates several key innovations, notably (i) a

network flow algorithm to reconstruct transcripts and quantitate them simultaneously; and

(ii) the capacity to include longer assembled reads, representing the full fragments from

which the initial paired-end reads were sequenced.

Pertea et al. Page 10

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To reconstruct the fragments from their end sequences, we use a de novo assembly

algorithm that creates “super-reads.” Using the super-read software from the MaSuRCA

genome assembler28, we extend every read in both directions as long as this extension is

unique. We then identify pairs of reads that belong to the same super-read and extract the

sequence containing the pair plus the sequence between them; that is, the entire sequence of

the original DNA fragment. Thus, for example, if the original RNA-seq data comprised

paired 100-bp reads from a 300-bp fragment library, these steps will convert many of those

pairs into single, 300-bp super-reads. We then map the super-reads to the reference genome.

Note that the true super-read might be much longer than the fragment, but we currently limit

StringTie to the fragment length. This restriction allows us to treat super-reads as single

reads in the algorithm, and therefore no special adjustment is required to evaluate their

contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence is nonrepetitive,

as coding sequences tend to be, we usually can reconstruct fragments even if they span

multiple exons. Second, more of the longer sequences will map unambiguously to the

genome, simplifying the assembling of transcripts. We have designed StringTie to be run on

any input BAM file, regardless of whether it contains aligned read pairs or a combination of

these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next builds an

alternative splice graph (ASG) at each gene locus from all overlapping reads at that locus.

Note that if more than a certain percentage of the reads (by default 95%) aligned in a gene

locus are multi-mapped, then StringTie will skip processing that locus. The ASG captures all

possible transcripts that are consistent with the mapped reads15,17, where nodes in the graph

correspond to contiguous regions of the genome that are uninterrupted by any spliced read

alignment, and directed edges correspond to reads that align across two such nodes in the

correct 5′ to 3′ order. Note that the nodes do not necessarily correspond to whole exons in

the transcripts; they may be only partial exons, as illustrated by node 4 in Supplementary

Figure 12 (see also node 1 in Supplementary Fig. 1). We add a source and a sink (nodes s

and t) to the ASG so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps (steps 4 and 5 in

Supplementary Fig. 12):

1. First it searches for the heaviest path, defined as the path with the highest “path-

compatible” read per base coverage, from source to sink. Once a potential heaviest

path is found, this path will constitute an assembled transcript predicted by

StringTie.

2. Second, StringTie estimates the coverage level of the transcript by solving a

maximum-flow problem that determines the maximum number of fragments that

can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie removes the

fragments that contributed to it, and updates the per-base read coverage in the ASG.

Pertea et al. Page 11

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

StringTie ends the iteration through the two steps above when the coverage of the heaviest

path in the ASG drops below some fixed threshold (by default, set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts at the node

with the highest coverage (measured as average reads per base) and then extends the path

first to the source and then to the sink by choosing the adjacent node with the highest

number of compatible fragments with the path built so far. Note that an adjacent node might

have a higher coverage then the one chosen to extend the path, but it will not be chosen if

the fragments covering that node are not be compatible with the path chosen up to that point.

Because every node in the splice graph is consulted at most once, our algorithm for finding

the heaviest path has a running time complexity of O(n), where n represents the number of

nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although no coverage is

yet associated with it. Although we employ a heuristic approach to identify a transcript from

the ASG, determining its coverage is essential to finding the set of all paths that represent

expressed transcripts. To determine the coverage of a transcript, StringTie uses a flow

network design that we formally describe next.

Basic definitions

Formally, a network is defined to be any finite collection of points, called nodes, together

with a collection of directed edges (or arcs) that connect particular pairs of these nodes. By

convention, we do not allow an arc to connect a node to itself, but we do allow more than

one arc to connect the same two nodes. We will be concerned only with connected networks

in the sense that every node can be reached from every other node by following a sequence

of arcs, where the direction of the arcs is ignored. In linear programming, if a network is

disconnected, then the problem it describes can be treated as a number of separate problems,

one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its vertices representing

network nodes, and arcs representing the (existing or possible) connections between nodes.

Mathematically, a flow network is defined as a quadruple N = (G, s, t, c), where G = (V, E),

with E ⊆ V × V, is a directed graph with a set of vertices V and a set of directed edges E, s ∈

V and t ∈ V are the source and the sink of the network, respectively, and c : E →R+ is a

function that associates a positive capacity to each edge in the graph. We say that a function

f : E →R+ is a flow over the network N if the following two conditions are satisfied:

1. 0 ≤ f((u, v)) ≤ c ((u, v)), for every (u, v)∈E,

2. Σ(u, v) ∈E f((u, v)) = Σ(v, u) ∈E f((v, u)), for every v∈V, v ≠ s, t.

The value of the flow is the quantity ||f|| = Σ(s, v) ∈E f((s, v)). It is not hard to show that ||f|| =

Σ(v, t) ∈E f((v, t)). The maximum flow problem is to find a flow f with maximum value in N.

Condition 1 above can be extended such that a lower bound can be required for the flow

going through an edge:

Pertea et al. Page 12

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In other words, we want to require that only some edges with capacities larger than le be

used. It has been shown in the literature that this problem can be reduced to a standard

maximum flow problem31. The maximum flow problem is a well-studied problem in the

field of optimization theory and can be solved in strong polynomial time, with

O(VElog(V2/E) complexity, where V and E represent the number of nodes and edges,

respectively32.

As described above, in traditional flow networks there is an implicit assumption that flow is

conserved on every edge; i.e., if fuv units flow into an edge (u, v)∈E at node u, then exactly

the same fuv units will reach node v. Many practical applications violate this conservation

assumption. For example, we can imagine a water distribution network model as a flow

network, where if some quantity of water is shipped across an open canal linking two nodes,

some is lost due to evaporation and seepage during transit, and the amount reaching the

destination will only be a fraction of the amount that left the origin. These cases can be still

modeled with a flow network where we associate a positive multiplier puv associated with

edge (u, v)∈E such that if a packet of fuv units of flow enter node u, then by the time it

reaches node v, the packet contains puv fuv units of flow. If 0 < puv < 1, edge (u, v) is said to

be lossy, and if 1 < puv < ∞ is said to be gainy. In the flow network presented above puv = 1

for all edges (u, v)∈E. If puv ≠ 1 for at least one edge, the flow network is called a

generalized flow network, or a flow network with multipliers. Just as in the standard

maximum flow problem, in the generalized maximum flow problem, the goal is to send as

much flow as possible between two nodes, subject to the edge capacity constraints. Also,

flow can be ‘lost’ or ‘gained’ as it is sent through the network. The maximum generalized

flow problem is a special case of linear programming, and it can be solved by general-

purpose linear programming techniques such as the primal simplex method33. Several

combinatorial methods that solve the program in polynomial time are also described in the

literature34.

Flow network design in StringTie

StringTie uses the generalized flow network concept introduced above to compute the

coverage associated with a transcript path in the ASG. We start building the network by first

creating nodes corresponding to all the nodes in the ASG. We then connect any two nodes

by an edge if an alignment mapping (of a super-read, or of an unassem-bled pair of reads)

starts at one node and ends at the other (Supplementary Fig. 13). The number of such

alignments determines the capacity of an edge. More specifically, if a fragment aligns in n

places, than that fragment alignment will contribute 1/n to the edge capacity. We then split

the nodes in the flow network into two nodes each, as follows. For each node v in the ASG,

with the exception of the source and sink, we introduce nodes vin and vout that “enter” and

“exit”, respectively, the initial ASG node. We connect these two nodes with a new edge, and

we set the capacity of that edge equal to the number of fragments that align to the initial

node in the ASG. We also associate with this edge a multiplier that controls the biased

distribution of fragments aligning to any given node in the ASG. Such biases are often

encountered in the reads produced by next-generation sequencing technologies; for example,

it is common to observe more reads near the 3′ end of a transcript than the 5′ end.

Pertea et al. Page 13

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Special care needs to be taken to make the distribution of sequencing reads more uniform25.

In StringTie we attempt to reduce this coverage bias by normalizing the distribution of reads

entering and exiting a node in the ASG. Formally, for each edge connecting a pair of nodes

vin and vout in the network, we associate the following multiplier, or bias factor:

(1)

where fxy is a fragment starting at node x and ending at node y, and w(fxy) represents the

weight associated with the fragment fxy. Similarly to Cufflinks, we define w(fxy) =1/n, where

n represents the number of fragment fxy mappings. Note that in the case of paired-end reads,

the sequence of the fragment fxy may not be completely known, but the two paired reads

clearly define the nodes x and y. Practically, the bias bv ensures that the proportion of

fragments fuv associated with a transcript path in the ASG is equal to the proportion of

fragments fvu that correspond to the same transcript.

With the exception of the edges connecting an ‘entering’ and an ‘exiting’ node, all the edges

have multipliers equal to 1. Supplementary Figure 13 shows an example of the flow network

associated with the transcript containing nodes 1, 3 and 5 in the ASG depicted in

Supplementary Figure 12. Note that the edge connecting nodes 1out and 5in is not present in

the ASG, because there is no splice variant that skips exon 3 and connects exons 1 and 5

directly. However, we add this edge to the flow network to account for the fragment that

starts and ends at nodes 1 and 5 in the ASG.

The intuition behind this flow network design is that StringTie tries to stitch compatible

fragments together that will explain a maximal number of reads for the underlying transcript

path. In our implementation, two fragments (single reads or pairs of reads) are considered to

be compatible if one fragment starts in the same node as the other one ends. The maximum

flow in this network, where the flow follows the bias factor restrictions imposed by equation

(1) above, represents the expression level associated with the predicted transcript. As

discussed above, the generalized maximum flow problem can be solved efficiently in

polynomial time. In contrast, Cufflinks formulates abundance estimation as an expectation-

maximization (E-M) computation, which cannot be solved in polynomial time. In

Supplementary Software 1 we provide pseudocode that introduces the bias factors in the

classical breadth-first search implementation of the maximum flow algorithm.

StringTie is implemented in C++ and is freely available as open source software at http://

ccb.jhu.edu/software/stringtie (also see Supplementary Software 1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

These studies were supported in part by US National Institutes of Health grants R01-HG006677 (S.L.S.), R01-
HG006102 (S.L.S.), R01-GM105705 (G.M.P.), R01-CA120185 (J.T.M.), P01-CA134292 (J.T.M.), and the Cancer
Prevention and Research Institute of Texas (J.T.M.).

Pertea et al. Page 14

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ccb.jhu.edu/software/stringtie
http://ccb.jhu.edu/software/stringtie

References

1. Blencowe BJ. Alternative splicing: new insights from global analyses. Cell. 2006; 126:37–47.
[PubMed: 16839875]

2. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;
136:629–641. [PubMed: 19239885]

3. Wang ET, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;
456:470–476. [PubMed: 18978772]

4. Cabili MN, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global
properties and specific subclasses. Genes Dev. 2011; 25:1915–1927. [PubMed: 21890647]

5. Salzberg SL. Recent advances in RNA sequence analysis. F1000 Biol Rep. 2010; 2:64. [PubMed:
21173855]

6. Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome
annotation and quantification using RNA-seq. Nat Methods. 2011; 8:469–477. [PubMed:
21623353]

7. Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference
genome. Nat Biotechnol. 2011; 29:644–652. [PubMed: 21572440]

8. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across
the dynamic range of expression levels. Bioinformatics. 2012; 28:1086–1092. [PubMed: 22368243]

9. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a
reference genome. BMC Bioinformatics. 2011; 12:323. [PubMed: 21816040]

10. Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing
experiments. Nat Methods. 2013; 10:71–73. [PubMed: 23160280]

11. Feng J, Li W, Jiang T. Inference of isoforms from short sequence reads. J Comput Biol. 2011;
18:305–321. [PubMed: 21385036]

12. Guttman M, et al. Ab initioreconstruction of cell type-specific transcriptomes in mouse reveals the
conserved multi-exonic structure of lincRNAs. Nat Biotechnol. 2010; 28:503–510. [PubMed:
20436462]

13. Trapnell C, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010; 28:511–515.
[PubMed: 20436464]

14. Li JJ, Jiang CR, Brown JB, Huang H, Bickel PJ. Sparse linear modeling of next-generation mRNA
sequencing (RNA-Seq) data for isoform discovery and abundance estimation. Proc Natl Acad Sci
USA. 2011; 108:19867–19872. [PubMed: 22135461]

15. Li W, Feng J, Jiang T. IsoLasso: a LASSO regression approach to RNA-Seq based transcriptome
assembly. J Comput Biol. 2011; 18:1693–1707. [PubMed: 21951053]

16. Mezlini AM, et al. iReckon: simultaneous isoform discovery and abundance estimation from RNA-
seq data. Genome Res. 2013; 23:519–529. [PubMed: 23204306]

17. Tomescu AI, Kuosmanen A, Rizzi R, Makinen V. A novel min-cost flow method for estimating
transcript expression with RNA-Seq. BMC Bioinformatics. 2013; 14(suppl. 5):S15. [PubMed:
23734627]

18. Steijger T, et al. Assessment of transcript reconstruction methods for RNA-seq. Nat Methods.
2013; 10:1177–1184. [PubMed: 24185837]

19. Kim D, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biol. 2013; 14:R36. [PubMed: 23618408]

20. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads.
Bioinformatics. 2010; 26:873–881. [PubMed: 20147302]

21. Zhao QY, et al. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a
comparative study. BMC Bioinformatics. 2011; 12(suppl. 14):S2.

22. Behr J, et al. MITIE: simultaneous RNA-Seq-based transcript identification and quantification in
multiple samples. Bioinformatics. 2013; 29:2529–2538. [PubMed: 23980025]

23. Griebel T, et al. Modelling and simulating generic RNA-Seq experiments with the flux simulator.
Nucleic Acids Res. 2012; 40:10073–10083. [PubMed: 22962361]

Pertea et al. Page 15

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

24. Karolchik D, et al. The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 2014;
42:D764–D770. [PubMed: 24270787]

25. Hansen KD, Brenner SE, Dudoit S. Biases in Illumina transcriptome sequencing caused by random
hexamer priming. Nucleic Acids Res. 2010; 38:e131. [PubMed: 20395217]

26. Zimin AV, et al. The MaSuRCA genome assembler. Bioinformatics. 2013; 29:2669–2677.
[PubMed: 23990416]

27. Rehrauer H, Opitz L, Tan G, Sieverling L, Schlapbach R. Blind spots of quantitative RNA-seq: the
limits for assessing abundance, differential expression, and isoform switching. BMC
Bioinformatics. 2013; 14:370. [PubMed: 24365034]

28. Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome.
Nature. 2012; 489:57–74. [PubMed: 22955616]

29. Pruitt KD, Tatusova T, Klimke W, Maglott DR. NCBI Reference Sequences: current status, policy
and new initiatives. Nucleic Acids Res. 2009; 37:D32–D36. [PubMed: 18927115]

30. Flicek P, et al. Ensembl 2014. Nucleic Acids Res. 2014; 42:D749–D755. [PubMed: 24316576]

31. Ford, L.; Fulkerson, D. Flows in Networks. Princeton University Press; Princeton, NJ: 1962.

32. Goldberg A, Tarjan R. A new approach to the maximum-flow problem. JACM. 1988; 35:921–940.

33. Dantzig, G. Linear Programming and Extensions. Princeton University Press; Princeton, NJ: 1962.

34. Goldberg A, Plotkin S, Tardos E. Combinatorial algorithms for the generalized circulation
problem. Math Oper Res. 1991; 16:351–381.

Pertea et al. Page 16

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Transcript assembly pipelines for StringTie, Cufflinks and Traph. (a) Overview of the flow

of the StringTie algorithm, compared to Cufflinks and Traph. All methods begin with a set

of RNA-seq reads that have been mapped to the genome. An optional secondary input to

StringTie is a set of pre-assembled super-reads, designated as StringTie+SR. StringTie

iteratively extracts the heaviest path from a splice graph, constructs a flow network,

computes maximum flow to estimate abundance, and then updates the splice graph by

removing reads that were assigned by the flow algorithm. This process repeats until all reads

have been assigned. (b) Annotated transcript T for which read data covers only the

fragments F1 and F2. An assembler is given credit for a correct reconstruction of T if it

correctly assembles F1 and F2.

Pertea et al. Page 17

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Transcriptome assemblers’ accuracies in detecting expressed transcripts from two simulated

RNA-seq data sets. (a) Transcriptome assemblers’ accuracies in detecting expressed

transcripts from two simulated RNA-seq data sets. In data set Sim-I (left), the fragment sizes

follow an empirical distribution based on Illumina sequences, and in Sim-II (right) the

fragment sizes follow a parameterized normal distribution. StringTie+SR pre-assembles the

reads into super-reads when possible. (b) Accuracy of transcriptome assemblers on gene loci

from the same two data sets, considering only those transcripts that were completely covered

by input reads. Scripture’s precision on Sim-I was 17.7%, below the 20% minimum shown

here.

Pertea et al. Page 18

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Accuracy of transcript assemblers at assembling known genes, measured on real data sets

from four different tissues. Known genes are defined as those annotated in either the

RefSeq, UCSC or Ensembl human gene databases. Gene level sensitivity (y axis) measures

the percentage of genes for which a program got at least one isoform correct, whereas

transcript sensitivity measures the percentage of known transcripts that were correctly

assembled. Precision (x axis) is measured as the percentage of all predicted genes

(transcripts) that match an annotated gene (transcript).

Pertea et al. Page 19

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pertea et al. Page 20

T
ab

le
 1

T
ra

ns
cr

ip
to

m
e

as
se

m
bl

er
s’

 p
er

fo
rm

an
ce

s
on

 s
im

ul
at

ed
 a

nd
 r

ea
l d

at
a

D
at

a
se

t
M

ea
su

re
St

ri
ng

T
ie

+S
R

St
ri

ng
T

ie
C

uf
fl

in
ks

T
ra

ph
Sc

ri
pt

ur
e

Is
oL

as
so

Si
m

-I
ρ a

ll
0.

64
8

0.
64

6
0.

55
1

0.
08

0
−

0.
36

1
0.

16
2

ρ p
re

di
ct

ed
0.

87
1

0.
87

8
0.

82
6

0.
43

2
−

0.
22

8
0.

50
0

Si
m

–I
I

ρ a
ll

0.
79

9
0.

78
7

0.
72

0
0.

31
0

−
0.

43
5

0.
00

0

ρ p
re

di
ct

ed
0.

91
3

0.
90

7
0.

88
3

0.
52

4
−

0.
30

1
0.

25
8

K
id

ne
y

G
en

es
10

,7
73

10
,6

59
7,

77
4

n/
a

7,
81

3
2,

78
5

T
ra

ns
cr

ip
ts

13
,9

00
13

,7
20

9,
24

5
n/

a
13

,8
33

3,
19

1

B
lo

od
G

en
es

9,
19

8
8,

93
8

6,
07

3
n/

a
6,

53
3

3,
52

6

T
ra

ns
cr

ip
ts

11
,4

89
10

,9
90

7,
18

7
n/

a
11

,2
13

4,
12

4

L
un

g
G

en
es

10
,9

13
10

,7
79

8,
56

6
n/

a
7,

07
0

3,
59

0

T
ra

ns
cr

ip
ts

14
,0

55
13

,7
06

10
,3

70
n/

a
12

,5
59

4,
18

7

M
on

oc
yt

es
G

en
es

9,
00

5
8,

85
9

6,
35

1
n/

a
6,

24
4

3,
02

0

T
ra

ns
cr

ip
ts

11
,0

59
10

,7
48

7,
50

2
n/

a
1,

10
46

3,
52

8

R
es

ul
ts

 o
n

si
m

ul
at

ed
 d

at
a

sh
ow

 th
e

Sp
ea

rm
an

 c
or

re
la

tio
n

co
ef

fi
ci

en
t b

et
w

ee
n

th
e

re
al

 a
nd

 p
re

di
ct

ed
 n

um
be

r
of

 r
ea

ds
 (

m
ea

su
re

d
by

 R
PK

M
 v

al
ue

s
fo

r
Sc

ri
pt

ur
e

an
d

FP
K

M
 v

al
ue

s
fo

r
al

l o
th

er
 p

ro
gr

am
s)

 f
or

ea

ch
 o

f
th

e
as

se
m

bl
er

s
co

ns
id

er
ed

 in
 th

is
 s

tu
dy

. R
ow

s
la

be
le

d
“ρ

al
l”

 in
cl

ud
e

al
l t

ru
e

an
d

pr
ed

ic
te

d
tr

an
sc

ri
pt

s.
 R

ow
s

la
be

le
d

“ρ
pr

ed
ic

te
d”

 in
cl

ud
e

al
l p

re
di

ct
io

ns
 b

ut
 e

xc
lu

de
 tr

ue
 tr

an
sc

ri
pt

s
th

at
 w

er
e

no
t

pr
ed

ic
te

d
by

 a
 g

iv
en

 p
ro

gr
am

. F
or

 th
e

fo
ur

 r
ea

l d
at

a
se

ts
, s

ho
w

n
ar

e
th

e
nu

m
be

r
of

 g
en

es
 a

nd
 tr

an
sc

ri
pt

s
ex

ac
tly

 m
at

ch
in

g
kn

ow
n

an
no

ta
tio

n.
 T

ra
ph

 w
as

 u
na

bl
e

to
 p

ro
ce

ss
 a

ny
 o

f
th

e
re

al
 d

at
a

se
ts

.

Nat Biotechnol. Author manuscript; available in PMC 2016 March 01.

