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Abstract

The complexity of gene expression control by non-coding RNA has been highlighted by the recent 

progress in the field of riboswitches. Discovered a decade ago, riboswitches represent a diverse 

group of non-coding mRNA regions that possess a unique ability to directly sense cellular 

metabolites and modulate gene expression through formation of alternative metabolite-free and 

metabolite-bound conformations. Such protein-free metabolite sensing domains utilize 

sophisticated three-dimensional folding of RNA molecules to discriminate between a cognate 

ligand from related compounds so that only the right ligand would trigger a genetic response. 

Given the variety of riboswitch ligands ranging from small cations to large coenzymes, 

riboswitches adopt a great diversity of structures. Although many riboswitches share structural 

principles to build metabolite-competent folds, form precise ligand-binding pockets, and 

communicate a ligand-binding event to downstream regulatory regions, virtually all riboswitch 

classes possess unique features for ligand recognition, even those tuned to recognize the same 

metabolites. Here we present an overview of the biochemical and structural research on 

riboswitches with a major focus on common principles and individual characteristics adopted by 

these regulatory RNA elements during evolution to specifically target small molecules and exert 

genetic responses.
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INTRODUCTION

The ability of RNA to fold into complex three-dimensional (3-D) structures was proven 

many years ago by determination of the X-ray structure of a tRNA molecule [1]. Although 

in the case of tRNA, the robust 3-D structure is formed with the help of several modified 

nucleotides, most other cellular RNA molecules adopt complex spatial folds using only four 

building blocks composed of similar nucleobases and identical sugars and phosphates. This 

sharply contrasts with proteins, which build their 3-D structures using twenty amino acids, 

each with a unique side chain. The large range of chemical properties of amino acids also 

makes proteins versatile binders of small molecules. Although tRNA was shown to interact 
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with naturally occurring polyamines [2], the ability of RNA to specifically bind other small 

organic molecules in the biologically relevant context was not demonstrated until the 

discovery of catalytic RNAs.

The discovery of ribozymes changed the perception of RNA molecules from inert aids, 

which carry genetic information and provide scaffolding and transporting functions, to more 

active participants, which independently or synergistically with proteins perform catalytic 

reactions in cells. One of the first discovered ribozymes [3], self-splicing group I introns, 

also recruit a guanosine cofactor and Mg2+ cations to play a pivotal role in the splicing 

reaction, suggesting that RNAs can specifically interact with small molecules. Later, 

Systematic Evolution of Ligands by Exponential Enrichment (SELEX) experiments revealed 

that recognition by RNA molecules is not restricted to nucleosides [4–6]. In vitro selected 

RNAs termed aptamers can bind strongly and specifically to chemical compounds with 

different properties, despite the presence of multiple negatively charged groups in RNA. 

These findings paved the road for the discovery of riboswitches [7–9], non-coding mRNA 

regions capable of specific binding to cellular metabolites. However, in contrast to the 

SELEX RNAs, riboswitches do not merely bind small molecules, interactions with these 

ligands also trigger modulation of expression of associated genes.

In addition to SELEX RNAs, several other breakthroughs and observations contributed to 

the discovery of riboswitches. An interplay between RNA conformations in the attenuator 

region as a means to control gene expression involving small molecules was first discovered 

in the Escherichia coli trp operon [10]. Later, RNA elements in the 5′-UTR of mRNAs 

encoding for aminoacyl tRNA genes were found to specifically bind non-aminoacylated 

tRNA molecules and activate transcription of the downstream genes [11]. These regulatory 

elements, coined T-boxes, share many features with metabolite-sensing riboswitches and 

represent, in essence, riboswitches specific to large ligands, uncharged tRNAs. Lastly, a 

number of laboratories reported feedback regulation of various operons in bacteria but failed 

to identify protein factors involved in the gene expression control (see references in [12]). 

These systems were later shown to be controlled by riboswitches.

A typical riboswitch, such as a guanosine-responding RNA (Fig. 1A) [13], consists of two 

regions, an evolutionarily conserved metabolite-binding or aptamer domain followed by a 

variable expression platform that carries gene expression signals such as a transcription 

terminator or a ribosome-binding site (RBS). A salient feature of riboswitches is their ability 

to fold into two alternative conformations in response to the absence or presence of a 

cognate ligand at the over-threshold concentration [14, 15]. Metabolite binding stabilizes a 

ligand-bound conformation of the metabolite sensor, thus impacting the folding of the 

downstream expression platform. In the absence of a cognate ligand, the metabolite-sensing 

domain does not form a stable structure and becomes engaged in alternative pairing with a 

region in the expression platform, resulting in a different conformation of the entire 

riboswitch. The two conformations of the riboswitch oppositely direct expression of the 

associated genes.

Despite a simple interplay between alternative conformations to exert gene expression 

control, riboswitches employ a large variety of mechanisms for gene regulation [16]. Here, 
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we will highlight the diverse mechanistic repertoire of riboswitches adopted for control of 

transcription, translation, splicing and mRNA degradation. We will also overview 

architectural principles used for building the riboswitch structures and will provide insights 

on molecular features employed by natural riboswitches for specific ligand recognition.

Diversity of riboswitch ligands and regulatory mechanisms

To date, riboswitches encompass more than a dozen classes and several subclasses that 

target a large range of cellular compounds [12, 17]. The most abundant and wide-spread 

riboswitches recognize coenzymes and related compounds: adenosylcobalamin (AdoCbl) 

[8], thiamine pyrophosphate (TPP) [7, 9], flavin mononucleotide (FMN) [7, 18], S-

adenosylmethionine (SAM) [19–26], S-adenosylhomocysteine (SAH) [27], tetrahydrofolate 

(THF) [28] and molybdenum/tungsten cofactors (Moco/Tuco) [29]. The second largest 

group combines purines and their derivatives [30, 31], such as adenine [32], guanine [13], 

pre-queuosine-1 (preQ1) [33, 34], deoxyguanosine (dG) [35], cyclic-di-GMP (c-di-GMP) 

[36, 37], and cyclic-di-AMP (c-di-AMP) [38]. A number of riboswitches respond to the 

amino acids lysine [39–41], glycine [42] and glutamine [43]. Riboswitches are also capable 

of sensing metal cations such as Mg2+ [44, 45] and the halide anion F− [46]. The 

phosphorylated sugar glucosamine-6-phosphate (GlcN6P) serves as the primary ligand for a 

special glmS riboswitch-ribozyme [47]. Given that there are also additional putative 

riboswitches that await independent confirmation and a large number of ‘orphan’ 

riboswitches [25, 48, 49], which lack identified ligands, the list of cellular metabolites 

triggering a riboswitch response will continue to grow.

Riboswitches are found in all three domains of life with the vast majority of examples 

identified across many bacterial species [50]. Most riboswitches are present in Gram-

positive bacteria, while several riboswitches appear to be species- or small-group-specific 

regulators [51]. Many riboswitches turn off expression of genes through a two-state 

feedback mechanism [14, 15] highlighted by a schematic in Fig. 1A. When in excess in the 

cell, a metabolite binds to and stabilizes a metabolite-sensing domain of a riboswitch, 

thereby inducing formation of a downstream hairpin that serves as a Rho-independent 

transcription terminator. The riboswitch therefore induces premature transcription 

termination of the downstream genes that are involved in metabolism, utilization or transport 

of the riboswitch ligand or related compounds. If a cognate metabolite is not present at the 

threshold concentration, the folding of a stable metabolite-sensing domain is disrupted and a 

segment of the riboswitch, often a region of the domain-closing helix P1, participates in 

alternative base pairing. Thus, instead of a transcription terminator, the riboswitch forms an 

anti-terminator hairpin that supports transcription of the downstream genes and biosynthesis 

of proteins. Many riboswitches use a similar mechanism to control translation initiation 

through sequestration of an RBS and an initiation codon within a hairpin formed by the 

expression platform. In several riboswitches, such as the SAM-II riboswitch [19, 52, 53], the 

sequestering hairpin is eliminated and the region carrying the RBS becomes an integral part 

of the ligand-bound metabolite-sensing domain. In this case, the ligand binding directly 

contributes to occluding the RBS and preventing translation initiation (Fig. 1B).
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A two-state switch mechanism is not the only option used by riboswitches to control gene 

expression. The adenine-sensing riboswitch from the thermophile Vibrio vulnificus can 

adopt three stable states, a ligand-bound conformation with an accessible RBS and two 

distinct ligand-free conformations, in which an RBS is sequestered by the formation of a 

hairpin [54]. One of the ligand-free conformations cannot interact with the ligand and 

requires conversion to a ligand-receptive form by a change in ambient temperature. The 

second riboswitch form, predisposed to ligand binding, interacts with adenine when the 

metabolite concentration exceeds a threshold, freeing the RBS for translation.

An unconventional mechanism has been proven for a glmS riboswitch-ribozyme, which 

cleaves the 5′-UTR off glmS mRNA using the bound metabolite as a reaction cofactor [47, 

55, 56]. The remaining portion of the mRNA has a 5′ hydroxylated RNA end susceptible to 

the 5′-to-3′-directional hydrolytic activity of RNase J [57]. Similarly, the lysine-sensing 

riboswitch from the E. coli lysC gene opens mRNA for degradation [58]. Upon lysine 

binding, the riboswitch adopts a conformation that not only inhibits translation initiation but 

also exposes RNase E cleavage sites located in the riboswitch expression platform. 

However, in the absence of lysine, the riboswitch folds into the alternative conformation that 

simultaneously allows translation initiation and sequesters RNase E cleavage sites [58].

Several bacterial riboswitches exploit other regulatory options. An FMN riboswitch does not 

form a Rho-independent transcription termination but instead employs Rho-dependent 

transcription termination [59]. Bacterial riboswitches generally operate through cis-acting 

control mechanisms, while two SAM-I riboswitches from Listeria monocytogenes, SreA and 

SreB, function in trans by binding to the 5′-UTR of prfA mRNA and inhibiting expression 

of a virulence regulator [60]. The vitamin B12 riboswitch from the same bacterium controls 

transcription of AspocR, an antisense RNA which in its full-length form inhibits expression 

of a transcription factor via direct interactions with its mRNA [61]. Some c-di-GMP 

riboswitches explore an even more complex regulatory approach [36]. These RNA elements 

are located adjacent to group I self-splicing introns such that c-di-GMP binding to its 

aptamer induces conformational changes that allows GTP to attack the intron’s 5′ splice site. 

The resulting self-excision of the intron brings two distantly located parts of the RBS 

together to reconstitute a full-length RBS for efficient translation of the open reading frame 

(ORF).

In contrast to bacterial riboswitches which commonly repress gene expression by 

terminating transcription or by blocking ribosome binding, eukaryotic riboswitches regulate 

gene expression by alternative splicing. Thus far, all known eukaryotic riboswitches respond 

to TPP [50] and typically reside within introns of pre-mRNAs. In fungi [62, 63] and algae 

[64], in the absence of TPP, a sequence within the aptamer domain, either a segment of helix 

P1 or an internal sequence, blocks alternative splicing sites and facilitates removal of the 

entire intron. The resulting mRNA is normally translated. In the presence of TPP, the 

aptamer domain folds into a stable structure and opens alternative splice sites, resulting in 

mRNAs that contain either an internal stop codon [64] or short upstream ORFs [62], which 

preclude expression of the main ORF. In higher plants [65, 66], a TPP riboswitch controls 

splicing at a single 5′ splice site to either remove or retain the intron. Intron excision, when 

TPP is abundant, also removes a polyadenylation signal thereby producing unstable mRNA. 
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In the absence of TPP, alternative base pairing sequesters the splice site and retains the 

intron with the processing signal, yielding a stable transcript.

Riboswitch architectures from top to bottom

Continuous efforts from several laboratories have culminated in determination of the 3-D 

structures for the metabolite-sensing domains of virtually all major riboswitch types and 

several subclasses. Given the variety of the riboswitch ligands, these studies revealed 

amazing variability of the riboswitch architectures with similarities only in three closely 

related adenine, guanine and dG riboswitches. Despite great structural diversity, all 

riboswitches can be divided in two large groups, pseudoknotted and junctional riboswitches, 

based on the folding principle that defines the overall riboswitch architecture (Fig. 2) [12, 

67].

Pseudoknotted riboswitches, such as preQ1 classes I and II (preQ1-I and preQ1-II) [68–72], 

SAM-II [52] (Fig. 3A) and others, are built predominantly on the basis of a single 

pseudoknot, a knot-shaped conformation formed through base pairing between a loop of an 

RNA stem-loop structure and an outside region (Fig. 2A). Pseudoknots in riboswitches 

usually constitute a stack of two helices connected by short loops, which sometimes contain 

extra elements, for instance, a hairpin in the fluoride riboswitch. Ligands interact with 

pseudoknots in the junctional region that connect pseudoknot helices, as in preQ1-I [70–72] 

and fluoride [46] riboswitches, or are positioned along the groove of a helix and trapped by 

nucleotides of the loop, as in a SAM-II riboswitch (Fig. 3A) [52].

Junctional riboswitches (Fig. 2B–D) contain a multihelical junction which connects a 

various number of helices, e.g. three in purine (Fig. 3B) [73, 74] and TPP [75–77] 

riboswitches, five in lysine (Fig. 3C) [78, 79] and six in FMN [80] riboswitches. According 

to the basic principles of RNA folding, riboswitch helices often stack on each other in the 

junctional region and pack side-to-side above and below the junction, thus forming helical 

bundles [81–83]. Ligands usually bind riboswitches of this type within junctions, as in 

purine (Fig. 3B) [73, 74], lysine (Fig. 3C) [78, 79] and c-di-GMP-I riboswitches [84, 85], or 

in the regions adjacent to the junction, as in glycine riboswitches [86, 87]. TPP and some 

other ligands bind at a distance from the junction, but are nevertheless able to hold the 

helical stems emerging from the junction, thereby reinforcing the ligand-bound 

conformation [75, 76].

Junctional riboswitches can be further divided into two subgroups in respect to the mutual 

location of the key junction and the domain-closing helix, typically the regulatory helix P1 

(Fig. 2B) [12, 67]. In several riboswitches, helix P1 originates in the centrally positioned 

junction and the regulatory mechanism involves ligand-mediated organization and 

stabilization of the junction that contribute to zipping up the regulatory helix (Fig. 2B,D). In 

these Y-shaped or ‘normal’ junctional riboswitches, ligands can be directly involved in the 

formation of the regulatory helix by interacting with the residues of P1, as in the purine [73, 

74, 88] and lysine [78, 79] riboswitches (Fig. 3B,C). Alternatively, ligands can contribute 

indirectly by displacing a residue from the ligand-bound pocket and inserting it into the 

junctional region, as in glycine riboswitches [87], or can stabilize the junction and P1 

remotely by anchoring the junctional stems, as in TPP riboswitches [75, 76].
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The second group contains junctional riboswitches characterized by the h-shaped or 

‘inverted’ architecture, where the multihelical junction is located on the periphery, whereas 

P1 or the helix which closes the sensing domain is positioned far from the junction and is 

connected to the junction through an irregular helix (Fig. 2C). In these riboswitches, the 

domain-closing helix is stabilized through long distance tertiary interactions with a hairpin 

protruding from the peripheral junction. Examples of ‘inverted’ junctional architectures are 

THF (Fig. 3D) [89, 90], glmS [55, 56] and Mg2+-II (M-box) [45] riboswitches. In these 

riboswitches, ligands can be bound either in the junctional region and/or in the vicinity of 

the regulatory helix.

Several riboswitches, for instance, SAM-I [91], c-di-GMP-II [92], lysine [78, 79], glmS [55, 

56], and THF [89, 90] contain both multihelical junctions and pseudoknots and therefore 

might be considered as a mixed type. We prefer to assign these RNAs to the junctional 

category since their long helices connected by junctions basically define the global 

architecture while their pseudoknots play a somewhat secondary role in riboswitch 

scaffolding by either anchoring components of the junctional fold through tertiary contacts 

or participating in building ligand-binding pockets.

Practically all structures of junctional riboswitches available to date share a common 

feature: the riboswitch conformations are reinforced by long distance tertiary interactions 

which join and lock up otherwise freely moving helices (Fig. 2B–D). These interactions may 

include loop-loop contacts between apical loops of hairpins (Fig. 3B) and are technically 

classified as pseudoknot interactions if formed predominantly by Watson-Crick pairing, as 

in the lysine riboswitch (Fig. 3C) [78, 79]. Pseudoknot interactions are also observed as a 

result of base pairing between an apical loop and an internal loop in the c-di-GMP-II [92], 

SAM-I [91] and THF [89, 90] riboswitches (Fig. 3D). In the purine [73, 74] and dG [88] 

riboswitches, loop-loop interactions involve both Watson-Crick and non-canonical base 

pairs as well as additional base stacking interactions and hydrogen bonds between bases and 

the RNA backbone. TPP [75, 76], c-di-GMP-I [84, 85], lysine [78, 79] (Fig. 3C), Mg2+-II 

[45] and glmS [55, 56] riboswitches contain another variation of long-distance contacts, 

tertiary interactions between the minor groove of helices and apical loops of hairpins. Such 

interactions do not require a contact between hairpins of the same length and therefore do 

not restrict the length of the longer stem. Long-distance contacts are most unusual in the 

FMN riboswitch [80]. The scaffold of this RNA is reinforced by a pair of symmetrical 

double contacts, each includes loop-loop and loop-helix interactions. Interestingly, with the 

exception of the ‘normal’ c-di-GMP-II [92] and ‘inverted’ THF [89] and Mg2+-II sensors 

[45], ligands are not directly involved in the formation of long-distance tertiary contacts in 

the junctional riboswitches (Fig. 3D).

Two RNAs, SAM-III [93] and the glycine [86, 87] responsive elements, diverge from other 

junctional riboswitches. In these RNAs, tertiary contacts are formed between adjacent 

regions and therefore span much shorter distances. In the glycine riboswitch (Fig. 2D), a 

nucleotide loops out of the ligand-binding pocket positioned slightly above the junction and 

intercalates between the junction and P1, thus assisting base pairing in P1. In the SAM-III 

riboswitch, SAM is embedded in the heart of the junction and is kept in place by a short loop 

region which folds back from the stem that protrudes from the junction.
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Remarkably, certain metabolites can be recognized by more than one riboswitch fold. For 

instance, at least five riboswitch classes bind SAM [94] and two classes interact with c-di-

GMP [36, 37] and preQ1 [33, 34]. Structures determined for three classes of SAM [52, 91, 

93], and both classes of each c-di-GMP [84, 85, 92] and preQ1 [34, 68, 70, 71] riboswitches 

demonstrate great diversity in the RNA scaffolds, in recognition of the ligands, and even in 

the conformation of bound ligands in complexes with RNAs that target the same metabolite. 

One of the most astonishing examples is three SAM-specific riboswitches, SAM-I [91], 

SAM-II [52] and SAM-III [93], which structurally have little in common. These RNAs 

adopt a four-way junctional architecture (SAM-I), a pseudoknot fold (SAM-II), and a three-

way junctional conformation (SAM-III), suggesting that the SAM binding folds emerged 

independently during evolution.

Despite differences in overall conformations and a number of unique structural features, 

riboswitches share structural elements and motifs also observed in other RNAs. For 

instance, many tertiary contacts found in riboswitches [81] include A-minor [95] and related 

base triples, ribose zippers and tetraloops. Helical stems in several riboswitches bend at 

kink-turn motifs [78, 79, 96–98] (Fig. 3C). Some riboswitches, including the 

aforementioned FMN riboswitch [80], contain larger recurrent motifs, such as T-loops, first 

identified in the tRNA structure [99, 100]. These motifs participate in the formation of large 

structural domains, such as T-loop PK domain, found in ribosomes [101].

Selectivity for small ligands from the standpoint of RNA

Some can take for granted that the specificity of small molecule recognition has been 

demonstrated a long time ago for ribosomes that use rRNA for interaction with antibiotics, 

for RNA aptamers selected in vitro for binding to the small molecule of choice, and for 

some self-splicing ribozymes that require guanosine for their reactions [102]. While these 

examples have conclusively shown that RNA molecules are capable of specific targeting of 

small molecules, it has not been clear whether RNA can use binding of small molecules as a 

driving force or a trigger to modulate gene expression. It was also not clear what level of 

selectivity RNA molecules would require functioning as intracellular sensors of metabolites 

and effectors of genetic control.

Riboswitches have several key differences from other RNAs that target small molecules. 

Ribosomes are large particles that contain long RNAs folded with assistance of many 

proteins. Because of the size and specific functional properties, ribosomes contain plenty of 

pockets built with distinctive conformations of RNA chains and suitable for specific 

recognition of small molecules. These sites are targeted by antibiotics which do not need to 

be distinguished from similar molecules of the cellular origin and in a number of examples 

display modest specificity and affinity for rRNA [103, 104]. Many rRNA-binding 

antibiotics, especially aminoglycosides, are decorated with positively charged groups that 

increase affinity for negatively-charged RNA molecules and make these compounds capable 

of binding to various RNAs with micromolar and sub-micromolar dissociation constants 

[105]. Likewise, group I self-splicing introns also do not show exquisite specificity for their 

small molecule cofactor guanosine [3]. In addition to the nucleoside, phosphate-carrying 
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guanosine nucleotides can be efficiently docked into the guanosine-binding site and 

participate in the first step of splicing.

Because of their small size and exquisite ligand specificity, riboswitches have more in 

common with small-molecule-binding RNA aptamers produced in SELEX experiments than 

with large ribosomes and self-splicing ribozymes. Like riboswitches, some SELEX aptamers 

can control expression of genes in vivo by binding to small molecules of non-cellular origin 

if placed in the right genetic context [106, 107]. Moreover, SELEX aptamers can replace 

riboswitch aptamers within natural riboswitches and successfully direct their expression 

platforms thus generating chimeric riboswitches capable of robustly controlling gene 

expression [108, 109]. However, it remains to be investigated how effectively in vitro 

selected aptamers that bind a riboswitch ligand can replace natural riboswitch aptamers 

responsive to the same ligand. Indeed, synthetic aptamers were typically selected for high 

binding affinity and specificity that did not imply the ability to stabilize the regulatory helix 

or sequester an RNA segment bearing the RBS. Therefore, in the construction of artificial 

riboswitches, a significant hurdle has been to couple a metabolite sensor and an expression 

platform enabling their efficient communication. The problem can be alleviated by careful 

engineering of communicating sequences [108, 109] and a combination of in vitro and in 

vivo selection strategies [110]. Unlike SELEX aptamers, modern riboswitches naturally 

evolved for both ligand binding and gene regulation, although aptamer domains might have 

been co-opted from ancient RNAs with different activities.

Comparison of the available structures of SELEX aptamers and riboswitches specific to the 

same or similar compounds did not reveal obvious similarities, although one would expect at 

least the major ligand recognition means to be similar [80, 97, 98]. Given the small selection 

window, direction of the selective pressure applied in SELEX experiments, and other factors 

specific to the in vitro selection, this observation is not particularly surprising and one more 

time emphasizes versatility of RNA sequences, especially in light of several distinct 

structures recognizing the same ligand in the SAM and other riboswitch families. Therefore, 

the finding that a bacterium and several vertebrates harbor adenosine aptamers of the same 

structural family as those discovered using in vitro selections is of particular interest to the 

RNA research community [111]. Although the biological function of the identified aptamers 

has not been understood yet, these results demonstrate that the convergent molecular 

evolution of adenosine binding encompasses genomic sequences.

In addition to achieving high specificity, riboswitches face other challenges. First, 

riboswitches have to respond to a specific threshold concentration which would ensure an 

adequate genetic response. Since concentrations of cellular metabolites may vary in cells, 

riboswitches of the same family but controlling different operons in the genome or 

riboswitches in different species can be tuned to different concentrations of the ligand [112]. 

Alternatively, riboswitches can be placed in tandem arrangements to achieve better control 

in response to cognate metabolites [113]. Second, riboswitches have to bind metabolites 

which can be present in cells at low concentrations, as second messengers, or higher 

millimolar concentrations, as amino acids. Given such large difference in affinity, structural 

principles evolved for one riboswitch type cannot be transplanted into another riboswitch 

type, thus demanding multiple structural solutions to be emerged during evolution. Third, 
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organisms may have an advantage from the sensor that integrates positive and negative 

chemical signals by recognizing different ligands and relaying the overall metabolic state of 

the cell to the gene expression machinery [114]. Therefore, in a certain biological context, 

exquisite ligand specificity may be less beneficial than broader selectivity.

Solutions to the challenge of cellular metabolite binding

In cells, riboswitches face a serious challenge to discriminate a cognate ligand from its 

precursors, derivatives, and other similar compounds. To accomplish this difficult task, the 

riboswitch structures form highly specific ligand-binding pockets. Since riboswitch ligands 

are chemically diverse, various riboswitches use different strategies for selective binding. 

These strategies however include a combination of several intermolecular forces and binding 

principles that are often shared by different riboswitch types.

Shape complementarity—One of the simplest strategies to discriminate against larger 

compounds is to form a tight ligand binding pocket which could exclusively fit a cognate 

ligand and hold it by van der Waals and other interactions. The best examples to illustrate 

this approach are glycine and lysine riboswitches. The glycine riboswitch has a small pocket 

compatible with only very small molecules while the slightly larger alanine or derivatives of 

glycine cannot be accommodated [79]. The lysine riboswitch contains a tight pocket to fit an 

extended amino acid with the shape of lysine (Fig. 4A) [79, 115]. Smaller amino acids, such 

as glycine or alanine, can in principle be accommodated in the pocket but bulkier amino 

acids with larger or branched side chains do not have sufficient room.

Probably the best solution for ligand binding is to create a binding pocket with perfect shape 

complementarity to the entire ligand. Some ligand-binding pockets, for instance, in lysine 

[79, 115] and purine riboswitches [73, 74], indeed encapsulate bound ligands such that up to 

98% of the ligand surface is in contact with RNA and only a small percentage of the surface 

remains exposed to solution. Nevertheless RNA does not need to envelop the entire ligand 

for specific recognition. The TPP riboswitch structures [75, 76] have shown that the 

riboswitch forms two ligand binding pockets for each extremity of TPP whereas the middle 

region of the ligand is not recognized by RNA and is largely exposed to solution. 

Riboswitches also do not require deep and tight ligand binding pockets, especially if a 

riboswitch can respond to several similar compounds of the same class. For instance, the 

THF riboswitch adopts a 3-D structure with a shallow semi-open ligand binding pocket for 

binding to the pterin moiety of THF (Fig. 4B) [89, 90]. The middle region, an amino 

benzoate moiety, is positioned on the RNA surface in stacking with a guanosine while 

another terminus of the coenzyme, a glutamyl moiety, does not make specific interactions 

with RNA [90]. Such ligand recognition implies that the riboswitch can potentially respond 

to a number of coenzymes related to THF if they contain the pterin moiety and carry a 

chemical group in the middle capable of stacking with a guanosine base.

Direct hydrogen bonding—In proteins, binding pockets for small molecules often 

contain hydrophobic amino acids and employ hydrophobic forces for interactions with 

ligands. RNA has difficulties in creating a hydrophobic environment since all parts of a 

nucleotide contain heteroatoms capable of making hydrogen bonds or electrostatic 
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interactions. Fortunately, known riboswitch ligands carry plenty of heteroatoms and many 

riboswitches exploit them for intermolecular interactions, as illustrated by adenine and 

guanine riboswitches [73, 74] (Fig. 5A,B), which recognize all oxygen and nitrogen atoms 

of the bound ligands.

Direct hydrogen bonding not only contributes to the affinity of interactions, it is the most 

important means for specificity of recognition. Riboswitch ligands have both hydrogen bond 

donors and acceptors and require a certain pattern of the groups that donate or accept 

hydrogen bonds for specific binding. In addition, a set of hydrogen bonds provides certain 

geometric constrains and ensures correct orientation of the ligand in the pocket. A change in 

the hydrogen bonding pattern, for instance, by mutating a single nucleotide that contributes 

to the specific recognition of the ligand can lead to dramatic consequences. For instance, 

replacement of a uridine by a cytosine at position 74 of the adenine riboswitch switches 

specificity of the RNA from the adenine to the guanine sensor and vice versa since 

pyrimidine 74 is the sole discriminatory residue that makes Watson-Crick base pairing with 

the bound purine (Fig. 5A,B) [13, 32]. Other edges of the ligands are bound by the same 

nucleotides in both adenine and guanine riboswitches [73, 74]. The purine binding pocket 

can accommodate smaller compounds not present in cells (Fig. 5C) [116], although binding 

is weaker possibly because of the loss of direct hydrogen bonds. The pocket is re-arranged 

in the deoxyguanosine (dG) riboswitch to provide room for the sugar moiety of dG (Fig. 5D) 

[88, 117]. The dG riboswitch retains the discriminatory cytosine but has two substitutions 

which prevent interactions of the RNA with N9 of guanine (U47A) and preserve direct 

hydrogen bonding with the sugar edge of dG (U51C).

Many other riboswitch ligands also contain nucleobases or similar aromatic moieties and 

employ their Watson-Crick or Watson-Crick-like edges for specific recognition of ligands. 

Surprisingly, in addition to purine and dG riboswitches, only c-di-GMP-I [84, 85], preQ1-I 

[70–72] and FMN [80] riboswitches make Watson-Crick type base pairing with nucleotides 

of RNA. Other nucleobase-containing ligands either use a Watson-Crick edge for non-

canonical pairing with Watson-Crick (THF [90]) and sugar (SAM-I [91], TPP [75, 76], c-di-

GMP-II [92], SAM-III [93]) (Fig. 5E,G,H) edges of RNA bases and interactions with sugars 

(SAM-I) (Fig. 5E) and water molecules (c-di-GMP-I [84, 85]).

Non-Watson-Crick edges of nucleobases in riboswitch ligands also make important 

contributions to binding selectivity in all nucleobase-containing ligands. For instance, as 

mentioned earlier, the N2-N3-N9 (‘sugar edge’) of the ligand in the guanine riboswitch is 

bound by a uridine that blocks binding of nucleosides, which can interact with the RNA 

when uridne 51 is replaced by a cytosine (Fig. 5B,D) [88]. Remarkably, different classes of 

SAM (Fig. 5E–G), preQ1 [68, 70–72] and c-di-GMP [84, 85, 92] riboswitches interacting 

with the same ligands utilize very different hydrogen bond patterns for specific recognition 

of nucleobases. This observation supports the suggestion that different classes of 

riboswitches targeting the same ligand have risen independently from each other during 

evolution.

Direct hydrogen bonding is not restricted to nucleobases of the ligands and is especially 

important for recognition of amino acids and sugars that do not contain aromatic rings. Both 
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main chain carboxylate and ammonium groups of glycine [87] and lysine [78, 79] (Fig. 5I) 

form hydrogen bonds with nucleobases of the conserved residues in the corresponding 

riboswitches. The ammonium group of the lysine side chain makes less specific hydrogen 

bonding and electrostatic interactions with the sugar-phosphate backbone of RNA but 

nevertheless serves as a recognition determinant to discriminate lysine against amino acids 

with shorter side chains. Alanine and glycine can fit their side chains into the lysine binding 

pocket but cannot anchor the side chains in the interior of the pocket through hydrogen 

bonding.

Stacking interactions—Another important type of interactions between aromatic rings of 

ligands and RNA bases is the π-π stacking interaction. These interactions are critical for 

maintaining DNA and RNA helices and often participate in tertiary contacts that reinforce 

more complex RNA structures. Although practically all aromatic rings of riboswitch ligands 

are involved in stacking with RNA bases, several riboswitches appear to use these 

interactions for selective and high affinity ligand binding that facilitates formation of the 

riboswitch structure. For instance, intercalation of aromatic rings of the ligands between 

bases that belong to different structural elements in the TPP (Fig. 5H) [75, 76], FMN [80] 

and preQ1-I [68, 70–72] riboswitches ensures stability of the ligand-bound RNA 

conformation. In c-di-GMP riboswitches [84, 85, 92], an adenine base is intercalated 

between two purine bases of the ligand to reduce conformational dynamics in the ligand, 

maximize binding affinity and maintain the overall RNA structure.

Recognition of negatively charged groups—One of the common traits in riboswitch 

ligands is the presence of negatively charged phosphate and carboxylate groups. To bind 

these moieties, negatively charged RNA molecules employ the same strategy used for RNA 

folding - neutralization of phosphate charges by metal cations such as Mg2+. Indeed, in the 

TPP (Fig. 5H) [75, 76], FMN [80] and glmS [55, 56] riboswitches, interactions between 

phosphates and RNA are mediated by one or two Mg2+ cations which bind RNA through 

direct coordination and water-mediated bonds. A Mg2+ cation also bridges the carboxylate 

of glycine with the backbone of the glycine riboswitch [87]. In contrast to these 

riboswitches, lysine sensors utilize a different ion, a monovalent K+ cation that mediates 

interactions with the carboxylate group of lysine (Fig. 5I) [79]. Because of its larger size, a 

K+ cation can form more coordination bonds than Mg2+. In the lysine riboswitch, the K+ 

cation holds three nucleotides in the same RNA strand.

Mg2+ cations have been found to be critical in binding of the fluoride anion to the 

riboswitch. A structural study has shown that the negatively charged F− anion is directly 

coordinated by three Mg2+ cations, with the anion positioned slightly out of the plane 

formed by the cations [118]. The fluoride ion does not contact RNA whereas Mg2+ cations 

interact with several phosphates from two distinct segments of the RNA thus joining the 

helices of the pseudoknot and holding the conformation of the riboswitch together.

Mg2+ cations do not only facilitate ligand recognition; they serve as specific ligands in two 

Mg2+-sensing riboswitches that control genes encoding for ion transporters [44, 45]. The 

structure of the M-box riboswitch reveals several Mg2+ cations participating in stabilization 

of the ‘inverted’ riboswitch architecture and the regulatory helix through long-distance 
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tertiary contacts [45]. These cations facilitate parallel alignment and bridge distant RNA 

elements so that the tertiary interactions contribute to the formation of the regulatory helix.

Recognition of positively charged groups—Electrostatic forces take part in 

recognition of positive groups in several riboswitch ligands. For instance, the positively 

charged ammonium group of the lysine side chain is positioned in the negatively charged 

environment and, in addition to hydrogen bonding, is locked in place by electrostatic 

interactions [78, 79]. As mentioned earlier, these interactions help the riboswitch 

discriminate against amino acids with short side chains.

Electrostatic interactions account for discrimination between the SAM and SAH ligands by 

SAM riboswitches. SAH is formed by demethylation of SAM in SAM-dependent catalytic 

reactions and is deprived of not only the methyl group, but also the positive charge on the 

sulfur atom [27, 94]. Since the extra methyl group of SAM cannot add much affinity to 

SAM binding and the SAM-binding pocket cannot pose sterical constraints on SAH binding, 

SAM riboswitches evolved a strategy to specifically recognize the positively charged 

sulfonium group of SAM. In all three SAM structures (Fig. 5E–G), the sulfonium group 

makes electrostatic interactions with oxygen atoms of uridine bases, the type of interactions 

incompatible with the chemical structure of SAH [52, 91, 93]. Interestingly, recognition of 

the sulfonium group is a common principle for ligand binding by very different SAM 

riboswitches. SAM-I [91], SAM-II [52] and SAM-III [93] riboswitches all recognize the 

sulfonium group but use distinct strategies to recognize adenosyl and carboxylate moieties 

of SAM and trap bound ligands in different conformations.

Riboswitches also exhibit less common electrostatic interactions. For instance, a cation/π 

interaction, which can be viewed as a case of amino-aromatic interactions [119], stabilizes a 

‘folded over’ conformation of SAM in the SAM-I riboswitch (Fig. 5E) [91, 120]. In this 

case, the amino group of the methionine moiety at one end points toward the adenine ring at 

the other end of the ligand. In the glmS riboswitch, two methyl groups of GlcN6P point at 

the rings of the guanosine base [55, 56], thus forming C-H/π interactions [121], typically 

observed in carbohydrate-protein complexes [122]. RNA is capable of other types of 

interactions [123] and it will not be surprising to see further means of specific ligand 

recognition by riboswitches.

Metabolite sensing and genetic control

A plethora of structural principles used for ligand binding and RNA folding practically 

serves a single purpose – to selectively bind the cognate ligand and reject non-cognate 

ligands at the time scale sufficient to choose the pathway of the riboswitch folding and gene 

expression control. Obviously, folding of a transcriptional riboswitch into a structure 

capable of ligand binding is restricted in time by the rate of transcription. Although the RNA 

polymerase can pause, allowing the RNA folding to catch up [124], many riboswitches can 

bind their cognate ligand prior to achieving thermodynamic equilibrium with the ligand. 

These riboswitches operate by kinetic control and require ligand concentrations higher than 

their Kd to commit to the ligand-binding pathway of folding and regulation. The same 

riboswitch placed in a different genetic context, for instance, to control translation initiation, 
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may reach equilibrium with the ligand prior to making the genetic decision [125, 126] 

(reviewed in [127]). Such riboswitches may even function as true switches, turning 

translation on and off by associating and dissociating with the ligand [128]. In contrast, 

transcription does not re-initiate after termination and transcriptional riboswitches operate as 

molecular fuses.

The picture of riboswitch-metabolite binding is further complicated by the fact that the 

ligand should be recognized by a metastable riboswitch conformation, capable of 

committing to either the ligand-bound or -unbound folding pathway. The nature of this 

conformation is of particular interest since available X-ray structures in the metabolite-

bound and -unbound states poorly describe this conformation (reviewed in [129]). In the 

ligand-bound structures, RNA can completely envelop bound ligands, demonstrating that 

RNA adjusts its conformation after initial ligand recognition [73, 74, 78, 79], according to 

the induced-fit concept of ligand binding. On the other hand, because of crystallization 

restrains, the riboswitch structures in the apo state were reported similar to the ligand-bound 

structures and, therefore, are incompatible with ligand binding [78, 79]. For some 

riboswitches that bind small ligands, adjustments in the RNA conformation can be local, as 

validated by obtaining ligand-bound structures after soaking ligands into the crystals of the 

apo riboswitches [87]. Large ligands may require larger rearrangements in RNA [130]. 

Nevertheless, the apo riboswitch conformation should be to some extent similar to the 

ligand-bound structures to take full advantage of the ligand binding and discriminating 

potentials. However, biochemical and biophysical studies have revealed a multitude of RNA 

conformations in the apo state [53, 131–137], supporting a ‘conformational selection’ 

concept of ligand recognition [138]. This concept postulates that macromolecules adopt a 

dynamic ensemble of pre-existing conformations in the apo state. Among many available 

conformations, ligand molecules capture only conformations that are competent of ligand 

binding and thus shift the equilibrium toward the bound state. Available structural and 

biochemical data suggest that riboswitches most likely utilize both conformational selection 

and induced fit to first select the appropriate RNA conformation from the ensemble of apo 

conformations and then trap the bound ligand by adjusting RNA conformation locally to 

maximize binding affinity.

The glmS riboswitch-ribozyme exerts genetic control via ligand-dependent cleavage and not 

through alternative conformations of the metabolite-sensing domain. Since GlcN6P 

catalyses the RNA cleavage, a pre-formed apo RNA structure cannot change the genetic 

output allowing ligand recognition of the largely pre-formed ligand-unbound conformation 

[55, 56]. Therefore, the glmS riboswitch-ribozyme does not appear to follow the common 

principle of metabolite recognition and folding.

Perspectives in structural and structure-function studies of riboswitches

Many critical questions in the riboswitch field have been addressed by structural and 

structure-guided biochemical, genetic, and biophysical studies during approximately a 

decade of research [12]. These works revealed novel RNA architectures, broadened the 

collection of structural motifs and added novel principles of small molecule recognition to 

the repertoire of ligand-RNA interactions. The structures agreed with the results of 
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biochemical studies and in addition uncovered many unexpected features [139–141]. One of 

the most surprising outcomes of the structural studies is the divergence and unpredictability 

of riboswitch folds, which are difficult to envision based on the secondary structure 

schematics. Therefore, despite many available riboswitch structures, accurate prediction of a 

3-D fold for a riboswitch remains a challenging task, even if the structure was determined 

for a related RNA [142]. Thus, 3-D structures cannot be predicted for many orphan 

riboswitches. Some of these riboswitches are involved in the control of important genetic 

circuits and their structures will be essential to understand regulatory pathways in bacteria 

[17, 25, 48, 49].

X-ray structures offer ‘frozen’ views on riboswitches and despite many hints at the 

mechanistic principles employed to modulate gene expression, structural information has to 

be complemented by other methods to provide detailed insights on the mechanism of 

riboswitch function. One avenue of research includes elucidation of the riboswitch 

dynamics. The size of the majority of riboswitches exceeds the limits for routine NMR 

studies [143] and the dynamics of riboswitches is currently mostly tackled by various single-

molecule approaches [53, 132, 144] with the support of small angle X-ray scattering [145, 

146] and other techniques [53, 133, 136, 147]. These studies have the potential to trace the 

entire riboswitch mechanism, starting from co-transcriptional RNA folding and ending by 

translation or degradation of the message. With the discovery of novel riboswitches and 

their subsequent 3-D structure determination, these approaches will ensure our progress 

towards the understanding of the riboswitch-mediated genetic circuits and consideration of 

riboswitches for biotechnological and medicinal applications.
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Fig. 1. 
Typical mechanisms of the riboswitch-mediated gene expression control. (A), Transcription 

termination mechanism of the guanine-specific xpt riboswitch [73]. Guanine binding 

stabilizes the structure of the junctional metabolite-sensing domain, including regulatory 

helix P1, and facilitates the formation of a Rho-independent transcriptional terminator that 

aborts transcription elongation. In the absence of guanine, the metabolite sensor does not 

adopt the ligand-bound conformation, and the 3′ region of P1 (magenta color) makes 

alternative base pairing with the region in the expression platform inducing formation of an 

anti-terminator hairpin. This hairpin prevents formation of the transcription terminator and 

allows RNA polymerase to transcribe the entire xpt gene. (B), Regulation of translation 

initiation by the SAM-II riboswitch [52, 53]. SAM binding stabilizes the formation of the 

pseudoknot-based fold including stem S2 that engages in base pairing with the Shine-

Dalgarno sequence (blue color) of the downstream gene. In the absence of SAM, S2 is 

disrupted and the ribosome can access the Shine-Dalgarno sequence and initiate translation 

of the gene.
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Fig. 2. 
Schematics of architectures observed in riboswitch structures. Ligands are shown in red 

color. Long-distance tertiary interactions reinforced by ligand binding are highlighted in 

green color. (A), The pseudoknot type of the metabolite sensing domain, exemplified by the 

SAM-II riboswitch [52]. (B), The ‘regular’ architecture of junctional riboswitches observed 

in purine riboswitches. The fold is stabilized by ligand binding in the center of the three-way 

junction. (C), The ‘inverted’ architecture of junctional riboswitches stabilized in the THF 

riboswitch by binding to two ligand molecules [89]. (D), Glycine riboswitch is an example 

of the ‘regular’ architecture stabilized by tertiary interactions that span shorter distance [87].
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Fig. 3. 
Examples of the riboswitch structures. RNA is shown in ribbon representation and is color-

coded according to Fig. 2. Ligands are shown in red color. Nucleotides important for 

discrimination of the ligand are in violet. 3WJ and 5WJ, three-way and five-way junctions, 

respectively. PK, pseudoknot. (A) Structure of the SAM-II riboswitch bound to SAM 

highlights a riboswitch fold based on a pseudoknot conformation [52]. A key feature of the 

structure is the stabilization of stem S2 by binding to SAM. (B) Structure of the guanine 

riboswitch bound to guanine (Gua) shows ‘regular’ architecture of junctional riboswitches 

[73]. The ligand binds in the center of the three-way junction and holds together the 

junctional fold. Tertiary interactions between apical loops provide correct alignment of 

stems and reinforce the structure. (C) Structure of the lysine riboswitch bound to lysine [79]. 

The structure consists of two-helical and three-helical bundles positioned below and above 

the ligand-bound five-way junction. One of the helices reverses its orientation through a 

kink-turn and is anchored in place by pseudoknot interactions. Ligand-bound potassium 

cation is shown by a violet sphere. (D), Structure of the THF riboswitch bound to two 

molecules of folinic acid (FA) highlights the ‘inverted’ architecture of junctional 

riboswitches, centered on the three-way junction and stabilized by pseudoknot interactions 

[89]. Ligand molecules stabilize both the junction and the pseudoknot.
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Fig. 4. 
Examples of ligand-binding pockets. RNA (grey) and ligands (hot pink) are shown in 

surface representation with heteroatoms depicted in the following colors: oxygen, red; 

nitrogen, blue; phosphorus, orange. All views are from the top in respect to the Fig. 3C,D 

views. (A), Tight lysine-bound pocket of the lysine riboswitch shows good shape 

complementarity with bound lysine [79]. A potassium cation (violet sphere) mediates 

interactions between the carboxylate of lysine and RNA. Nucleotides from the front are 

removed to visualize the pocket. (B) Semi-open pocket of the THF riboswitch bound to THF 

[90]. The pocket is located in the junctional region.
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Fig. 5. 
Recognition of different metabolites by riboswitches. The views show only nucleotides 

involved in ligand binding. Ligands are in red. Hydrogen bonds are depicted by dashed 

black lines. Carbon atoms of RNA are color-coded as in Figs. 2 and 3 while heteroatoms are 

shown in atomic colors. (A), Adenine riboswitch bound to adenine [73]. The discriminatory 

nucleotide is in violet. (B), Guanine riboswitch bound to guanine [73]. (C), Adenine 

riboswitch bound to a synthetic compound identified by virtual ligand screening [116]. (D), 

dG riboswitch bound to dG [88]. (E), SAM-I riboswitch bound to SAM [91]. Electrostatic 

interactions involving the sulfonium group are depicted by yellow dashed lines. Cation-π 

interaction is shown by red dashed line. (F), SAM-II riboswitch bound to SAM [52]. (G), 

SAM-III riboswitch bound to SAM [93]. (H), TPP riboswitch bound to TPP and two 

magnesium cations (green) [75]. The view does not show all intermolecular interactions. 

Water molecules are shown as pink spheres. Coordination bonds of cations are shown with 

green sticks. (I), Lysine riboswitch bound to lysine and a potassium cation [79].
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