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Circulating tumor cells (CTCs) are found in the blood of patients with cancer.

Although these cells are rare, they can provide useful information for

chemotherapy. However, isolation of these rare cells from blood is technically

challenging because they are small in numbers. An integrated microfluidic chip,

dubbed CTC chip, was designed and fabricated for conducting tumor cell isolation.

As CTCs usually show multidrug resistance (MDR), the effect of MDR inhibitors

on chemotherapeutic drug accumulation in the isolated single tumor cell is

measured. As a model of CTC isolation, human prostate cancer cells were mixed

with mouse blood cells and the label-free isolation of the tumor cells was conducted

based on cell size difference. The major advantages of the CTC chip are the ability

for fast cell isolation, followed by multiple rounds of single-cell measurements, sug-

gesting a potential assay for detecting the drug responses based on the liquid biopsy

of cancer patients. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4934715]

INTRODUCTION

Circulating tumor cells (CTCs) were first described in 1869 by Ashworth,1 who observed

small numbers of cells in patient blood that resembled cells of the primary tumor. These cells

may constitute the seeds for subsequent metastasis in different organs.1–3 Although the nature

of CTCs is not fully understood, these cells are reported to be drug resistant in some types of

metastatic cancers (e.g., breast cancer, lung cancer, prostate cancer, and ovarian cancer),4–10

especially showing multidrug resistance (MDR) due to the expression of ATP-binding cassette

(ABC) transporters.11,12 These transporters include P-glycoprotein (P-gp or ABCB1), multidrug

resistant protein-1 (MRP1 or ABCC1), and breast cancer resistant protein (BCRP or ABCG2),

which cause active transport of chemotherapeutic drugs (i.e., daunorubicin or paclitaxel) out of

the cancer cell, termed as drug efflux, and this ultimately reduces the effectiveness of chemo-

therapy.13,14 Administration of MDR inhibitors that block drug efflux mediated by MDR trans-

porters in combination with chemotherapeutic drugs that kill the tumor cells have been explored

as a potential treatment strategy.15

Isolation of CTCs can be useful for personalized cancer chemotherapy because CTCs can

be clinically important for providing predictive information for the adjustment of the
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therapeutic schemes.16 Our vision is that drug accumulation measured on CTCs can provide

reliable information for patients undergoing chemotherapy. However, a key limitation in the

capture of CTCs is their extreme rarity in blood (as low as �1–100 in 1 ml blood including

5 � 109 erythrocytes or red blood cells and 7 � 106 leukocytes or white blood cells

(WBCs)).17–20

Currently, CellSearch
TM

is a CTC-based system to provide prognostic information for meta-

static breast, prostate, and colon cancers.21–24 In this Food and Drug Administration (FDA)-

approved system, CTCs are immunomagnetically captured from 7.5 ml of blood using magnetic

labels conjugated to an antibody against the epithelial cell adhesion molecule (or EpCAM) on

the cells and then fluorescently stained with labeled antibodies against epithelial cell-specific

markers.25 While the system allows the CTCs to be remunerated for cancer prognosis, further

cellular analysis cannot be applied because the CTCs are bound and fixed.26

Recently, worldwide efforts have been made to develop efficient and reliable CTC isolation

techniques such as flow cytometry.27,28 Furthermore, a wide variety of microfluidic techniques

used to isolate CTCs have been reported, and the isolation methods are based on immunoaffin-

ity16,29–34 and immunomagnetic separation.35–37 The immuno-based methods depend on the use

of an immunological label that recognizes the EpCAM biomarker in order to identify the pres-

ence of CTCs. Therefore, there are some limitations in this immuno-label method as some

CTCs, particularly those of metastatic nature, might undergo epithelial-to-mesenchymal transi-

tion (EMT) thereby losing the EpCAM marker and potentially go undetected.26,38

However, there are some microfluidic methods that are label-free for CTC isolation,38

namely, dielectrophoresis (DEP)-based separation,39–42 density-based separation,37 deformability-

based separation,43 and size-based separation.44 The last method is successful in isolating rare

cells because most epithelial cells such as CTCs have sizes in order of 15–25 lm, which are

larger than red blood cells (6–8 lm) and white blood cells (8–14 lm).45

In this paper, we designed and fabricated a microfluidic biochip (CTC chip) to isolate PCa

among whole blood cells without the use of a label (i.e., EpCAM antibody), followed by multi-

ple rounds of single-cell measurement. In our approach, the human prostate cancer cells (as a

model of CTC) were mixed with mouse blood cells. After removal of red blood cells and

plasma, the buffy coat (white blood cells) mixed with tumor cells was introduced into the CTC

chip. Since the captured tumor cell had not been subjected to any immunoaffinity manipulations

(i.e., antibody), the captured cell can be used for single-cell measurements such as the drug

accumulation assay.46–48 This is an established assay used to measure the real-time effect of

MDR inhibitors on accumulation of chemotherapeutic drugs (e.g., daunorubicin and labeled

paclitaxel) in the same single prostate cancer cell.

MATERIALS AND METHODS

CTC chip design

An integrated microfluidic chip, dubbed the CTC chip, was designed by the L-Edit software

(Tanners). As shown in Fig. 1, the layout of the glass chip (20 mm � 30 mm) consisted of two

chambers: Chamber 1 containing the sideward openings and chamber 2 containing the cell

retention structure and DEP electrodes. Reservoirs A, B, and E served as the cell inlet, blood

cell collector, and waste reservoirs, respectively; reservoir C was used to move cells from

chamber 1 to chamber 2; reservoir D was used for drug delivery in chamber 2. The channels

and chambers in the CTC chip were 40 lm deep, while the reservoirs were 0.6 mm deep and

2.5 mm in diameter. The CTC chip was fabricated by the standard micromachining processes at

CMC Microsystems (Kingston, ON, Canada). The process includes standard chip cleaning, thin

film deposition, photolithography, photoresist development, HF wet etching, reservoir forming,

and chip bonding, as previously described.49

As depicted in Fig. 1, chamber 1 in the CTC chip includes the cross-flow filter, with side-

ward openings perpendicular to the main flow, for separating cells based on size differences.50

Mouse blood cells, which are of similar size as human blood cells, were mixed with human

prostate cancer cells, and the cell mixture was then introduced to reservoir A. Because of the
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small size (<15 lm) of blood cells, they can only pass through the sideward openings and be

collected in reservoir B. Thereafter, as soon as an isolated prostate cancer cell could be found,

it was captured in chamber 2. The DEP electrodes in chamber 2 (Pt 180 nm/Ta 20 nm) were

used to capture the single-cell in a fixed location during drug accumulation measurement, when

the drug was delivered from reservoir D.

Reagents

Daunorubicin (DNR), Oregon Green-labeled paclitaxel (OG-PTX), fumitremorgin C (FTC),

and cyclosporine A (CsA) were purchased from Sigma-Aldrich (St Louis, MO, USA). RPMI

1460 medium, trypsin-ethylenediaminetetraacetic acid (Trypsin-EDTA) (0.025%), glutamine,

penicillin/streptomycin (PEN/STR), and fetal bovine serum (FBS) were obtained from Life

Technologies (Grand Island, NY). Hanks’ balanced salt solution (HBSS) was from Invitrogen

Corp (Grand Island, NY, USA, USA). DNR and OG-PTX were dissolved in dimethyl sulfoxide

(DMSO) (Sigma-Aldrich) to make stock solutions of 350 lM and 300 lM, respectively.

Similarly, stock solutions of CsA (500 lM) and FTC (1 mM) were made in DMSO. Alexa

Fluor
VR

488-labeled anti-human P-gp monoclonal antibody was purchased from AbD Serotec

(MorphoSys UK Ltd, Oxford, United Kingdom) and diluted in HBSS (1:20 ratio), and it was

used to recognize human prostate cancer cell that expressed P-gp. The Ficoll-Paque PLUS solution

from GE Healthcare (Pittsburgh, PA, USA) was kindly provided as a gift by Dr. Naveed Gulzar at

the Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University.

Cell samples

The prostate cancer (PCa) cell line, 22Rv1, obtained from ATCC, is an androgen-

independent human cell line which naturally expresses ABCG2.51,52 This PCa cell line was

grown in RPMI 1460 medium supplemented with 10% FBS, 1% PEN/STR, and 1% glutamine.

For cell subculture, the cells were detached using trypsin-EDTA and re-seeded in fresh medium

FIG. 1. The CTC chip. (a) Image of the microchip consisting of channels filled with a blue food dye and of electrodes con-

nected to electrical wires. (b) Layout of the microfluidic device showing reservoir D used for drug delivery, and reservoirs

A and E served as the cell inlet and waste, respectively. Blood cells were collected in reservoir B. Reservoir C was used to

move the selected cell from chamber 1 to chamber 2. (c and d) Close-up images of the cross-flow microfilters in chamber 1

in order to isolate prostate cancer cells among a large population of blood cells based on size difference. (e and f) Close-up

images of the cell retention structure in chamber 2 and three DEP electrodes located inside the structure to capture the pros-

tate cancer cell, followed by drug accumulation measurement. Scale bar: 100 lm.
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every 4 days. All cultures were maintained at 37 �C in a humidified 5% CO2 and 95% air incu-

bator (NuAire, Plymouth, MN, USA). Prior to tumor cell isolation, the size of the cells was

measured in order to determine the average sizes and the cells were counted using a hemocy-

tometer. Mouse blood cells were obtained from the Animal Care Services at Simon Fraser

University after protocol approval.

On-chip HF etching in chamber 1 to create the cross-flow microfilter

On-chip HF etching has been previously reported to enlarge a channel to create a weir

structure to retain a single cardiomyocyte.49 We performed on-chip HF etching to create the

cross-flow microfilter in chamber 1 in order to remove the small blood cells but not the big tu-

mor cells. The spacing of the sideward openings was small enough to allow passing of the

small blood cells (6–14 lm); whereas the large tumor cells (15–25 lm) did not even approach

the sideward openings and leak through. Since the spacing smaller than 80 lm cannot be made

by the initial glass etching process used to create the 40 lm-deep channels, HF etching was con-

ducted after the glass chip was bonded. Briefly, 12% HF solution was put into reservoir A, which

was close to chamber 1. In order to prevent HF from reaching the DEP electrodes located in cham-

ber 2 and destroying them, water was introduced from reservoir C and the water flow allowed the

HF solution to be localized in chamber 1. After 90 min, HF was removed from the chip to stop

etching, and then the sideward openings were examined under the microscope (Fig. 2).

Buffy coat preparation using a Ficoll gradient

A 2-ml sample of mouse blood was collected in a tube containing heparin as an anticoagu-

lant. The white blood cells were isolated by centrifugation using a Ficoll gradient, according to

the manufacturer’s protocol (GE Healthcare, Pittsburgh, PA). Briefly, a diluted suspension of

blood was layered over 3 ml of Ficoll-Paque solution in a 15 ml conical tube and centrifuged at

400g at 20 �C for 40 min. Afterwards, the top layer including plasma and platelets was

removed, and the buffy coat that consisted of the white blood cells (see Fig. S1a in the

FIG. 2. Creation of sideward openings in the cross-flow microfilter in chamber 1 inside a bonded glass chip. Images (top

view) showing the microfilter: (a and b) before etching and (c and d) after etching. Scale bar: 50 lm.
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electronic supplementary material)83 was then transferred to a new 15-ml conical tube and re-

suspended with phosphate buffered saline (PBS). After the tube was centrifuged at 500g for

15 min, the cell pellet was collected. Since it was pink in color, it contained residual red blood

cells (Fig. S1b).83 A micropipette tip was dipped into the cell pellet to gently remove the red

blood cells. Thereafter, the white blood cells were re-suspended in PBS and centrifuged at 500g
for 15 min. The cell pellet was washed one more time with PBS by spinning at 600g for 8 min

(Fig. S1c).83 Cells were then re-suspended in RPMI-1460 medium (supplemented with 10%

FBS and 1% PEN/STR and 1% glutamine). Thereafter, mouse blood cells, which are of similar

size as human blood cells, were mixed with human prostate cancer cells.

Isolation of individual prostate cancer cells

The prostate cancer cell (22Rv1) was isolated using the cross-flow microfilter in chamber

1. Prior to the CTC capture experiments, the channels and chambers were filled with culture

medium (RPMI-1460 supplemented with 10% FBS). A cell sample containing a mixture of

22Rv1 cells and blood cells (in a ratio of 1:4000) was injected into the CTC chip from reser-

voir A. Fig. 3 describes the separation of the 22Rv1 cell among blood cells. Once the mixed

cell sample (22Rv1 cellsþ blood cells) entered the wide chamber region (chamber 1), the larger

22Rv1 cells continued their straight path by the primary flow (Fig. 3(c)), while smaller and

lighter cells followed the sideward flow (Fig. 3(c)). Comparison of Fig. 3(a) (blood cells only)

and Fig. 3(b) (22Rv1 cells only) confirmed that the smaller cells moved toward the sideward

openings, while the larger 22Rv1 cell continued the straight trajectory in the middle of chamber

1. This result suggested that the larger 22Rv1 cell did not reach the sideward openings regard-

less of the presence of blood cells (see Fig. S2 in the electronic supplementary material for the

movement of cancer cells when mixed with blood cells at different ratios).83 The observation is

counter-intuitive, but it is consistent with other studies that the contact of large cells (i.e., cell

diameter> 10 lm) with the channel sidewall is very limited. It is because the opposed force

generated by the hydrodynamic lift moves the cells away from the wall, and the force is stron-

ger when the cell size is larger.40,44,53

For an actual CTC experiment, as soon as the 22Rv1 cells were observed in chamber 1,

they were guided toward chamber 2 by manipulating the liquid flow using reservoirs A, C, and

E. For instance, with the high liquid level at reservoir A and the low liquid level at reservoirs

C and E, the 22Rv1 cells would leave chamber 1. As soon as the cells were near reservoir C,

FIG. 3. Separation of the prostate cancer cell among other blood cells. (a) The blood cells (WBCsþRBCs) alone moved

toward each of the sideward openings, splitting into two positions at right and left sides. (b) After injecting 22Rv1 cells

alone, these big cells kept their straight path to reach chamber 2. (c) In a mixture of 22RV1 cell and blood cells, the

WBCsþRBCs passed through the sideward exits and went to reservoir B; whereas the 22Rv1 cell moved to chamber 2. It

took �2 s, 4 s, and 8 s for each RBC, WBC, and 22Rv1 cell to pass through chamber 1, respectively. The black, white, and

red line arrows represent the movements of 22Rv1, WBC, and RBC, respectively. Scale bar: 200 lm.
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the liquid flow from it was increased to push the cell further toward the cell retention structure

in chamber 2. The flow process has been controlled manually, but this process can be auto-

mated with the proper assistance of vision control and valving.

Dielectrophoresis electrodes to trap a single prostate cancer cell in chamber 2

The term dielectrophoresis was first introduced by Pohl54 in the 1950s to describe the

behaviour of particles in a non-uniform electrical field. The dielectrophoretic (DEP) force can

be created in such a field to move particles.11,55,56 The DEP force depends on factors such as

cell membrane and cytoplasm electrical properties as well as cell size.57 When the DEP force

and drag force that act on the cell reached equilibrium, the cell could be kept stationary. Based

on this concept, we used DEP electrodes for single-cell trapping in fluorescent measurement.

The proper frequency and magnitude of the alternating voltage have been optimized to retain

the cell but not damage it by high voltage.58 Therefore, 11.5 V (3 MHz) was applied between

electrodes 1 and 2 to keep the cell stationary for experiments. The DEP force was turned off at

�5 min after trapping the single tumor cell.

On-chip drug measurement on isolated single prostate cancer cell

After the cell was kept stationary, the medium was introduced into reservoir D to induce a

liquid flow and to make sure the cell is stationary before running the drug accumulation experi-

ment. An optical detection system was employed for simultaneous fluorescence measurement

and bright-field imaging.48,59 The procedure for drug accumulation measurement has previously

been reported.46–48

Briefly, the anti-cancer drug (i.e., DNR or OG-PTX) was introduced via reservoir D and

accumulation of the anti-cancer drug was measured in the single cell. In the next step, the

MDR inhibitor (i.e., CsA and/or FTC) was introduced via reservoir D, and drug accumulation

was measured in the same cell. Adding MDR inhibitors increased drug accumulation in the

cell, and then the single-cell fluorescence intensity was enhanced. DNR was first used for drug

accumulation measurement as it has inherent fluorescence (kex¼ 470 nm; kem¼ 585 nm).

Thereafter, paclitaxel that was fluorescently labelled by Oregon Green was examined

(kex¼ 488 nm; kem¼ 524 nm), since paclitaxel was the commonly used anti-cancer drug for

prostate cancer treatment.

Statistical analysis

Data are presented as the mean 6 SD (standard deviation). Statistical significance test was

determined using the Student’s t-test.

RESULTS AND DISCUSSION

Prostate cancer cell isolation among blood cell

The morphology and size of prostate cancer cells and blood cells (WBCsþRBCs) were

examined first. Fig. 4(a) shows the residual RBCs, and Fig. 4(b) and 4(c) illustrate the WBCs

containing residual RBCs after one and two washes with PBS, respectively. Fig. 4(d) depicts

the prostate cancer cell-WBCs mixture injected into reservoir A of the CTC chip. This is a

model for the capture of CTCs in a condition of 1 CTC in 4000 WBCs, or 250 CTCs in 106

WBCs.20

Fig. 5 shows the process for isolating the prostate cancer (PCa) cells among blood cells.

Based on the small size of the blood cells, they were split into two directions and moved to the

right and left side of the sideward openings in chamber 1 (Fig. 5(b-2,3)) and collected in waste

reservoir B. The PCa cell moved in the middle of chamber 1 (Figs. 5(b-2,3) and 5(c)) without

going near the sideward openings. Approximately 33 min after injecting the cell sample, the

first PCa cell passed through the first channel, which connected reservoir A to chamber 1. An

additional 4 min was taken to move the PCa cell from chamber 1 to chamber 2, followed by
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capturing the isolated single PCa cell by the DEP electrodes in the cell retention structure. This

is a process for cell capturing without the use of an immunoaffinity label and for subsequent

single-cell measurement, a process not currently feasible by using conventional methods.

We should point out that the concept of dielectric differences between cancer and normal

cells has been used for separating cancer cells by DEP.60 In general, different cell types having

various surface areas and size characteristics exhibit different DEP frequency responses.

Mammalian cell dielectric properties may be described theoretically by using a shell model, in

which the cell is represented as a homogenous core (i.e., cytoplasm) surrounded by a thin ho-

mogenous shell. This model describes the perfectly smooth idealized cell. However, in reality,

cells that have surface morphological features on the lipid bilayer membrane increase the cell

surface area as compared to the smooth idealized cell. These morphological features can be

taken into account by introducing a fold factor (u) to represent the ratio of actual membrane

area to that of the idealized smooth shell. It has been reported that cancer cells have larger fold

factors and larger radii (r) than both blood cells and normal cells of comparable origin.61,62 The

DEP response of cancer and normal blood cells is expressed in terms of the reciprocal cell

dielectric phenotype 1/(r�u). As reported by Gascoyne and Shim,60 the parameter for prostate

cancer cells and blood cells are 1.3–2.3 and 4.3–7.3, respectively. Therefore, the cell with a

lower 1/(r�u) value (e.g., tumor cell) will be attracted toward the electrode edge, while cells of

higher 1/(r�u) value (e.g., normal blood cell) will be repelled. This phenomenon suggests that

the cell dielectric phenotype should be a widely applicable physical attribute of cancer cells.

Interestingly, it has also been reported that even if the cancer cells undergo size reduction after

maintenance in suspension, as compared to their original size when normally grown in contact

with other cancer cells, the fold factor still remains high. Therefore, although the cancer cells

exhibit a similar size to blood cells, it is still possible to use DEP to isolate the cancer cells.63

Based on this concept, even if any white blood cell with similar size as the PCa cell passed

through chamber 2 in our CTC microchip, the blood cell could not be attracted toward the elec-

trode edge and it would be washed away from the cell retention structure. In our hands, when

FIG. 4. Preparation of the mixture of tumor cells and blood cells. After isolating white blood cells through a Ficoll gradient,

the cell pellet was resuspended in an appropriate medium solution. Images show the morphology and size of residual red

blood cells only (a), of white and residual red blood cells after first PBS washing (b), of white blood cells after second PBS

washing (c), and of prostate cancer (PCa) cell mixed with white blood cells (1:4000 ratio) (d). The first 3 images were taken

on a slide, whereas the last image was taken in reservoir A of the CTC chip. Scale bar: 50 lm.
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only blood cells were injected into the CTC microchip, the white blood cells that entered cham-

ber 2 were always repelled away from electrode 1.

The DEP process is selective for WBCs but not for RBCs because of their cell surface

charges.64–66 Therefore, when the number of residual RBCs is high, a pre-screening of RBCs

by a high flow is needed. Moreover, DEP-based separation has the best performance at a slow

flow rate, otherwise the weaker DEP force will have a less chance of trapping targeted cancer

cells due to a stronger flow-induced force. However, with a decrease in the flow rate, the

throughput decreases, and so a higher flow is required for pre-screening whenever it is possible.

In our microchip, a single cancer cell took �30 s to move along chamber 1, but this time was

longer by a reduced liquid flow when the cell moved from the entrance of chamber 2 to the

cell retention structure (�60 s). Therefore, pre-screening of RBCs at a higher flow rate in cham-

ber 1 is required, and then a slower flow rate is used to remove residual WBCs (�5%) not

trapped by DEP force in chamber 2.

Drug accumulation study on single 22Rv1 cell

Drug accumulation measurement was conducted in chamber 2. In the first step, accumulation

of the anticancer drug (i.e., DNR or OG-PTX) in the single 22Rv1 cell was measured in the

FIG. 5. Isolation of tumor cells from blood cells. (a) Images show different regions in the CTC chip (see also the schematic

shown in Figure 1(b). (b1-9) Images to show isolation of the prostate cancer (PCa) cell among WBCs and RBCs, followed

by capturing the cell inside the cell retention structure in chamber 2. (c) Close-up image from b2 to show the direction of

the PCa cell movement. (d) Close-up image from b9 to show the capture of the PCa cell near electrode 1 for drug accumu-

lation experiment. Scale bar: 50 lm.
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absence of a MDR inhibitor. The 22Rv1 cells naturally express the ABCG2 transporter.51 As a

well-known ABCG2 substrate,67 DNR was readily pumped out of the cell and the initial accumu-

lation of DNR was low. As shown in Figs. 6(b) and 6(c), during data collection, the chip was shut-

tled left and right to allow for measurement of the cell and the background, respectively.

The experiment was conducted using DNR at different concentrations (3.5, 7, 14, 35, 70,

350 lM) in order to determine the reasonable initial signal of drug accumulation in the cell.

This signal should be around 10 times higher than the noise and not too high to allow for the

room for fold-increase in the signal due to drug accumulation enhancement.

As shown in Fig. 7(a), the initial signal of DNR at the above 6 concentrations was 100 6 37,

290 6 39, 260 6 41, 530 6 42, 550 6 47, and 1280 6 50 counts per second (cps), respectively.

The initial accumulation signal obtained from DNR at 35 lM provided the optimal signal.

Similarly, experiments were conducted on a single 22Rv1 cell by treating it with OG-PTX at dif-

ferent concentrations (0.3, 1.5, 3, 6, 30 lM). As shown in Fig. 7(b), the initial signals of the OG-

PTX were 60 6 48, 100 6 52, 500 6 55, 1300 6 56, 2900 6 72 cps, respectively. Therefore, the

optimal fluorescence signal was obtained after treating the single cell with 3 lM of OG-PTX.

Subsequent experiments were carried out with 35 lM of DNR or 3 lM of OG-PTX. Fig. 7(c)

shows a single 22Rv1 cell treated with only 35 lM of DNR for a long period of time, showing

the cell has reached a saturated fluorescence level. A similar experiment was conducted on

another single 22Rv1 cell by adding only 3 lM of OG-PTX, indicating saturation in the fluores-

cence intensity (Fig. 7(d)). We should point out that the alternating voltage used for DEP capture

did not alter the cell membrane and reduce the MDR pump activity as no further increase in

drug accumulation was observed after treating these single cells in multiple times by the anti-

cancer drug alone (see Figs. 7(c) and 7(d)).

Effect of FTC on DNR accumulation

Since 22Rv1 cells highly express the ABCG2 transporter which leads to a low accumula-

tion of DNR,51 adding FTC (as a specific ABCG2 inhibitor)68,69 should increase DNR accumu-

lation, and single-cell fluorescence should be enhanced. As shown in Fig. 8(a), a steady state or

plateau of the drug accumulation signal, due to a balance of the drug uptake and efflux

FIG. 6. Drug accumulation measured in a single PCa cell. (a) The cellular fluorescence intensity due to accumulation of

35 lM DNR was measured in real time. The chip was shuttled to move the cell (b) into and (c) out of the detection window

(red box) to measure the cellular signal and background, respectively. An AC electric field of 11.5 V at 3 MHz was applied

to capture the cell close to the top DEP electrode before running the experiment. The electric field was turned off after

5 min as the cell was stationary.
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processes, was first obtained. With the addition of FTC, the steady state was disturbed, and the

DNR accumulation increased instantly. The effectiveness of the MDR inhibitor was indicated

by the fold-increase in fluorescence, which was defined as the ratio between the fluorescence

signals of the inhibitor-blocked cell and that of the unblocked cell. As shown in Fig. 8(a), add-

ing FTC as a MDR inhibitor enhanced drug accumulation by 3.5 6 0.2 fold (p< 0.0001), as

compared with the 1.3 6 0.2 fold (p> 0.1) obtained in the negative control. The fold-increases

obtained at different time points before and after adding FTC were also plotted in Fig. 8(b).

The value of 3.5 6 0.2 is comparable, if not better than, the literature value of 2.0-fold obtained

in the accumulation of D-luciferin (another well-known substrate of ABCG2) in 22Rv1 cells

treated by FTC (25 lM), based on a time-consuming bioluminescence imaging experiment.70

Fig. 8(c) shows the images of this MDR cell before experiment (bright-field observation),

during DNR treatment (simultaneous red-light bright-field observation during fluorescence mea-

surement), after adding DNR in the presence of FTC, and after trypan blue treatment. Since the

cell was not stained by trypan blue, it was viable and this occurred even after drug accumula-

tion and DEP force were applied to capture the cell. Therefore, the cell was not killed even

though 35 lM of DNR was used to treat the cell, and the xenon arc lamp was used to excite

the drug molecules in the cell.

FIG. 7. Optimization of DNR and OG-PTX concentrations for drug accumulation measurements. (a and b) The initial accu-

mulation signal obtained from 35 lM of DNR and 3 lM of OG-PTX in 22Rv1 prostate cancer cells appeared to be reasona-

ble. (c and d) Signal remained at the saturation level in the single 22Rv1 cells treated in multiple times with 35 lM of DNR

alone (c) and 3 lM of OG-PTX only (d).

FIG. 8. Drug accumulation in a single 22Rv1cell in the presence of FTC as a MDR inhibitor. (a) Fluorescence intensity of

the cell treated with 35 lM DNR measured in real time. The drug accumulation enhanced after adding 40 lM of FTC (black

curve). The bottom curve in red shows the signal remained at a saturation level for the single cell treated with DNR only

(negative control). (b) The fold-increase determined at different time points showing enhancement of drug accumulation af-

ter adding FTC (black line), as compared to no enhancement in the negative control (red line). (c) The images show the cell

before, during, and after experiment, followed by trypan blue treatment. Scale bar: 20 lm.
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To illustrate how fast the reagents reach the cell trapped in the cell retention structure, Fig.

S3 shows the flow of trypan blue at different time points, demonstrating how the dye quickly

flows in chamber 2 to reach the cell (�4 s) (see electronic supplementary material).83 This fast

flow was consistent with the results of a recent simulation study about the liquid flow behavior

in the cell retention structure.71

Our real-time fluorescence drug accumulation experiments also allow us to obtain the

kinetics of the MDR inhibitor effects, using a previously reported mono-exponential drug

uptake model.49 The curve fitting analysis was performed on the normalized drug accumulation

data, using the SAS software (see Fig. S4 in the electronic supplementary material).83 Based on

the curve fitting results (Tables S1 and S2),83 the fold-increases for DNR and OG-PTX accumu-

lations were determined to be 3.4 6 0.2 and 2.4 6 0.4, which were believed to be caused by the

action of FTC on the ABCG2-mediated drug efflux in the 22Rv1 cell.

Effective concentrations of MDR inhibitors (FTC and CsA)

Although P-gp is weakly expressed in the normal prostate cells,72 its expression increases

in the tumor epithelium,55 especially in androgen-independent prostate cancer.11 For instance,

P-gp (ABCB1) was detected in 35% of cell samples collected from non-treated prostate can-

cer patients (Homma et al.56). However, the ABCG2 transporter has been found in androgen-

independent prostate carcinoma cells such as 22Rv1 cells,51 and it has reported that this

MDR transporter might mediate drug resistance in the prostate cancer stem cells resistant to

androgen therapy.73 Our drug accumulation experiments on 22Rv1 cells were evaluated using

both FTC (as a ABCG2 inhibitor) and CsA (as a ABCB1 inhibitor). As shown in Fig. 9(a)

(blue line), the fluorescence signal of 35 lM DNR in a 22Rv1 cell was 630 6 77 cps. After

adding different concentrations of FTC (10, 20, 40, 80 lM), the signals were enhanced

(1.9 6 0.2, 2.8 6 0.2, 4.7 6 0.2, and 4.8 6 0.2 fold-increase, respectively). Similar experiments

were performed by adding different concentrations of OG-PTX (1.4 6 0.2, 2.1 6 0.2,

2.6 6 0.2, and 2.7 6 0.2 fold-increase, respectively) (Fig. 9(a): red line). Therefore, the opti-

mal fluorescence signals were obtained after treating the single cells with both anticancer

drugs in the presence of 40 lM of FTC. In a similar manner, experiments were performed on

single cells to optimize the CsA concentration. As shown in Fig. 9(b) (green line), after add-

ing DNR (35 lM) in the presence of different concentrations of CsA (0.5, 2.5, 5, 10, 20 lM),

the signals were enhanced by 1.4 6 0.2, 2.1 6 0.2, 3.2 6 0.2, 3.4 6 0.2, 3.6 6 0.2 fold, respec-

tively. Similar CsA experiment was conducted by single-cell accumulation of 3 lM OG-PTX,

and the fold-increases were 1.5 6 0.2, 1.8 6 0.2, 2.7 6 0.2, 3.0 6 0.2, 3.1 6 0.2, respectively

(Fig. 9(b): violet line). Therefore, the optimal fluorescence signals were found to be 5 lM of

CsA after treating the single cells with both anticancer drug in the presence of this P-gp

inhibitor.

We should point out that the half-saturation concentration for the effect of a MDR inhibitor

on the steady-state accumulation level, termed as the half-maximal inhibitory concentration

(IC50), can be determined by

IC50 ¼ Ki � FI; (1)

where Ki is the intrinsic affinity of the inhibitor for P-gp at its inner leaflet on the cell mem-

brane;74 FI represents fold-increase, which is the ratio of unblocked to blocked accumulation of

drug. Litman et al.74 reported 0.50 lM as the mean Ki for the affinity of CsA for P-gp to DNR

treatment, regardless of the cell lines. Based on this equation and the Ki value (0.5 lM), the

half-maximal inhibitory concentration of pumping by P-gp (or IC50) of CsA was calculated

based on the highest fold-increase of 3.57, resulting in a value of 1.8 lM. This IC50 was compa-

rable with 1 lM, as reported for CsA on prostate cancer cell line 22Rv1.75 We should point out

that IC50 depends on the number of pumps present in the plasma membrane; therefore, IC50 is

greater in more highly multidrug resistant cells.
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Effect of multiple MDR inhibitors on single prostate cancer cells

One of the requirements for the effectiveness of chemotherapy is the sufficient accumula-

tion of chemotherapeutic drug in cancer cells.76–78 Since MDR is due to the function of ABC

transporters that reduce intracellular drug accumulation in the cells, we examined whether FTC

and CsA could alter BCRP and P-gp activity and improve the retention of DNR and OG-PTX

in single prostate cancer cells. In single 22Rv1 cells treated with DNR in the presence of FTC

(Fig. 10(a): red line), the fold-increase remained steady over 3000 s for a value of 3.8 6 0.2.

When CsA was used, an approximate 2.7 6 0.2 fold-increase was observed. Similar steady val-

ues were obtained after applying OG-PTX in the presence of same MDR inhibitors (Fig. 11(a):

red line for FTC and Fig. 11(b): orange line for CsA) (3.1 6 0.2 and 3.0 6 0.2 fold-increase,

respectively). However, when the inhibitor was removed at 2050 s, there was drop in drug accu-

mulation, showing a lower fold-increase. For instance, in the single cell treated with OG-PTX,

the fluorescence signal decreased right after the MDR inhibitors were removed (fold-increase

dropped from 2.7 6 0.2 to 1.4 6 0.2 for FTC and from 2.7 6 0.2 to 1.3 6 0.2 for CsA) (Fig.

11(a): blue line and Fig. 11(b): violet line). However, after accumulation of DNR in the pres-

ence of MDR inhibitors, DNR was more effectively retained in the cells right after removal of

MDR inhibitors (Fig. 10(a): blue line and Fig. 10(b): violet line), particularly for FTC (fold-

increase dropped from 3.8 6 0.2 to 2.8 6 0.2 for FTC and from 2.3 6 0.2 to 1.5 6 0.2 for CsA).

The more effective retention of DNR can be explained by its intercalation between the

bases of DNA and impairments of its synthesis in the cell nucleus.79 This means DNR may get

aggregated in the nucleus to form clusters that are too big to pass out through the nuclear pores

in a short time (�1 h).76–78 Unlike DNR, OG-PTX’s site of action is in the cytoplasm, by stabi-

lizing tubulin polymerization in it, ultimately interfering the cell division.80 Our results corrobo-

rate the notion that once DNR enters the cell, it may not be as easy as OG-PTX to be extruded

from the cells once the MDR function is restored by removing the inhibitors.

More experiments were performed on DNR accumulation in single MDR cells (n¼ 6)

using different inhibitors. Applying FTC, CsA and FTCþCsA produced fold-increases of

3.7 6 0.4, 4.2 6 0.6, 4.9 6 0.7, respectively (Fig. 10(c)). Additional experiments on OG-PTX

FIG. 9. Effective concentrations of MDR inhibitors for experiments on the 22Rv1 cells. (a) Use of FTC (10, 20, 40, 80lM)

to enhance DNR accumulation in the single-cell (blue line). Similar FTC experiments were conducted by the single-cell accu-

mulation of OG-PTX (red line). The optimal fluorescence signal was obtained after treating the cell in the presence of 40lM

FTC. (b) Use of CsA (0.5, 2.5, 5, 10, 20lM) to enhance DNR accumulation in the single cell (green line). Similar CsA experi-

ments were conducted by the single-cell accumulation of OG-PTX (violet line). The optimal fluorescence signal was obtained

after treating the cell in the presence of 5 lM CsA. 100 data points were obtained for each individual single cells.
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accumulation in six individual single cells with the above three MDR inhibitor treatments indi-

cated similar results (2.7 6 0.4, 3.4 6 0.5, 3.7 6 0.6, respectively) (Fig. 11(c)). It should be

pointed out that ABCB1 appears to be the main transporter for PTX, while DNR is the sub-

strate of both ABCB1 and ABCG2 transporters.81 Although there was an immediate decrease in

drug accumulation after removing the MDR inhibitors, this signal decrease due to inhibitor loss

could be compensated by adding CsA. We also found the treatment of FTCþCsA after treating

with CsA enhanced further drug accumulation in the single cells. Although the inhibition mech-

anism of the combination of MDR inhibitors is not entirely clear, the simultaneous administra-

tion of MDR inhibitors has been reported. For instance, verapamil and CsA (as P-gp inhibitors)

FIG. 10. Enhancement of DNR accumulation in single 22Rv1 cells due to ABCG2 and ABCB1 inhibitors. (a) Use of FTC

(40 lM) to enhance accumulation of DNR (35 lM) in a single-cell (red line). Blue line shows signal decrease after remov-

ing FTC at 2050 s. No significant enhancement was observed (p> 0.1) in single cells (green line) treated for 4000 s with

35 lM of DNR alone (negative control). (b) Use of CsA (5 lM) to enhance cellular drug accumulation (orange line). Violet

line indicates signal decrease after removing CsA at 2050 s. (c) Averaged results (n¼ 6) of fold-increase in DNR accumula-

tion were observed after adding FTC, followed by CsA and combination of FTCþCsA. (d) The fold-increases after treat-

ing a single cell with DNR in the presence of FTC, CsA, and FTCþCsA (number of data points¼ 140).

FIG. 11. Enhancement of OG-PTX accumulation in single 22Rv1 cells due to ABCG2 and ABCB1 inhibitors. (a) Use of

FTC (40 lM) to enhance accumulation of OG-PTX (3 lM) in a single cell (red line). Blue line indicates signal decrease af-

ter removing FTC at 2050 s. No significant enhancement was observed (p> 0.1) in single cells (green line) treated for

4000 s with 3 lM of OG-PTX alone (negative control). (b) Use of CsA (5 lM) to enhance cellular drug accumulation (or-

ange line). Violet line shows signal decrease after removing CsA at 2050 s. (c) Averaged results (n¼ 6) of fold-increase in

OG-PTX accumulation were observed after adding FTC, followed by CsA and combination of FTCþCsA. (d) The fold-

increases after treating a single cell with OG-PTX in the presence of FTC, CsA, and FTCþCsA (number of data

points¼ 140).
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and MK571 (as a MRP1 inhibitor) have been reported to increase the intracellular levels of

[3H]-labeled drug in leukemia cells only after co-administered simultaneously.82

Although further enhancement in drug accumulation might occur, the averaged data did not

show a significant difference. It was interesting to find that the further enhancement of drug accu-

mulation due to treatment of FTCþCsA was observed in the single-cell experiments, but not in

the averaged results when the number of experiments was insufficient. For instance, the averaged

results of several single-cell experiments did not result in the enhancement in a statistically sig-

nificant manner (p> 0.05). However, the p-values were less than 0.0001 for the enhancement of

DNR accumulation after treating the same single 22Rv1 cell with FTCþCsA, right after CsA

treatment (Fig. 10(d)). In a similar manner, significant enhancement (p< 0.0001) of OG-PTX

accumulation was observed when real-time measurement was conducted (number of data

points¼ 140) on the same single cell after CsA treatment (Fig. 11(d)). We believe that more

repeated experiments are demanded to obtain a significant enhancement in the averaged results.

However, the same single cell experiment has the power to reveal the change in a significant

manner when conducted real-time on the same single cell.

FIG. 12. Anti-P-gp antibody binds to the 22Rv1 cells but not to white blood cell (WBC). (a) MDR inhibitors enhanced

DNR accumulation on the captured single PCa cell. The fluorescence signal increased after adding P-gp antibody. (b)

Similar results observed after treating another single PCa cell with OG-PTX in the presence of multiple MRR inhibitors

(40 lM FTC, 5 lM CsA, and 40 lM FTCþ 5 lM CsA), followed by adding anti-P-gp antibody. (c) Drug accumulation con-

tinued to rise in the WBC after treatment with DNR alone. No drug enhancement was observed after adding DNR in the

presence of CsA. The WBC was not stained by anti-P-gp antibody (anti-CD243). (d, e, f) The cell images were depicted

before and after experiment, followed by adding trypan blue in PCa cells treated with DNR (d), OG-PTX (e), and WBC (f).

DNR concentration was 35 lM. Scale bar: 20 lm.
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Comparison of drug accumulation in captured single prostate cancer cells

and in normal white blood cells

Multiple rounds of drug accumulation experiments were conducted on the single PCa cell iso-

lated from blood cells. To ensure that the captured single cell was indeed cancerous, anti-human

monoclonal P-gp antibody (anti-CD243) was introduced to detect P-gp on the 22Rv1 cell surface

subsequent to drug accumulation experiments. Fig. 12(a) shows obvious enhancement in fluores-

cence intensity (at 585 nm) due to DNR accumulation in a 22Rv1 cell after undergoing various

MDR inhibitors treatment (FTC, CsA, and CsAþFTC) (i.e., 3.3 6 0.2, 4.5 6 0.2, 5.4 6 0.2 fold-

increase, respectively (p< 0.0001). After washing the cell with HBSS (2�), anti-P-gp was applied

and the fluorescence signal (524 nm) was found to increase. This result confirmed the cell was

22Rv1, but not a blood cell, since the cell was stained by the anti-P-gp antibody.

However, in a similar experiment conducted on a WBC, the cell was not stained by the

anti-P-gp antibody, indicating it was not a 22Rv1 cell (Fig. 12(c)). As for the single-cell DNR

accumulation measurement, the WBC demonstrated the behaviour of a non-cancerous cell, i.e.,

the drug accumulation reached only at a much longer time and there was no enhancement by

adding CsA. The accumulation of DNR in the WBC also led to its staining by trypan blue (Fig.

12(f-3)). We should point out that this cell was examined when only blood cells but no cancer

cells were used; therefore, the captured cell must be a WBC.

Fig. 12(b) depicts the accumulation of OG-PTX in a single 22Rv1 cell, showing an obvious

enhancement in fluorescence intensity (at 524 nm) due to various MDR inhibitor treatments

(FTC, CsA and FTCþCsA) (i.e., 2.8 6 0.2, 4.4 6 0.2, 4.9 6 0.2 fold-increase, respectively

(p< 0.0001). After washing the cell, there was a drop in fluorescence intensity, indicating the

removal of OG-PTX from the cell. Thereafter, anti-P-gp antibody was applied, and the fluores-

cence signal (524 nm) was enhanced, confirming that the cell was 22Rv1.

CONCLUSIONS

In this study, we demonstrated the applicability of an integrated microfluidic chip for the

label-free isolation of prostate cancer (PCa) cells. The microfilter in chamber 1 and DEP electrodes

in chamber 2 have the capability to achieve the isolation of single cancer cells from blood cells,

as a model of CTC capture, as well as to preserve cell viability for subsequent drug accumulation

measurement. Multiple experiments can then be conducted on the viable single cell to investigate

the effect of MDR inhibitors on anticancer drug accumulation. FTC (as a well-known ABCG2 in-

hibitor) and CsA (as a P-gp inhibitor) have been found to be effective in the enhancement of drug

accumulation in the captured single PCa cells. The advantages of this integrated chip are the abil-

ity of fast isolation of PCa (< 1 h), of measuring drug accumulation (�1 h) and of confirming the

identity of the P-gp expressing cancerous cell. This new biochip requires a small number of cells

to confirm the response of the cells to MDR inhibitors as compared to conventional methods, pro-

viding a potential for CTC research and for investigating multidrug resistance in CTCs.
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NOMENCLATURE

ABCB1 ATP-binding cassette sub-family B member 1

ABCG2 ATP-binding cassette sub-family G member 2

BCRP Breast cancer resistant protein

CTC Circulating tumor cell
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CsA Cyclosporine A

DEP Dielectrophoretic

DMSO Dimethyl sulfoxide

DNR Daunorubicin

EMT epithelial-to-mesenchymal transition

EpCAM Epithelial cell adhesion molecule

FBS Fetal bovine serum

FTC Fumitremorgin C

HBSS Hanks’ balanced salt solution

MDR Multidrug resistance

OG-PTX Oregon Green-labeled paclitaxel

PBS Phosphate buffered saline

PEN/STR Penicillin/streptomycin

PCa Prostate cancer

P-gp Permeability glycoprotein

RPMI Roswell Park Memorial Institute
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