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Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency,
image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance
imaging.
Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans
has been investigated through techniques in frequency, image, and wavelet domains. Experiments
were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College
of Radiology MRI phantom, where the reconstructed images were compared to a reference high-
resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM),
mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The
application of super-resolution reconstruction was then examined in retrospective processing of
clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce
through-plane partial voluming for improved 3D delineation and visualization of thin radial bands
of white matter abnormalities.
Results: Quantitative evaluation results show improvements in all evaluation metrics through super-
resolution reconstruction in the frequency, image, and wavelet domains, with the highest values
obtained from SRR in the image domain. The metric values for image-domain SRR versus the original
axial, coronal, and sagittal images were PSNR= 32.26 vs 32.22, 32.16, 30.65; SSIM= 0.931 vs 0.922,
0.924, 0.918; MI= 0.871 vs 0.842, 0.844, 0.831; and MAE= 5.38 vs 7.34, 7.06, 6.19. All similarity
metrics showed high correlations with expert ranking of image resolution with MI showing the
highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through
in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a
real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in
resampled out-of-plane views consistently showed the superiority of SRR compared to original axial
and coronal image acquisitions.
Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due
to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming
effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans,
super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-
resolution image with reduced partial voluming for improved postacquisition processing. Qualitative
and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained
from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the
slice profile, density compensation, quantization in resampling, and uncompensated motion between
scans. C 2015 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4935149]
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1. INTRODUCTION

Spatial resolution in magnetic resonance imaging (MRI) is
limited by the constraints in MRI hardware, scan time limita-
tions, and patient motion. Improved spatial resolution may be
achieved at the cost of a reduced signal-to-noise ratio (SNR)
and/or increased scan time. A trade-off is normally made be-
tween these factors.1 Improvements in scanner hardware and
software, and technologies like parallel imaging, have pushed
the limits and enabled higher spatial resolutions, shorter acqui-
sition times, and higher SNRs. Averaging at the acquisition
level may be used to improve SNR, however, this increases
the scan time and makes the scans more susceptible to motion.
Other techniques like Periodically Rotated Overlapping Paral-
lEL Lines with Enhanced Reconstruction (PROPELLER)2 aim
to improve resolution and SNR while reducing the suscepti-
bility to motion by collecting k-space data in concentric rect-
angular strips rotated around the k-space origin. Nevertheless,
most MRI acquisitions are still lengthy, susceptible to motion,
and are acquired at relatively low resolutions to maintain high
SNR.

In fact, 2D sequences with highly anisotropic voxel spac-
ing (thick slices) are often used to achieve high SNR in T2-
weighted (T2W) imaging and when imaging moving subjects
like fetuses. The remarkably high SNR and in-plane resolution
of these thick-slice scans make them visually appealing to
the radiologist. The effect of partial voluming in the slice
select direction is often overlooked as the images are only
evaluated in the slice plane view clinically. Normally, these
thick-slice scans are acquired in two or three different slice
select directions to provide different radiologic views of the
anatomy; however, all such scans are contaminated with par-
tial voluming in the slice select direction, so should be used
carefully despite their appealing 2D appearance. The use of
these scans in computer-aided analysis is very limited due
to their anisotropic resolution and significant through-plane
partial voluming.

There has been an interesting body of work on postacqui-
sition fusion of thick-slice anisotropic 2D MRI scans. This
includes simple averaging of volumes, selective combination
in the Fourier domain,3 wavelet fusion,4 and super-resolution
reconstruction (SRR) in the image domain.5–7 Super-resolu-
tion MRI closely follows the concepts of super-resolution
reconstruction in digital image and video processing with
techniques in frequency, image, and wavelet domains.8 In an
early work, Greenspan et al.9 achieved enhanced MRI resolu-
tion in the slice-select direction using an iterative error back
projection algorithm. Also very early on, the MRI community
acknowledged that MRI data, which are collected (sampled)
in the frequency domain (i.e., k-space), are inherently band-
limited, so resolution enhancement is not achievable in-plane
or in true 3D MRI acquisitions.10,11 This has been explained
by the fact that Fourier encoding excludes aliasing in the
frequency and phase encoding directions.6,9 Super-resolution,
on the other hand, relies on aliasing in the signal encoding
directions, as described by Candès and Fernandez-Granda.12

The advantage of specific data acquisitions for SRR in
terms of lower acquisition time, higher SNR, and higher spatial

resolution was considered theoretically and by experiments in
Ref. 9 and more recently in Ref. 6 through detailed analysis
and experiments. Plenge et al.6 showed that for certain imag-
ing contrasts and sequences, such as T2-weighted MRI, SRR
provides better trade-offs between SNR, acquisition time, and
spatial resolution compared to direct high-resolution acquisi-
tions. The relatively long repetition times required for T2W
MRI make it less efficient to reduce slice thickness during
acquisition rather than through SRR. For a more comprehen-
sive review of image-based SRR methods in MRI, we refer to
Refs. 5 and 7, and for a review and comparison of frequency
and wavelet domain techniques we refer to Ref. 4. In this paper,
we do not repeat or verify those experiments and findings.
Instead, for the first time, we evaluate and compare all three
classes of super-resolution MRI techniques through carefully
designed phantom experiments to study the effect of partial
voluming and verify our findings in a neuroimaging applica-
tion to detect thin radial bands of white matter abnormalities in
T2W brain MRI of pediatric patients diagnosed with tuberous
sclerosis complex (TSC).

We argue that the most prominent application of SRR tech-
niques is when the MRI data are acquired as thick 2D slices;
which is often performed to maintain high SNR, for example,
in fast spin echo imaging, and/or to minimize the acquisition
time to reduce the effect of subject motion, for example, in
single shot fast spin echo imaging in fetal MRI.13–15 Super-
resolution fetal MRI is an exemplary application of SRR in
the image domain which includes models of “motion” incor-
porated into the SRR formulation. This formulation of motion-
robust super-resolution MRI (Ref. 13) follows the concepts
of forward modeling and inverse problem solution in super-
resolution image reconstruction, and has been extended to
other challenging applications like diffusion-weighted MRI,16

tongue MRI,17 and 4D thoracic MRI.18

The focus of this paper is on interpretation, evaluation,
and comparison of SRR in frequency, image, and wavelet
domains with an emphasis on correcting partial voluming ef-
fects in the slice select direction. We have considered motion-
free scenarios to focus on resolution enhancement rather than
motion estimation or correction. For this purpose, we focused
on 2D fast spin echo (FSE) MRI, conducted physical phantom
experiments with a controlled imaging protocol for quanti-
tative evaluation, and examined in a clinical neuroimaging
application for a realistic evaluation of the extent of partial
voluming in routinely performed thick-slice MRI acquisitions.
The results indicate that SRR can be used for postacquisition
fusion of these scans for improved computer-aided analysis.
An overview of the methods is presented in Sec. 2 and is
followed by the results and conclusion in Secs. 3 and 4.

2. METHODS
2.A. Super-resolution reconstruction
in the frequency domain

Thick-slice two-dimensional MRI scans, acquired at aniso-
tropic spatial resolutions, often comprise the collection of
high-frequency k-space samples in the phase and frequency
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F. 1. This figure demonstrates the steps of super-resolution reconstruction in the frequency domain. The k-space data of all 2D input scans are merged after
initial Fourier transform, slice profile correction, and phase correction. A density compensation function is then calculated and applied to the merged k-space
data. Inverse nonuniform FFT is applied to the corrected k-space data to generate the SRR image.

encoding directions of each plane. The effective in-plane reso-
lution of these scans is high, at nominal values between 0.4
and 0.8 mm, generating pixel sizes as small as 0.16–0.64 mm2.
There is, however, no high-frequency k-space sampling in
the slice select direction in these scans. When multiple 2D
scans with different slice select directions are available, the
k-space data from those scans can be combined to provide a
dense sampling of the k-space cube involving high-frequency
k-space samples in different directions. Examples of these
multiple 2D scans are orthogonal acquisitions with axial, cor-
onal, and sagittal slice select directions,3,9 and acquisitions
with rotated slice select directions.19 The fusion of k-space
data from these scans provides dense sampling of the center of
k-space and covers high-frequency corners of the k-space as
well, thus simultaneously improves SNR and spatial resolution
in 3D.

Fusion of k-space data from multiple scans is performed
through several steps. In the first step, the 2D k-space data
(in kx, ky, z domain) are transformed into 3D k-space (kx,
ky, kz) domain by considering the slice profile. This operation
corresponds to a 1D Fourier transform along the slice select
direction in case of a sinc RF pulse. Applying this operation
to each acquisition fills the k-space such that the center of
the k-space is more densely sampled compared to the outer
parts. This irregular sampling can result in blurring in the
reconstructed image which can be corrected using a carefully
chosen density compensation function (DCF).20 Here, in this
work, we calculate and apply a density compensation func-
tion suggested by Pipe and Menon21 as it results in sharp
reconstructions. This method uses DCF suggested by Jackson
et al.22 as the initial point and then iteratively optimizes the
sharpness of the point spread function (PSF) in a given field
of view (FOV) (rectangular in this work). The weight of each
point (Wi) is calculated iteratively using the following equation
that involves convolution with the Kaiser-Bessel function (C):

Wi+1=
Wi

Wi⊗C
. (1)

The iterations stop when the overall sampling density is be-
tween 0.99 and 1.01. The maximum number of iterations is set
to be 100 but in our experiments the algorithm always stopped

before reaching to the maximum iterations condition. When
the 3D k-space is reconstructed, we use the inverse nonuniform
FFT as suggested by Fessler and Sutton23 in order to transform
from 3D k-space (kx, ky, kz) into the 3D image space (x, y ,
z). Figure 1 demonstrates this algorithm.

2.B. Super-resolution reconstruction
in the image domain

Super-resolution reconstruction in image domain is estab-
lished based on a forward model of 2D slice acquisition. A
complete forward model for each slice includes subject mo-
tion, slice selection, blurring due to PSF of MRI acquisition,
and sampling,13,24 and can be written as follows:

yk =DkBkSkx+vk, (2)

where yk is the vector of voxels of the kth 2D slice, x is a
vector of the high-resolution uniformly sampled volumetric
image voxels, vk is the noise, Sk is a matrix representing
the slice selection operation which includes slice geometry
(orientation) and slice profile, Bk is a matrix representing
the PSF of the MRI signal acquisition process, and Dk is
a sampling operation. Slice selection is performed through
selective excitation by the application of a shaped RF pulse
and a refocusing gradient for postexcitation rephasing.

The matrix operation Sk models the slice selection geom-
etry involving slice orientation and slice profile. Note that the
model in Eq. (2) is not limited to orthogonal scans. In fact, each
slice in this model can have a unique geometry and an arbitrary
orientation. For an arbitrary slice select direction, defined by
the normal vector of the slice plane equation, the voxels of slice
k, defined by vector r⃗ , can be described by

| µ⃗sk .r⃗− s0k | <∆sk/2, (3)

where µ⃗sk is the normal vector of the slice plane which defines
the slice orientation, s0k is the slice origin in the scanner coor-
dinate system, and ∆sk is the slice thickness. This corresponds
to a rectangular slice profile generated by a sinc RF pulse
envelope function.
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SRR in image domain is formulated as the inverse problem
of finding x in Eq. (2) given the acquired slices yk. This inverse
problem can be formulated and solved through maximum a
posteriori (MAP) estimation to minimize an error norm func-
tion f (.) between observed and estimated slice acquisitions
and a regularization term g(.) on the reconstructed image,

x̂= arg min
x



n
k=1

f (DkBkSkx−yk)+λg(x)

, (4)

where λ is the regularization weight that is chosen based on
the number of input images and the super-resolution factor
discussed below. Under normal conditions, when SNR> 3, the
noise vk is considered to be additive, white, and Gaussian6,25

and so will be the slice errors in the first term in Eq. (4). With
a Gaussian distribution of error, f is defined to be the l2-norm
function based on maximum likelihood estimation.6,13,24

The SRR inverse problem is naturally ill-posed. Regular-
ization is thus used to solve an underdetermined problem in
the MAP formulation in Eq. (4). The effect of regulariza-
tion on reconstruction as a function of slice thickness (super-
resolution factor) was studied in Ref. 24, in which it was shown
that for SRR from three orthogonal scans no regularization was

needed for a super-resolution factor of 2. On the other hand,
when the problem was underdetermined due to higher super-
resolution factors, regularization played an important role.
The simplest assumption to regularize an underdetermined
inverse problem is to assume a quadratic model for the image
prior.24 By assuming an exponential quadratic model of the
probability density function of x, this translates to minimizing
the l2-norm of the reconstructed image gradient; however,
this tends to generate over-smooth reconstructed images. To
maintain image edge information and avoid over-smoothing,
edge-preserving regularization using total variation (TV) and
bilateral TV can be used.14,18,26,27 These techniques maintain
edges by promoting sparsity in the solution.

The matrices in Eq. (4) are large and typically sparse,
so a closed-form solution to the inverse problem is prohibi-
tive. The minimization is thus performed through numerical
optimization by methods like gradient descent or conjugate
gradient. The matrices Dk, Bk, and Sk and their transposes are
implemented as corresponding image operators which are first
applied sequentially to the estimated high-resolution image for
the calculation of the slice error vectors, and their inverse is
applied to the error vectors to generate an updated version of
the reconstructed image. Figure 2(a) shows a forward model

F. 2. This figure shows a forward model of 2D slice acquisition in (a) and the corresponding SRR algorithm in the image domain in (b). The arrows show the
flow of the data, where the black arrows show the data in the high-resolution image space and the blue (or gray) arrows show the data in the space of the slices.
Matrices are implemented as image operators. The inverse problem is solved through gradient descent minimization of the reconstruction error obtained from
transformed slice errors and a regularization term.
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of slice acquisition and Fig. 2(b) shows the flowchart of the
corresponding reconstruction algorithm. This algorithm itera-
tively finds a solution to the minimization problem in Eq. (4).
For the experiments in this study, we chose λ = 0.05 and used
a gradient descent algorithm for optimization.

2.C. Super-resolution reconstruction
in the wavelet domain

Aganj et al.4 proposed a fusion approach based on 3D
wavelet decomposition of orthogonal anisotropic MRI scans
to reconstruct an isotropic high-resolution 3D image, and
showed that it outperformed state-of-the-art frequency domain
fusion methods. The idea is to decompose a MRI scan
by a 3D wavelet transform with eight blocks denoted by
LLL, LLH, LHL, . . . , HHH, in the XYZ coordinate system,
where L stands for low-frequency, and H stands for high-
frequency information in each of X , Y , and Z directions. An
anisotropic scan with axial (Z) slice select direction has useful
information in its **L blocks and virtually no information
in its **H blocks. For a scan with coronal (Y ) slice select
direction, there is useful information in four *L* blocks and
virtually no information in the *H* blocks. Instead of fusing
original images, the wavelet-decomposed blocks with useful
information are thus combined. The combined images are
then used through inverse 3D wavelet transform to reconstruct
a SRR image. For this process, the original scans are first
resampled into a common isotropic-resolution space and then
decomposed and recombined using the referenced approach
in the wavelet domain.

Haar wavelets were used in Ref. 4 to account for a
rectangular-shape slice profile. This translates to assuming
a rectangular PSF in the slice select direction. In this study,
we examined Haar and reverse biorthogonal wavelet basis
functions as possible approximations of the slice profile.
Obviously, one of the disadvantages of the wavelet domain
SRR is the difficulty in modeling the slice profile by a wavelet
basis function. Although the ideal slice profile can be modeled
by the Haar wavelet, in practice the slice profile might deviate
from the perfect slice profile. The original implementation
of the wavelet domain image fusion can be obtained from
http://www.nitrc.org/projects/wlfusion.

2.D. Slice profile

The slice profile is very much dependent on the RF pulse
type for each MRI sequence. The slice profile generated by
a shifted and truncated sinc pulse envelope function may be
approximated by a rectangular function, and that of a truncated
Gaussian may be approximated by a Gaussian function.13

When fast RF pulse types are used in fast MR acquisitions such
as single-shot fast spin echo (SSFSE) and echo-planar imaging
(EPI), the slice profile is compromised and approximation may
pose errors. Under these conditions, an actual model of the
slice profile may be computed by solving the Bloch equations
by taking into account the RF pulse parameters and shape, or
may be measured experimentally.28

In image-based SRR, the slice profile and the in-plane
PSF have been approximated by separable 3D Gaussian
functions14,15,18,29,30 following Greenspan et al.9 who exper-
imentally found Gaussian slice profiles to produce high-
quality reconstructions and Noll et al.31 who found Gaussian
functions to be good models of slice profile for through-plane
interpolation. Jiang et al.30 modeled the slice profile of a
SSFSE sequence by a Gaussian function with full width at half
maximum (FWHM) equal to the slice thickness. The in-plane
PSF was approximated by a Gaussian with FWHM of 1.2× the
in-plane spacing in Ref. 14 and by the convolution of two
identical Gaussians with FWHM of 0.6× the in-plane spacing
in Ref. 18. In this study, we conducted experiments with both
rectangular and Gaussian slice profiles with FWHM equal to
the slice thickness. A rectangular slice profile is described
by Eq. (3) as a boxcar function and a Gaussian slice profile
is achieved by multiplying a Gaussian kernel to the boxcar
function.

2.E. Evaluation methods

Spatial resolution is the detail an image holds. By this
definition, spatial resolution is not defined by the number
of voxels or the spacing in an image, but it quantifies how
close lines can be to each other and still be visibly resolved
in the image. Partial volume effect is defined as the loss of
apparent signal from small structures because of limited spatial
resolution of the imaging system. If the size of the structure
to be imaged is less than twice the FWHM resolution in x, y ,
and z dimensions of the imaging system, the resultant signal is
underestimated. Higher spatial resolution decreases the partial
volume effect as it better resolves the structures. Following
these definitions, we use several methods to evaluate the
effectiveness of SRR methods for resolution enhancement in
this study.

The first step is visual assessment, which aims at detecting
how well image features and structures can be visually
resolved. Second, since a reference image with minimal partial
voluming can be acquired in the controlled phantom study,
we calculate three image similarity measures between each
original or reconstructed image and the high-resolution refer-
ence image. These similarity measures are (1) peak signal-
to-noise ratio (PSNR), (2) structural similarity image metric
(SSIM),32 and (3) mutual information (MI).33 These similarity
metrics quantify the differences between the reference gold
standard scan and the reconstructed images and thus provide
an objective evaluation of SRR. It is interesting to correlate
these metrics with perceptual evaluation of image quality with
a focus on resolution. For this purpose, an expert blindly ranks
each set of images in terms of delineation and detection of
image structures and edges in different regions of interest.

Expert’s evaluation is performed by visualizing nine images
(reference and different methods) simultaneously on a 27-in.,
8-bit monitor using the visualization tool of the Computational
Radiology Kit (: http://crl.med.harvard.edu/software/
CRKIT/index.php). Images are presented in NIfTI format with
locked cursor in three planes, and the expert is asked to rank
images from 1 to 8 based on their similarity to the reference
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F. 3. This figure shows the rationale behind oblique imaging in this study. If the MR signal is averaged in the slice select direction through thick-slice
acquisition in a direction that is parallel to the image edges and perpendicular to the fine structural details, image features will be delineated with high SNR (a).
This is an ideal imaging scenario; however, it is not always possible to image in this direction, mainly because anatomic structures do not follow straight lines
and often follow curves. To have a more realistic model, we put the ACR phantom in an oblique orientation in the scanner (b). This position results in an axial
slice like (c) which has blurred edges due to partial voluming in the slice select direction.

image (1 is best, 8 is worst) with the option to rank images
equally if they appear to have similar quality. The rankings
are then averaged and correlated with the similarity metrics.
We should note that various quantitative measures, such as
perceptual evaluation models,34,35 have been used to evaluate
MR image artifacts, such as blur, aliasing, and noise; but the
focus here was on resolution, therefore we design the phantom
study to compare images with a high-resolution scan. Expert
evaluation is similarly performed to compare reconstructed
images to the high-resolution reference scan.

The third stage involves the evaluation of image intensity
profiles, which are profiles of intensity values on lines defined
on the image. This analysis shows how points and edges appear
in the image. We compare all images and all intensity profiles
to the reference image and its intensity profiles, respectively.

In the neuroimaging application, we use automatic segmen-
tation and visual assessment to evaluate and compare the
appearance of anatomic features and abnormalities on the
original and reconstructed images. First, an expert radiologist
blindly ranks the resampled original and SRR images based on
the delineation of structural details and tissue boundaries in the
out-of-plane (sagittal) views. Different images are displayed
simultaneously on an 8-bit monitor with locked cursor using
the visualization tool in . The focus of this evaluation
is on the resolution of images rather than signal-to-noise
ratio, image artifacts, or sharpness, therefore the radiologist
is asked to assess the delineation of tissue boundaries and
narrow structures that extend in various directions (not just
one direction) and provide an overall rank. Second, by blindly
comparing the resampled original scans and the SRR image,
an expert counts the number of missing radial lines in seven
regions of interest for every case. This is performed in three
axial planes, two coronal planes, and two sagittal planes and
the average of missing structures is calculated.

2.F. Phantom imaging

Phantom imaging was specifically designed and performed
for controlled quantitative evaluation and comparison of SRR
methods and did not aim to replicate or simulate any clinical
study. For American College of Radiology (ACR) phantom

imaging, FSE MRI was performed with 32 channel body
matrix and spine coils on a Siemens Skyra 3 Tesla scanner
(Siemens, Erlangen, Germany) with repetition time (TR)/echo
time (TE)= 15 490/90 ms, flip angle (FA)= 160, bandwidth
(BW)= 195 Hz/pixel, echo train length (ETL)= 100, number
of excitations (NEX)= 1, FOV= 320×320 mm2, matrix size
= 448×448, in-plane resolution of 0.7 mm, and slice thickness
of 1.4 mm. In addition to thick-slice scans using these
parameters, a high-resolution reference image was acquired
with NEX= 4. The in-plane resolution of 0.7 mm was deemed
appropriate to study the three 4× 4 pinhole structures of
the phantom with diameters and distances of 1.1, 1.0, and
0.9 mm. To study the effect of partial voluming and resolution
enhancement, we positioned the ACR phantom in an oblique
orientation in the scanner with approximate angles of 45◦with
respect to the scanner axes.

Figure 3 shows the rationale behind oblique placement of
the phantom. If the ACR phantom is placed parallel to the
table and imaged in the axial slice select direction, the edge
of structures will be parallel to the slice select direction and
thus the edges will be amplified and delineated with high
SNR in the axial view (a). This is an ideal imaging scenario;
however, it is not always possible to choose a slice select
direction that is exactly parallel to the edge of anatomic
structures. In fact, anatomic edges and tissue boundaries do not
follow straight lines and often involve curves that are hard to
follow in 3D. Therefore, to replicate more realistic anatomic
imaging scenarios, we put the ACR phantom in an oblique
orientation (b). This position results in an axial slice like (c)
which has blurred edges due to partial voluming in the slice
select direction. We acquired thick-slice FSE scans in the axial,
coronal, and sagittal slice select directions with respect to the
scanner coordinates. The high-resolution reference scan was
acquired by choosing the slice select direction to be parallel
to the structure edges, i.e., axial to the phantom axes.

2.G. Neuroimaging

The clinical neuroimaging protocol performed at our
institution for the evaluation of brain abnormalities in patients
diagnosed with TSC includes a sagittal T1-weighted 3D
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F. 4. Visual comparison of the original fast spin echo scans in three orthogonal slice acquisition directions in (a)–(c), with (d) and (e): image domain
super-resolution reconstructed scans with rectangular and Gaussian slice profiles, respectively, (f): SRR in the frequency domain, (g) and (h): wavelet fusion with
Haar and reverse biorthogonal wavelet basis functions, respectively, and (i) the original high-resolution scan used as the reference scan here. This comparison
indicates that image fusion techniques can generate images that delineate fine structures of the images when compared to the original scans; but there are also
differences between these techniques, for example, the pinhole structures are better highlighted in (e) when compared to (d) but image edges in the structure at
the top of the image are better reconstructed in (d). It is hard to conclude which technique performed best.

MPRAGE sequence with isotropic resolution of 1 mm as
a reference for brain anatomy, a fluid-attenuated inversion
recovery (FLAIR) sequence for the detection of brain lesions,
and two thick-slice high-resolution T2W FSE MRI scans in
the axial and coronal planes for the detection of brain lesions
and subcortical white matter abnormalities typical to TSC.
While the MPRAGE and FLAIR scans are used for overall
evaluation of the brain anatomy and abnormalities, the high-
SNR, high-resolution T2W scans play a critical role in the
evaluation of small lesions and the narrow radial bands of
white matter abnormalities in these patients.

We retrospectively applied SRR to T2-weighted MRI
scans of ten pediatric patients with TSC who underwent
clinical neuroimaging for the evaluation of brain abnor-
malities. The clinical MRIs for these patients were all
performed on a Siemens Skyra 3 Tesla scanner using a
32-channel head coil. The T2-weighted FSE sequence was
performed in the axial and coronal planes of the brain with
typical values of TR/TE= 14 070/89 ms, ETL= 19, slice
thickness= 2 mm, FA= 120, NEX= 2, BW= 195 Hz/pixel,
FOV= 204×172 mm2, matrix size= 512×218, and in-plane
resolution of 0.4×0.6 mm. By using SRR, we reconstructed
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T I. Image similarity metrics: PSNR, SSIM, and MI computed between each original or reconstructed scan
and the reference scan. The highest similarity value in each row has been highlighted in bold. The results indicate
that all reconstruction methods generated scans that were more similar to the reference scan as compared to the
original scans. Overall, the highest values were obtained from image-based SRR with a rectangular slice profile.
The last three rows show the average expert rankings and the average rankings of features of types A and B in the
images, respectively. The average expert evaluation suggests that SRR with Gaussian slice profile generated the
best results.

Axial Coronal Sagittal SRR rect. SRR Gauss k-space WL Haar WL rbio

PSNR 32.22 32.156 30.654 33.265 32.321 32.381 33.07 33.122
SSIM 0.922 0.924 0.918 0.931 0.929 0.932 0.932 0.937
MI 0.842 0.844 0.831 0.871 0.866 0.861 0.863 0.861
Expert 6.1 6.4 6.9 2.6 2.1 3.4 2.3 2.3
Type A 5.3 5.5 7.2 1.5 1.3 4.0 3.0 3.0
Type B 7.0 7.3 6.8 3.5 2.8 3.0 1.8 1.8

a T2-weighted image with isotropic resolution of 0.5 mm for
each patient.

3. RESULTS
3.A. Qualitative and quantitative evaluations
with the ACR phantom

Figures 4(a)–4(c) show a section of the ACR phantom
that includes pinhole structures, of the three original FSE
scans acquired in the axial, coronal, and sagittal slice select
directions with respect to the scanner coordinate system. This
section was chosen to be perpendicular to the long axis of
the pin structures for best visualization. Partial voluming due
to 1.4 mm slice thickness in the slice select direction, which
was oblique to the axis of the structures (Fig. 3), obviously
affects the appearance of the structures and makes it difficult
to distinguish between the dots. This figure shows that the
SRR methods provided much better structural details than
the original images. It is observed that there are differences
between the SRR images, but visually it is hard to decide
which technique performed best.

Table I shows a quantitative comparison of the original
scans and the reconstructed images resampled to the space of
the reference image. The image similarity has been compared
based on PSNR, SSIM, and MI similarity measures. The
highest similarity value in each row has been highlighted

in bold. The results indicate that all reconstruction methods
generated scans that were more similar to the reference
scan as compared to the original scans, and that the SRR
in the image domain with rectangular slice profile and the
wavelet fusion performed the best in terms of the similarity
metrics. The similarity measures for SRR methods are,
however, rather close to each other. In addition to technical
differences, variations in image contrast in the reference
image and the reconstructions can be regarded as a source of
difference.

PSNR assumes a linear relationship between intensity
values. MI is robust to nonlinear intensity relationships.
While both measures quantify the relationships between
intensity values, SSIM measures local structural similarity.
We calculated the correlation of these similarity metrics with
average expert rankings of the resolution of images in seven
regions of interest that involved structures with different
shapes, sizes, and angles, corresponding to (A) orthogonal
views of the pin and grid structures, and (B) out-of-plane views
of oblique edges and structures. The average expert rankings
(ranging from 1 for best to 8 for worst image quality) have
been shown in the last rows of Table I (average, A, and B).
Figure 5 shows the scatter plots of average expert rankings with
the similarity metrics, linear fitted lines, and their correlation
coefficients. This figure shows that the MI similarity metric
had the highest correlation coefficient with the expert rankings
(CC=−0.943).

F. 5. Scatter plots, fitted lines, and correlation coefficient (CC) of average expert ranking of images versus similarity metrics (PSNR, SSIM, and MI). The
highest correlation was observed between expert’s evaluation and MI. The PSNR showed the lowest correlation to expert’s perceptual ranking of images. The
expert rankings suggest comparable perceptual resolution of all four image-based and wavelet-domain SRR methods and a marked improvement over original
images resampled at higher resolution (a) CC=-0.776 (b) CC=-0.890 (c) CC=-0.943.
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F. 6. (I) visualizes the position of designated intensity profile lines (a)–(i) on the selected reference MR slice of the ACR phantom; the intensity profiles are
shown in Fig. 7. (II) shows the MAE of intensity values between the reference intensity profile and the intensity profile of each image. This analysis indicates
that image-based SRR performs the best among others.

3.B. Evaluation with image intensity profiles

We defined nine lines to evaluate image intensity profiles
on the original and SRR images and compared them to the
reference image. These lines have been shown by (a)–(i) on a
section of the reference image in Fig. 6(I). Figure 6(II) shows
mean absolute error (MAE) of all intensity profiles computed
between each image and the reference image. According to
this analysis, all SRR techniques provided improvement over
the intensity profiles of the original thick-slice scans, and the
image-based SRR method, in average, seemed to generate the
closest intensity profiles to the reference scan.

Representative intensity profiles of the original and SRR
images and the reference image have been shown in Fig. 7.
These lines show that the reference image always had the
sharpest changes in intensity profiles over the image edges.

This analysis also shows that depending on the type, direction,
and size of the image edge structures, the original thick-slice
scans may or may not delineate image details. This shows the
importance of the slice select direction in which the partial
voluming has the largest effect.

The analyses performed here show comparable perfor-
mance of SRR techniques but also indicate that image-based
SRR outperforms the frequency-domain and wavelet domain
techniques. On the other hand, the computational burden
of image-based SRR is significantly higher than the other
techniques. Typical reconstruction times for one SRR image
in our experiments was about 3 h, 1 h, and 10 min for image-
domain, frequency-domain, and wavelet domain methods,
respectively. It is possible to highly parallelize the slice
error minimization process in the image-domain approach and
significantly accelerate the reconstruction. Also, more efficient

F. 7. Intensity profiles of the selected lines (b), (c), and (f) shown in Fig. 6(I) computed over the reference image, three original scans (axial, coronal, and
sagittal), and five reconstructed scans using SRR in image, frequency, and wavelet domains. The reference image intensity profile (black) shows the sharpest
changes over actual image edges in all graphs; and the reconstructions normally follow it more closely than the original scans. The statistical analysis of MAE of
intensity values between all lines and the reference (shown in Fig. 6) indicates that all SRR techniques resulted in improvements in intensity profiles compared to
the original scans. This analysis also shows that image-based SRR performed slightly better than the other techniques, so was chosen to study partial voluming
effect and its reduction in our neuroimaging application.
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computations may be developed for density compensation,
which is responsible for the computation burden of the
frequency-domain approach. The wavelet-domain SRR, on
the other hand, may be used to generate a SRR image in near
real time before a scan session ends.

3.C. Application to neuroimaging of tuberous
sclerosis complex

The axial and coronal T2-weighted MRI scans acquired
clinically for TSC patients are both considered very useful
due to their very high SNR and high in-plane spatial
resolution of 0.4× 0.6 mm2. These scans allow diagnostic-
quality assessment of the white matter and cortical lesions
and especially the thin radially oriented subcortical and deep
white matter hyperintensities that are typically observed in
these patients. Although the radiologists only looked at the
high-quality high-resolution planar views of these images, we
retrospectively processed the images and looked at the out-of-
plane views, which showed the effect of partial voluming as a
result of 2 mm slice thickness.

Figure 8 shows the sagittal views of the axial and coronal
FSE scans of one of the cases in (a) and (b), and the closest
MPRAGE and FLAIR slices in (c) and (d), respectively. It
is observed that partial voluming had a strong effect on the
visualization of the structures. The arrows in these images
show the slice select direction and the circles highlight some
of the thin structures, including the radial hyperintensity bands
in the coronal scan that were visualized with details on this
image because their main axis was parallel to the slice select
direction. These structures are much better visualized by the
T2W contrast than by the contrast in MPRAGE or FLAIR
scans, but may become obscured by partial voluming in the
slice select direction (b).

We reconstructed a high-resolution image at isotropic
resolution of 0.5 mm3 from the axial and coronal FSE scans
using the SRR technique. For comparison, we resampled
both axial and coronal FSE scans to the space of the SRR
image by using cubic b-spline interpolation. Sagittal and axial
sections of these images have been shown in Fig. 9, where
(a), (b), and (c) correspond to SRR, resampled axial, and
resampled coronal images, respectively. Circles and squares

highlight some of the differences between these images,
caused by partial voluming. It is clearly observed in both
axial and sagittal views of (c) that the radial lines (highlighted
by squares) were separately visualized (with high SNR and
contrast) on the coronal scan because their axes were exactly
parallel to the slice select direction in this scan [also see
Figs. 8(b) and 9(c)], but were mixed and obscured on the
axial scan (b). Partial voluming, in fact, enhanced the contrast
of these structures on the coronal scan. On the other hand, the
structures highlighted by circles were visualized on the axial
scan in (b) but were obscured on the coronal scan in (c).

While some of the structures were visualized with fine
details on the coronal image (c), such as the ones highlighted
by the squares, others, such as those highlighted by circles,
were obscured by partial voluming in this image. These
structures were better visualized on the axial (b) and SRR
(a) images. To evaluate the 3D visibility of all structures
on the SRR and the original scans, we segmented the white
matter tissue and used automatic intensity-based thresholding
followed by connected component analysis to segment the
hyperintense radial bands of white matter in the images.
The last row in Fig. 9 shows triangular-mesh surface model
rendering of the radial bands on a transparent surface model
rendering of the white matter tissue. The comparison of this
figure for the three images shows that many lines in the
superior part of the brain were obscured and not detected
on the coronal image (c), and many lines in the posterior part
of the brain were obscured or mixed in the axial image (b).
These have been highlighted by circles. On the other hand,
the highest number of hyperintensity lines was detected and
visualized on the SRR image (a).

Figure 10 shows the results of SRR in all ten TSC patients.
For each patient, the SRR image is shown in (a), the resampled
axial image is shown in (b), the resampled coronal image
is shown in (c), and the average of the resampled axial
and coronal images is shown in (d) for comparison. We
observed that SRR improved the resolution and reduced partial
voluming effects in all cases except in C10. Uncompensated
motion between scans in C10 compromised the quality of
SRR. The squares in this figure highlight the structures that
were visualized with anatomic details on the SRR but were
severely affected by partial voluming effects in the axial image.

F. 8. This figure shows the out-of-plane sagittal views of (a) the axial and (b) the coronal FSE scans of a TSC patient, (c) the corresponding sagittal view
of a T1W MPRAGE scan, and (d) the corresponding sagittal view of a FLAIR scan of the same patient; the arrows show the slice select direction on the FSE
scans; circles highlight some of the thin structures with axis that were almost exactly parallel to the slice select direction in the coronal FSE scan so could be
appropriately visualized on the coronal FSE scan despite the 2 mm slice thickness. Image (b), on the other hand, shows that these thin structures may easily
be obscured by partial volume effect when they are not parallel to the slice select direction. Although the details of the anatomy have been visualized on the
high-resolution MPRAGE and FLAIR scans, many of these structures, such as the abnormal radial bands of white matter, are best visualized by T2W FSE scan.
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F. 9. From top to bottom, this figure shows sagittal and axial views and a 3D rendered segmentation of the brain and the hyperintensity radial bands of white
matter abnormalities on (a) SRR image, (b) resampled axial FSE, and (c) resampled coronal FSE scans. The circles and squares highlight some of the differences
between images due to partial volume effects in the slice select direction. Collectively visual comparison shows that thin structures can be easily obscured and
overlooked in thick-slice FSE scans, but are better delineated in 3D using SRR by fusing thick-slice scans. The 3D rendering also shows how some radial lines
were missed and some were visualized on the axial and coronal scans in (b) and (c), but were generally better segmented and visualized on the 3D rendered SRR
image (a). The circles on the 3D rendered images highlight some of the structures that were missed or mixed due to partial voluming.

Some of these structures were severely affected by partial
voluming in both coronal and axial images, e.g., cases C6,
C7, and C9. Circles, on the other hand, highlight some of the
structures that were severely affected by partial voluming in

the coronal image but visualized with anatomic details on the
SRR image.

For visual perceptual evaluation of image resolution in the
resampled out-of-plane views, an expert radiologist blindly
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F. 10. Selected slices of SRR image (a), and resampled axial (b), coronal (c), and the average of axial and coronal images (d) of ten TSC patients. This figure
shows that the details of the anatomy and the radial hyperintensity lines of white matter abnormalities were much better delineated with SRR as compared to the
original and average scans in 9 out of 10 cases. Uncompensated motion between the scans in C10 compromised the quality of SRR. The squares in this figure
highlight the structures that were visualized with details on the SRR images but were severely affected by partial voluming effects in the axial images. Some
of these structures were severely affected by partial voluming in both coronal and axial images. Circles, on the other hand, highlight some of the structures that
were visualized with details on the SRR and axial images but were severely affected by partial voluming in the coronal image.

ranked the original and the reconstructed images in the
resampled sagittal view. The focus in this evaluation was on
resolution rather than noise or image artifacts or sharpness;
therefore, the radiologist evaluated the delineation of small
structures and tissue interfaces in the images and ranked the

images accordingly. The results, summarized in row 1 of
Table II, showed that SRR images ranked first in all cases.
The difference in scores between the SRR images and the
resampled axial and coronal scans was statistically significant.
In the second evaluation, an expert counted the number of
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T II. Statistics of radiologist expert blind ranking and “obscured struc-
ture” counting of the SRR and the original images of ten neuroimaging
cases resampled at high resolution in the out-of-plane (sagittal) view. SRR
consistently ranked first in all comparisons and showed the lowest average
number of obscured structures. Paired two-tailed t-tests showed significant
differences between the scores. The asterisk shows a statistically significant
difference at p < 0.05.

Blinded expert evaluation SRR Axial Coronal

Average ranking (1–3) 1∗ 2.6 2.4
Average no. of obscured structures 1.11∗ 2.28 2.53

obscured structures (due to partial voluming) in seven regions
of interest in the axial, coronal, and sagittal planes of the SRR
and resampled original images of each case. Average values
are shown in row 2 of Table II. The difference between the
average values for SRR and the original images was significant
(at alpha threshold of 0.05).

4. CONCLUSIONS

The analysis, experimental results, and comparisons in
this study show that all super-resolution image reconstruction
techniques improved the appearance of image structures in
the out-of-plane views of the original thick-slice scans. The
analyses also show that the performance of the techniques
depends on their parameters, including the models of PSF
and slice profile in image-based SRR and wavelet fusion,
and density compensation in k-space fusion. Previous studies
showed that SRR is capable of improving the trade-off between
resolution, SNR, and acquisition time.6,19 We argue that
the most prominent application of these techniques is when
isotropic high-resolution imaging is not possible or optimal
due to scan time limitations, due to contrast properties, or to
avoid motion. The rationale behind calling these techniques
super-resolution is that they follow the concepts of super-
resolution reconstruction in image and video processing.8

Super-resolution, by definition, is considered extrapolation
in the frequency domain, as compared to compressed sensing,
which is considered interpolation in the frequency domain.12

Accordingly, SRR in MRI is feasible through shifted sampling
in the slice select direction,29,30 and does not necessarily
require the acquisition of orthogonal scans or scans with
rotated slice select directions. Motion-robust super-resolution
methods13–15,36 are not restricted to any specific type of
acquisition but rely on subject motion and motion correction
to render the information-rich sampling required for high-
resolution reconstruction. The acquisition of two or three scans
with orthogonal slice select directions or multiple rotated slice
stacks19 provides better coverage of the k-space but successful
reconstruction is still dependent upon proper modeling of the
slice profile in image-based SRR or density compensation
in the frequency-domain approach. While more realistic or
experimental models of slice profile and in-plane point spread
function can be incorporated into the techniques in image
and frequency domain, models of slice profile in the wavelet
domain are limited to wavelet basis functions.

Image-based SRR seems to be the most flexible and
generic framework for the fusion of 2D slice acquisitions as
it may allow incorporation of complex models of motion,
slice profile, slice geometry, and point spread function, but
k-space SRR also shows great potential if precise PSF models
and density compensation are achieved. While motion can
be incorporated at the slice level in image-based SRR,13,36

only scan-level rigid-body motion can be incorporated into the
wavelet and k-space fusion approaches. Consequently, image-
based SRR has been successfully applied to applications like
fetal brain MRI, where robust estimation strategies could also
be effectively used due to the relatively large number of images
used in the reconstruction.13,14 Image-based SRR has been
extended to 4D MRI applications such as diffusion-weighted
MRI (Refs. 16 and 26) and 4D thoracic MRI.18

From an application viewpoint, while thick-slice MRI
scans, such as T2-weighted FSE and FLAIR, may provide
diagnostic-quality, appealing views of the anatomy with very
high SNR, they should be used carefully, considering that
small structures may easily get obscured by partial voluming
in slices that may be 2 mm or thicker. Advantage of thick-
slice scans is the time saving per sequence and their high
SNR. Through averaging signal over the slice thickness, the
thick-slice scans provide more information in each planar
view for the radiologist assessment, for example, through
projecting the direction of radial bands into the plane;
but this is gained at the increased risk of missing small
structures or abnormalities due to partial voluming. Super-
resolution reconstruction enables thick-slice scans, acquired
in orthogonal views, to be retrospectively fused to generate
images with isotropic high spatial resolutions for improved
computer-aided analysis. The use of high spatial resolution
T2-weighted imaging through super-resolution or other high-
resolution imaging techniques remains to be investigated in
detail in quantitative evaluation of radial bands, lesions, and
tubors in the classification and prognosis of TSC and other
complex disorders, which may lead to improved strategies for
the management and treatment of these disorders.
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