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Abstract Abnormalities in lysosomal function have been re-
ported in diabetes, aging, and age-related degenerative dis-
eases. These lysosomal abnormalities are an early manifesta-
tion of neurodegenerative diseases and often precede the onset
of clinical symptoms such as learning and memory deficits;
however, the mechanism underlying lysosomal dysfunction is
not known. In the current study, we investigated the mecha-
nism underlying lysosomal dysfunction in the cortex and hip-
pocampi, key structures involved in learning andmemory, of a
type 2 diabetes (T2D) mouse model, the leptin receptor defi-
cient db/db mouse. We demonstrate for the first time that
diabetes leads to destabilization of lysosomes as well as alter-
ations in the protein expression, activity, and/or trafficking of
two lysosomal enzymes, hexosaminidase A and cathepsin D,
in the hippocampus of db/db mice. Pioglitazone, a
thiazolidinedione (TZD) commonly used in the treatment of
diabetes due to its ability to improve insulin sensitivity and
reverse hyperglycemia, was ineffective in reversing the
diabetes-induced changes on lysosomal enzymes. Our previ-
ous work revealed that pioglitazone does not reverse hyper-
cholesterolemia; thus, we investigated whether cholesterol
plays a role in diabetes-induced lysosomal changes. In vitro,
cholesterol promoted the destabilization of lysosomes,

suggesting that lysosomal-related changes associated with di-
abetes are due to elevated levels of cholesterol. Since lyso-
some dysfunction precedes neurodegeneration, cognitive def-
icits, and Alzheimer’s disease neuropathology, our results may
provide a potential mechanism that links diabetes with com-
plications of the central nervous system.
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Introduction

Diabetes mellitus, which currently affects 25.8 million Amer-
icans, is a complex metabolic disorder characterized by hy-
perglycemia. Type 2 diabetes (T2D) accounts for approxi-
mately 90–95 % of all diabetes cases and is associated with
obesity and hyperinsulinemia. Various complications are as-
sociated with diabetes, including retinopathy, nephropathy,
neuropathy, and cardiovascular disease [1], and the impact
of diabetes on the central nervous system is gaining attention.
It is also believed by some that diabetes accelerates brain
aging [2, 3]. Aging and age-related diseases may involve ab-
normalities in the endosomal-lysosomal system, which is an
early manifestation of neurodegeneration [4]. Furthermore,
lysosomal dysfunction contributes to the accumulation of pro-
tein aggregates, a common occurrence in neurodegenerative
disorders [5, 6].

Lysosomes are involved in numerous functions, including
cell death, exocytosis, endocytosis/phagocytosis, and autoph-
agy. Many of these functions are dependent upon the action of
acid hydrolase enzymes within the lysosome that can degrade
lipids, carbohydrates, proteins, nucleic acids, or cellular de-
bris. Hexosaminidase A is a lysosomal enzyme that converts
GM2 ganglioside to G3M by removing an N-acetyl-
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glucosamine residue, thereby playing a role in the regulation
of insulin sensitivity [7, 8]. In addition, cathepsin D is one of
the major lysosomal proteases that contributes to the conver-
sion of proinsulin to insulin in Langerhans cells and rat hepa-
tocytes [9], and it is also involved in the degradation of insulin
[10, 11].

Thiazolidinediones (TZDs), a class of drugs known to im-
prove insulin sensitivity, are commonly used for the treatment
of diabetes. TZDs are ligands for peroxisome proliferator-
activated receptors (PPAR-γ) and improve insulin sensitivity
by lowering serum glucose and insulin levels, increasing pe-
ripheral glucose uptake, and decreasing triglyceride levels [12,
13]. In fact, studies have demonstrated the beneficial effects of
TZDs in neurodegenerative diseases associated with the ab-
normal accumulation of protein aggregates [14–17]. One such
TZD is pioglitazone (Actos), which improves hyperglycemia,
reduces hyperinsulinemia, and ameliorates hypertriglyc-
eridemia in a variety of animal models of obesity and insulin
resistance [18–23]. Pioglitazone does not improve cholesterol
levels in mice (personal communication, [24]).

Hypercholesterolemia is present in 70 % of adults diag-
nosed with diabetes [25]. In T2D, serum cholesterol is elevat-
ed secondary to altered cholesterol synthesis and absorption
[26, 27].When in excess, cholesterol is oxidized by enzymatic
or reactive oxygen species (ROS)-mediated pathways. Oxi-
dized cholesterol is increased in T2D [28, 29] and disrupt
cellular membranes [30], especially lysosomal membranes
[31]. Disrupted lysosomes are incapable of effectively remov-
ing ROS-damaged macromolecules [32]. This leads to a feed-
forward cycle of damage, where ROS promote the oxidation
of cholesterol, resulting in lysosomal injury.

Alterations in lysosomal function in diabetes have been
documented in the liver, kidney, heart, saliva, whole brain,
and plasma [33–36]. Our previous work in the hippocampi
of a well-characterized mouse model of T2D, the db/db
mouse, revealed differential expression in genes related to
the lysosome [37]. Previous studies have reported alterations
in the central nervous system including cognitive impairment
and evidence of neurodegeneration in the db/db mouse
[38–44]. Therefore, in this study, we characterized lysosomal
function in the cortex and hippocampus of the db/db mouse.
To determine a potential mechanism underlying lysosomal
dysfunction in diabetes, we treated the db/db mice with pio-
glitazone to ameliorate diabetes and performed subsequent
in vitro studies to confirm.

Materials and Methods

Animals

Control db+ and T2D db/db mice (BKS.Cg-m +/+ Leprdb/J,
JAXmice stock no. 000642) were purchased from the Jackson

Laboratory (Bar Harbor, ME). Mice were fed a standard ro-
dent chow from Lab Diet (#5053) ad libitum. For pioglitazone
studies, db+ and db/db mice were fed a standard diet (5LOD;
Research Diets, New Brunswick, NJ) supplemented with or
without 112.5 mg of pioglitazone per kg of chow for a final
dosage of 15 mg/kg to the mouse beginning at 5 weeks of age.
To document the persistence of diabetes, fasting blood glucose
levels were measured every 4 weeks by analyzing one drop of
tail blood after a 6-h fast using a standard Glucometer (One
Touch Ultra, Milpitas, CA). Mice were euthanized at either ∼8
or ∼20 weeks of age.

Tissue Preparation

The mice were euthanized according to our published proto-
cols with an overdose of sodium pentobarbital, and the tissue
was processed as follows per our previously published proto-
cols [45]. For western immunoblotting analyses and enzyme
activity assays, the hippocampus and cortex from the dissect-
ed brains were prepared as previously described by homoge-
nizing the tissues in tissue protein extraction reagent (Pierce,
Rockford, IL) containing a protease inhibitor cocktail
(Calbiochem, San Diego, CA). For immunohistochemistry
(IHC), mice were perfused with 30 ml of 2 % paraformalde-
hyde-lysine-periodate, the whole brains were removed and
immersed in the same fixative overnight, and the brains were
then cryoprotected in PBS (0.1 M, pH 7.2) with 30 % sucrose
prior to embedding in OCT compound (Sakura Finetek, Tor-
rance, CA). The brains were then sectioned (20 μm) using a
CM1850 cryostat (Leica Microsystems Inc., Bannockburn,
IL), mounted onto SuperFrost glass slides (Fisher Scientific,
Pittsburgh, PA), and stored at −20 °C until use. For cell frac-
tionation and flow cytometry, the mice were perfused with 15-
ml PBS, and the cortex and hippocampus were removed and
immediately processed as described below.

Western Immunoblotting

Western immunoblotting was performed as previously de-
scribed [45, 46]. Briefly, the tissue lysates were either separated
by SDS-PAGE and transferred to a nitrocellulose membrane or
used to determine enzyme activity as described below. Tris-
buffered saline with Tween-20 supplemented with 5 % milk
was used to block the membrane and to dilute the antibodies.
Polyclonal antibodies against cathepsin D (Santa Cruz Biotech-
nology, Inc., Santa Cruz, CA), β-hexosaminidase (ProteinTech
Group, Inc., Chicago, IL), and actin (Santa Cruz Biotechnolo-
gy, Inc., Santa Cruz, CA), as well as appropriate horseradish
peroxidase-conjugated secondary antibodies (Santa Cruz
Biotechnology, Inc.), were used for western immuno-
blotting. The signal was visualized using LumiGLO-
enhanced chemiluminescence reagent (Cell Signaling
Technology, Danvers, MA). Images were captured using
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the Chemidoc XRS system and analyzed by Quantity
One software (Bio-Rad Laboratory, Hercules, CA).

Enzyme Assays

The activity of β-hexosaminidase A and cathepsin D was
measured in 4–5 μg of protein cell lysate from the cortex
and hippocampus at 8 and 20 weeks of age (n≥5 for each
group) in a 96-well plate. To measure β-hexosaminidase A
activity, 3.2 mM 4-methylumbelliferyl-6-sulfo-N-acetyl-β-D-
glucosaminide (MUGS) potassium salt (Santa Cruz Biotech-
nology, Santa Cruz, CA) was added to the cell lysate and
incubated for 1 h at 37 °C. Next, 2-amino-2-methyl-1-
propanol (0.1 M) was added, and fluorescence was read im-
mediately with a 355-nm excitation filter and 460-nm emis-
sion filter using a Fluoroskan Ascent II plate reader
(LabSystems, Helsinki). Cathepsin D activity was assessed
using the cathepsin D activity assay kit (BioVision, Mountain
View, CA) according to the manufacturer’s instructions. Fluo-
rescence was read with a 320-nm excitation filter and 460-nm
emission filter.

Cell Fractionation

Dissected cortex and hippocampus were homogenized in ho-
mogenization medium (HM: 0.32 M sucrose, 1 mM
Na2EDTA, 10 mM HEPES; pH 7.0) and centrifuged at 800g
for 10 min at 4 °C. The supernatant was kept on ice, and the
pellet was resuspended in HM and centrifuged again. The
supernatants from both centrifugation steps were combined
and centrifuged at 20,000g for 15min at 4 °C. The supernatant
was centrifuged at 300,000g for 2 h at 4 °C to obtain the
cytosol, and the pellet was resuspended in HM and layered
over a 27 % Percoll solution (Sigma) diluted with Percoll
diluent (2.5 M sucrose, 10 mM Na2EDTA, 100 mM HEPE
S; pH 7.0). The sample was centrifuged for 95min at 20,000g.
Lysosomes were collected from the layer near the bottom of
the gradient and centrifuged for 50 min at 100,000g.

Measurement of Intralysosomal pH

The measurement of intralysosomal pH was performed using
flow cytometry with minced cortex and hippocampus
(separately) that were trypsinized at 37 °C for 6 min. The
tissue was triturated with Leibovitz (L15) media, filtered
(70 μm), and centrifuged at 155g for 5 min at 4 °C. The pellet
was resuspended in PBS. A standard curve was generated in
LysoSensor Yellow/Blue DND-160 (2 mM; Invitrogen Mo-
lecular Probes) dye-loaded cell suspension using a series of
phosphate-citrate buffers containing various mixtures of
300 mM KH2PO4 and 300 mM citric acid ranging in pH 2–
6, supplemented with the inophores nigericin and monensin
(Sigma Aldrich; 10 μmol/L) to facilitate the equilibration of

intralysosomal pH with the buffer. The cell suspension was
allowed to equilibrate for 10 min. The standard curve was
generated by exciting at 355 nm and plotting the emission
fluorescence ratio (550/21 nm) of DND-160-loaded cells as
a function of the actual pH, which was assessed on a standard
pH meter. The intralysosomal pH of the lysosomes in the
cortex or hippocampus from db+ and db/db mice was calcu-
lated by extrapolation from the standard curve.

Immunohistochemistry

Brain sections were heated on a 55 °C slide warmer for
10 min, hydrated in PBS for 5 min, and permeabilized with
PBS containing 0.3 % Triton X-100 and 3 % milk. Sections
were incubated in primary antibodies diluted in PBS contain-
ing 0.3 % Triton X-100 and 1%BSA in a humidified chamber
overnight at 22 °C. A polyclonal antibody against lysosomal
associated membrane protein-1 (LAMP-1; Abcam,
Cambridge, MA) was used for IHC. After rinsing with PBS,
sections were incubated with the appropriate secondary anti-
body conjugated with AlexaFluor 594 (Molecular Probes, Eu-
gene, OR) for 1 h at room temperature. Following three rinses
with PBS, the sections were incubated for 3 h at room tem-
perature in the dark with 10 μg/ml filipin complex (Sigma, St.
Louis, MO). After rinsing with PBS, coverslips were mounted
with Prolong anti-fade mounting medium (Molecular Probes,
Eugene, OR). Images were captured using a Spot-RT camera
(Diagnostic Instruments Inc., Sterling Heights, MI) attached
to a Nikon Microphot-FXA microscope.

Primary Cortical Neuron Experiments

Primary cortical neurons (CN) were prepared as previously
described [47]. Briefly, the cortex from E13 B6C3F1/J mice
were dissected, dissociated with trypsin, and plated on poly-L-
lysine (PLL)-coated tissue culture plates or coverslips. CN
were maintained in neurobasal media (Invitrogen, Grand Is-
land, NY) containing 5 mM glucose, supplemented with 1×
B27 (without antioxidant; Invitrogen), antibiotics (penicillin,
streptomycin, and neomycin; Sigma), 2.5 μg/ml albumin,
10 μg/ml apo-transferrin, 0.1 μg/ml biotin, 15 μg/ml D-galac-
tose, 7 ng/ml progesterone, 16 μg/ml putrescine, 4 ng/ml se-
lenium, 3 ng/ml β-estradiol, 4 ng/ml hydrocortisone, 3 μg/ml
catalase, and 2.5 μg/ml superoxide dismutase. CN were cul-
tured for 6 days prior to use, with an addition of fresh media
on day 3. CN treatment media (neurobasal media without B27
and antibiotics) was used to carry out the experiments indicat-
ed below.

In vitro experiments involved treating primary CN with
25 mM of glucose [47] with or without 5 μM oxidized cho-
lesterol (27-hydroxycholesterol; Medical Isotopes, Inc.,
Pelham, NH; Prasanthi et al. 2009) for 72 h. Lysosomal de-
stabilization was measured using acridine orange (AO), a
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lysosomotropic weak base, and metachromatic fluorochrome.
Briefly, 5 μg/ml AO in neurobasal medium was incubated
with CN on coverslips for 15 min at 37 °C. After the cells
were washed and treated as outlined above, microscopic as-
sessment of lysosomes was performed using an Olympus IC-
71 inverted confocal microscope and FluoView v4.3 software.
Quantitative analysis was performed after staining and treat-
ment of CN in a 96-well clear bottom/black walled plate using
a Fluoroskan Ascent FL instrument. When excited by a blue
light (450 nm), AO fluoresces red (612-nm wavelength
emission) at high lysosomal concentrations and green (520-
nm wavelength emission) at low nuclear and cytosolic con-
centrations. Rupture of AO-loaded lysosomes shows an in-
crease in cytoplasmic diffuse green fluorescence and a de-
crease in granular red fluorescence [48, 49].

Statistical Analyses

Data analyses were performed using Prism v6 (GraphPad
Software, Inc.). Assumptions about Gaussian distribution of
data were made using the D’Agostino and Pearson omnibus
normality test. Data not corresponding to a Gaussian distribu-
tion were analyzed using an appropriate mathematical trans-
formation, log (x). At least 10 mice per group at 8 and
20 weeks of age were used for metabolic studies. For all other
measures, at least 5 mice per group were used. t test was used
in experiments where T2D was compared to the nondiabetic
control. For all experiments, *p<0.05, **p<0.01, #p<0.001,
and Φp<0.0001 and bar graphs illustrate the mean±standard
error of the mean (SEM).

Results

Cortical and Hippocampal Changes in Hexosaminidase
A Protein Expression and Activity in T2D

We evaluated the lysosomal enzyme β-hexosaminidase A to
examine lysosomal function in T2D.While hexosaminidase A
protein expression did not change in the cortex, it was signif-
icantly increased in the hippocampus by 33 % at 8 weeks and
28 % at 20 weeks in T2D compared to the nondiabetic control
(Fig. 1a, b). Likewise, the activity of hexosaminidase A did
not change in the cortex; however, it decreased by 10 % in the
hippocampus of T2D mice at 8 weeks of age and increased by
8 % in the hippocampus of T2D mice at 20 weeks of age
compared to the nondiabetic control (Fig. 1c, d).

Cortical and Hippocampal Changes in Cathepsin D
Protein Expression and Activity in T2D

To further examine lysosomal function in T2D, the protein
expression and activity of the major lysosomal protease,

cathepsin D, were also evaluated. The protein expression of
cathepsin D in T2D mice significantly increased by 55 % at
8 weeks and 118 % at 20 weeks in the cortex, and by 46 % at
8 weeks and 64 % at 20 weeks in the hippocampus,
compared to nondiabetic control (Fig. 2a, b). This in-
crease in protein expression in the cortex at 20 weeks
of age was associated with a 21 % decrease in the
activity of cathepsin D in T2D compared to the nondi-
abetic control, whereas the activity of cathepsin D did
not change in the hippocampus (Fig. 2c, d).

The processing of cathepsin D in the Golgi, endosomes,
and lysosomes correspond to the 3 major forms—immature,
intermediate, and mature, respectively. Alterations in the ac-
tivity of cathepsin D are associatedwith the mature form of the
protein. Since the protein expression of cathepsin D is signif-
icantly increased in the cortex of T2D but the activity is de-
creased, we assessed the 3 major forms of cathepsin D in the
cortex to evaluate whether or not T2D alters the trafficking
pattern of cathepsin D. We observed a significant increase in
both the intermediate and mature forms of cathepsin D in T2D
compared to the nondiabetic control (Fig. 2e, f).

Lysosomal Membrane Integrity, But Not pH,
Is Compromised in T2D

The activity of cathepsin D was expected to parallel the
direction of the protein expression of the mature form of
cathepsin D; however, we observed a decrease in the ac-
tivity with an increase in the protein expression of the
mature form of cathepsin D in the T2D db/db mouse
cortex. This may be due to either a compromised lyso-
somal membrane with subsequent leakage of the mature
form of cathepsin D into the cytosol, or an alteration in
intralysosomal pH in the db/db mouse cortex that renders
mature cathepsin D inactive. Thus, western immunoblot-
ting following cell fractionation was used to assess the
integrity of lysosomal membranes in T2D. The protein
expression of both lysosomal enzymes hexsoaminidase A
and cathepsin D in the cytosol was increased by at least
100 % in the db/db mouse hippocampus/cortex compared
with the nondiabetic control (Fig. 3a, c), whereas the pro-
tein expression levels of the lysosomal enzymes were not
significantly different in the lysosomal fraction of db/db
mice compared with the nondiabetic control (Fig. 3b, d).
Flow cytometry was then utilized to assess the potential
alterations in the intralysosomal pH in T2D cortex and
hippocampus. The average intralysosomal pH in the cortex
of the db+ and db/db mice was 4.75±0.87 and 4.71±1.1,
respectively (data not shown). Similarly, the average
intralysosomal pH in the hippocampus of the db+ and
db/db mice was 4.75±0.39 and 4.68±0.39, respectively
(data not shown).

2290 Mol Neurobiol (2016) 53:2287–2296



Elevated Levels of Glucose Can Cause Destabilization
of the Lysosomal Membrane

To determine a potential mechanism underlying the lysosomal
destabilization and leakage associated with T2D, AO staining
was used on live primary CN cultures in the presence or

absence of 25 mM glucose treatment. An increase in
the green cytosolic fluorescence and/or a decrease in
red punctate lysosomes are indicative of a loss of mem-
brane integrity. Microscopy of live cells revealed that
25 mM of glucose treatment for 72 h led to the loss
of red lysosomal staining (Fig. 4).

Fig. 1 Protein expression and
activity of the lysosomal enzyme
hexosaminidase A in the brain of
T2Dmice. a, b Protein expression
and c, d activity of
hexosaminidase A in the cortex
(a, c) and hippocampus (b, d) of
db+ and db/db mice at 8 and
20 weeks of age. Actin was used
as the loading control (*p<0.05
and **p<0.01 compared with
db+; n≥6). Activity is expressed
in relative fluorescence units
(RFU)

Fig. 2 Protein expression and
activity of the major lysosomal
protease cathepsin D in the brain
of T2D mice. a, b Protein
expression and c, d activity of
cathepsin D in the cortex (a, c)
and hippocampus (b, d) of db+
and db/db mice at 8 and 20 weeks
of age. e Representative
immunoblot and f densitometric
analysis of the protein expression
and subcellular distribution of
cathepsin D in the cortex. Actin
was used as the loading control
(*p<0.05, **p<0.01, #p<0.01,
and Φp<0.0001 compared with
db+; n≥6). Activity is expressed
in relative fluorescence units
(RFU)
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Pioglitazone Improves the Hyperglycemic Phenotype
But Not Alterations in Lysosomal Membrane Integrity
Associated with T2D

Pioglitazone treatment worsens the obesity phenotype of db/
db mice and also significantly increases the weight of db+
mice; however, it reverses the elevated levels of blood glu-
cose, glycosylated hemoglobin, and triglycerides in db/db
mice back to levels similar to those in control db+ mice (per-
sonal communication, [24]). Thus, to determine if pioglita-
zone can effectively reverse the leakage of lysosomal enzymes
into the cytosol, the protein expression levels of
hexoaminidase A and cathepsin D were evaluated following
pioglitazone treatment in db+ and db/db mice. While pioglit-
azone did not alter the total protein expression levels of

hexosaminidase A or cathepsin D (data not shown), pioglita-
zone treatment did elevate the levels of cathepsin D in the
cytosol following cell fractionation (Fig. 5).

Elevated Levels of Cholesterol Within Lysosomes in T2D

Fast protein liquid chromatography analyses indicate that pi-
oglitazone treatment does not reverse the levels of cholesterol
and promotes an increase in the low density lipoprotein (LDL)
cholesterol fraction in db/db mice compared to nondiabetic
controls [24]. Thus, to evaluate cholesterol load in the lyso-
somes of db/db mice, fillipin staining was used. We observed
an increase in the colocalization of fillipin and the lysosomal
membrane protein LAMP-1 in the cortex and hippocampus of
db/db mice compared with db+ control mice (Fig. 6).

Cholesterol Can Cause Destabilization of the Lysosomal
Membrane

To investigate cholesterol as a potential mediator underlying
the destabilization and leakage of lysosomes associated with
T2D, AO staining was used in live CN treated with and with-
out oxidized cholesterol. Quantitative analysis of the AO
staining of live CN revealed that oxidized cholesterol treat-
ment for 72 h led to an increase in green fluorescence and a
decrease in the red lysosomal staining (Fig. 7).

Discussion

In the current study, we investigated the mechanisms under-
lying alterations in lysosomal function induced by diabetes.
Hyperglycemia is a key player in many complications associ-
ated with diabetes. Thus, according to the American Diabetes
Association, tight glycemic control with either drugs or diet

Fig. 3 Hexosaminidase A and
cathepsin D levels in the
hippocampus/cortex of T2D
mouse brains. Cell fractionation
was utilized to isolate the
cytosolic and lysosomal fraction
from the hippocampus/cortex of
T2Dmice at 20 weeks of age. a, b
The levels of hexosaminidase A
and c, d cathepsin D in the
cytosolic (a, c) and the lysosomal
fraction (b, d) from the
hippocampus/cortex of db+ and
db/db mice. Actin was used as the
loading control (*p<0.05
compared with db+; n≥6)

Fig. 4 AO staining in CN treated with glucose. a–c Representative
images of control CN and d–f and CN treated with 25 mM glucose for
72 h. Nuclei are stained; green and red puncta represent lysosomes (white
arrows). Scale bar represents 25 μm
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and exercise is the most effective method for preventing dia-
betic complications. We show for the first time that cholester-
ol, and not hyperglycemia, may mediate the changes observed
in lysosomal function during diabetes in the hippocampus/
cortex. Abnormalities in the lysosomal system are early man-
ifestations of neurodegeneration [4]; thus, altered cholesterol
metabolism may play a role in diabetes-induced lysosomal
changes and neurodegeneration.

The expression of both hexosaminidase A and cathepsin D
is upregulated in neurodegenerative diseases [50–53]. Hexos-
aminidase A removes N-acetyl-glucosamine residue from
GM2 ganglioside, converting it to GM3. Obesity leads to a
dramatic increase in the protein levels of GM2 in adipose
tissue in a mouse model of T2D [54]. Hence, the increase in
protein expression observed in the hippocampus of the db/db
mouse may be due to obesity. Consistent with our observed
increase in hexosaminidase A activity in the db/db mouse
hippocampus, T2D patients have increased activity of hexos-
aminidase A in plasma and serum [36]. Thus, increased activ-
ity of hexosaminidase A in plasma and peripheral blood
mononuclear cells may have diagnostic value for the detection
of the early stages of dementia in Alzheimer’s disease (AD)
patients with and without T2D [36].

Cathepsin D is the major lysosomal protease in neurons,
contributing to nearly 90 % of protease degradation in the
brain [55]. The increase in protein expression we observed
in both the cortex and hippocampus is consistent with previ-
ous studies in T2D patients reporting that the expression of
cathepsin D is increased in serum and leucocytes [56, 9]. On
the other hand, the decrease in the activity of cathepsin D we
observed is unique to our studies in T2D and may be indica-
tive of abnormalities in the trafficking of cathepsin D to lyso-
somes. The trafficking of cathepsin D was assessed by evalu-
ating the 3 different isoforms—immature, intermediate, and
mature—which correspond to trafficking from the Golgi,
endosomes, and lysosomes, respectively [57]. The acidic en-
vironment of lysosomes provides a platform for proteolytic
cleavage of the intermediate form of cathepsin D to the mature
form [57]. Thus, any alterations in the pH of lysosomes may
impact the levels of the mature form of the enzyme. Our data
indicate that the pH within lysosomes is not altered during
T2D. Alternatively, the elevated levels of cathepsin D in the
cytosolic fraction in db/db mice suggests that the lysosomal
membrane may be compromised. This would explain the ele-
vated protein levels of cathepsin D and the decrease in the
activity due to lack of acidic pH in the cytosol. The

Fig. 5 Levels of cathepsin D following treatment with pioglitazone in
T2D mice Levels of cathepsin D in the a cytosolic fraction and b
lysosomal fraction of hippocampus and cortex from db+ and db/db mice

treated with and without pioglitazone (PIO) at 16 weeks of age. *p<0.05,
**p<0.01, #p<0.01, and Φp<0.0001 compared with db+; n≥6

Fig. 6 Cholesterol accumulation
within lysosomes of T2D mice.
Representative images of
hippocampus colabeled with
filipin (green), which stains
cholesterol, and LAMP-1 (red),
which stains lysosomes, in a–c
db+ and d–f db/db mice. Areas of
colocalization (yellow)
demonstrate cholesterol
accumulation within lysosomes
(asterisks). Scale bar represents
10 μm
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mechanism underlying this damage to the membrane of lyso-
somes is not known; however, oxidative stress is associated
with leakage of cathepsin D into the cytosol from the lyso-
some in both in vivo and in vitro models [58, 59].

Hyperglycemia is the key player leading to oxidative stress
during T2D. To investigate hyperglycemia as the mechanism
underlying lysosomal membrane damage, we exposed CN to
hyperglycemic conditions, demonstrating that hyperglycemia
causes destabilization of the lysosomal membrane. A previous
study demonstrated that hyperglycemia inhibited lysosomal
function in macrophages and may contribute to diabetes-
associated atherosclerosis [60]. Thus, reversing hyperglyce-
mia may have a profound impact on lysosomal membrane
stability.

Pioglitazone is known to improve hyperglycemia, reduce
hyperinsulinemia, and ameliorate hypertriglyceridemia in a
variety of animal models of obesity and insulin resistance
[22, 21, 20, 19, 18]; however, pioglitazone did not reverse
the alterations in lysosomal enzymes and in fact lead to a
further increase in the levels of cathepsin D in the cytosol.
We previously demonstrated that pioglitazone does not im-
prove hypercholesterolemia in db/db mice [24]. In addition,
in patients with T2D, serum cholesterol is elevated secondary
to altered cholesterol synthesis and absorption [27, 26]. When
in excess, cholesterol is oxidized by enzymatic or reactive
oxygen species-mediated pathways to generate cholesterol
oxides. Cholesterol oxide derivatives, known as oxysterols,

are common components of oxidized LDLs, are increased in
T2D [29, 28], and disrupt lysosomal membranes [31]. We
demonstrate that oxysterols are capable of disrupting lyso-
somal membranes in primary CN. Thus, it is possible that
pioglitazone did not improve the T2D-induced effects on ly-
sosomes due to its inability to reverse hypercholesterolemia in
db/db mice.

In summary, it is likely that multiple mechanisms contrib-
ute to the alterations in lysosomal enzymes during diabetes.
We demonstrate that improving hyperglycemia, insulin resis-
tance, and hypertriglyceridemia alone is not sufficient to re-
verse diabetes-induced changes in lysosomal membrane sta-
bility, although our studies further demonstrate that hypercho-
lesterolemia plays a role in lysosomal membrane destabiliza-
tion. Future studies will focus on cholesterol as a potential
therapeutic target to reverse or prevent the impact of T2D on
lysosomal enzymes.
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