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INTRODUCTION

Meta-analysis of diagnostic test accuracy studies is a 
useful method to increase the level of validity by combining 
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data from multiple studies. Ideally, an analytic method used 
for this type of meta-analysis should estimate diagnostic 
accuracy with the least bias, incorporating various factors 
known to affect the results. Several different methods have 
been proposed for meta-analysis of diagnostic test accuracy 
studies (1-7), but there is still considerable uncertainty 
regarding the best method to synthesize those studies (8). 
These methods provide either summary points of different 
accuracy parameters (for example, sensitivity, specificity, 
positive and negative likelihood ratios, and diagnostic 
odds ratio [DOR]; for definitions, please refer to Part I 
of this two-part review) or a summary receiver operating 
characteristic (SROC) curve (9).

There are several unique characteristics of meta-
analysis of diagnostic test accuracy studies compared 
to therapeutic/interventional studies (8, 10). The most 
important difference is that diagnostic accuracy of a test 
is generally measured by a pair of summary points, namely, 
sensitivity and specificity. Although a DOR is a single 
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statistical methods are available (12-15). In this review, 
we summarize the methodological differences between 
therapeutic/interventional meta-analysis and meta-analysis 
of diagnostic test accuracy studies (Table 1). In addition, 
we compare the different statistical methods used to 
compute summary points of diagnostic accuracy and obtain 
SROC curves, and further discuss their appropriate use. 

Overview of a Choice of Meta-Analytic Methods

As summarized in Table 2, the meta-analytic summary 
measures can be categorized into summary points (e.g., 
summary sensitivity, specificity, and DOR) and summary 
lines (i.e., SROC curves) (1, 8). It is appropriate to calculate 
summary points if the sensitivities and specificities of 
primary studies do not vary substantially across studies. 
In general, but not always, this situation occurs when all 
studies use the same diagnostic threshold (i.e., cut-off 
value or criterion to categorize the test results as positive 
or negative) in similar clinical settings. However, such a 
situation is ideal and rarely occurs in real-world practice 
or clinical research (11). If there is evidence of a lack of 
heterogeneity in sensitivity and specificity across studies, 
two univariate meta-analyses for these measures using 
either fixed- or random-effects models could be considered. 
However, if sensitivity and specificity vary markedly and/or 
there is an evidence of a threshold effect between studies, 
summary points alone should be avoided, since the summary 

dimensional parameter for a diagnostic accuracy, it does not 
provide meaningful practical information for clinical practice 
(8). Second, a binary medical diagnosis (i.e., presence vs. 
absence of a target disease condition) is usually based on 
a certain diagnostic criterion or a threshold that is chosen 
from a wide range of values or findings. Different studies 
have different thresholds or criteria that greatly influence 
the estimation of summary points. In general, a threshold 
of a diagnostic test that is changed to increase sensitivity 
results in decreased specificity, and vice versa (3). Third, 
between-study heterogeneity of diagnostic test accuracy 
studies is generally larger than that of therapeutic/
interventional studies. Imaging scanners and protocols vary 
greatly between institutions. Even in the same institution, 
several different scanners and protocols for imaging 
diagnosis may exist. Moreover, diagnostic imaging studies 
often greatly differ in their design, conduct, population, 
and reference standards (1). 

Sophisticated statistical methodologies have been 
evolving to deal with these unique characteristics of 
diagnostic meta-analysis, especially during recent decades. 
Some of the most recent methods may not yet be familiar 
to many radiology researchers or practitioners who want 
to understand or perform meta-analysis of diagnostic test 
accuracy studies (11). Although it may be difficult to arrive 
at a formal unified consensus on the “standard” method 
to perform meta-analysis of diagnostic test accuracy 
studies, general recommendations regarding the appropriate 

Table 1. Comparison of Meta-Analysis of Therapeutic/Interventional Studies and Diagnostic Test Accuracy Studies
Therapeutic/Interventional Study Diagnostic Test Accuracy Study

Number of outcome  
  variables

Single outcome
Pair of outcomes, sensitivity and specificity, which  
  generally inversely correlated

Analysis of  
  heterogeneity  
  between studies

Chi-square test (Cochrane Q statistic): p < 0.1  
  generally indicates significant heterogeneity
Higgins’ I2 statistic: rough guide to interpretation  
  is as follows (10);

0% to 25%, might not be important
25% to 50%, may represent low heterogeneity
50% to 75%, may represent moderate heterogeneity
75% to 100%, high heterogeneity

Cochrane Q or Higgins’ I2 statistics alone may not be  
  informative as they do not consider threshold effect
Visual evaluation of coupled forest plot or SROC plot  
  to find threshold effect
Spearman correlation analysis between sensitivity  
  and false positive rate: r ≥ 0.6 generally indicates  
  considerable threshold effect (12) 

Meta-analytic  
  summary

Summary point and its 95% CI obtained with
Fixed-effects model: when study heterogeneity does  
  not exist
Random-effects model: when existence of study  
  heterogeneity is suspected

Summary point
Summary sensitivity and specificity and their 95% CIs  
  obtained with bivariate model: recommended

Summary plot (SROC curve)
Moses-Littenberg model: not recommended
HSROC curve: recommended

CI = confidence interval, HSROC = hierarchical summary receiver operating characteristic, SROC = summary receiver operating 
characteristic
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points such as summary sensitivity, specificity or DOR do 
not correctly reflect the variability between studies and 
may miss important information regarding heterogeneity 
between studies (1). In this case, it is more appropriate 
to construct a summary line such as a SROC curve to show 
how the different sensitivities and specificities of primary 
studies are related to each other. The SROC curve can be 
calculated with several different methods, as discussed 
below. Of note, the Diagnostic Test Accuracy Working Group 
of the Cochrane Collaboration and the Agency for Healthcare 
Research and Quality (AHRQ) currently recommend the use 
of hierarchical models (15, 16).

Methods to Compute Summary Points of 
Diagnostic Accuracy Parameters

Separate Pooling of Sensitivity and Specificity
Since sensitivity and specificity are proportions, we can 

pool these parameters separately by calculating a weighted 
average using either fixed- or random-effects model, similar 
to the calculation of a pooled estimate in meta-analysis 
of therapeutic/interventional studies that have a single 
proportional outcome. Separate pooling of sensitivity 
and specificity is still widely used in many meta-analyses 
of diagnostic test accuracy. Nevertheless, this separate 
pooling method is applicable only if the sensitivity and 

specificity are independent of each other, a condition that 
is rarely satisfied. In fact, sensitivity and specificity are 
generally correlated, and hence, a separate pooling would 
inadvertently produce inaccurate results by ignoring the 
correlation. Moreover, these pooling methods do not have 
meaningful results unless the studies use the same explicit 
diagnostic threshold, and thus sensitivity and specificity do 
not vary widely across studies (1, 3). 

In separate pooling methods, either fixed- or random-
effects model could be used. A fixed-effects model assumes 
that the true effect for a test accuracy (in both magnitude 
and direction) is the same (i.e., fixed) across studies 
and between-study variations or heterogeneities are due 
solely to random error (i.e., a sampling error). Under this 
assumption, the underlying common effect is estimated 
through a weighted average of study results. Specifically, in 
a fixed-effects model, pooling is made by only considering 
the weights of included studies using either an inverse-
variance method, in which the weight (wi) is based on the 
variance of normal approximation for a proportion (wi = n 
/ p [1 - p]), or the study size alone (wi = n) (1). On the 
contrary, a random-effects model provides an estimate of 
the average effect of a diagnostic test accuracy by assuming 
that the between-study variation or heterogeneity is due to 
not only random variation (i.e., random error) but also from 
inherent differences in the magnitudes of test accuracy 

Table 2. Statistical Methods for Meta-Analytic Summary Statistics of Diagnostic Test Accuracy Studies
Method Summary Measures Weighting Comments

Summary point

Separate pooling
Summary sensitivity,  
  specificity, LR+, LR-,  
  and DOR

Fixed effects or  
  random effects

Not recommended: 
  Conducts separate meta-analyses for each summary point
  �Ignores threshold effect as well as correlation between sensitivity  
    and specificity 

Hierarchical methods  
  (bivariate/HSROC model)

Summary sensitivity,  
  specificity, LR+, LR-,  
  and DOR

Random effects

Recommended: 
  Accounts for correlation between sensitivity and specificity 
  For practical reasons, bivariate model is preferred for  
    computing summary points, while HSROC model  
    is preferred for constructing HSROC curve

Summary line (SROC analysis)

Moses-Littenberg model
SROC curve, AUC,  
  and Q*

Similar to fixed  
  effects

Not recommended: 
  Does not account for variability between studies
  Does not weight studies optimally
  Ignores correlation between sensitivity and specificity

Hierarchical model
HSROC curve, AUC,  
  confidence region,  
  and prediction region

Random effects
Recommended: 
  Accounts for within- and between-study heterogeneity
  Accounts for correlation between sensitivity and specificity

AUC = area under the ROC curve, DOR = diagnostic odds ratio, HSROC = hierarchical summary receiver operating characteristic, SROC = 
summary receiver operating characteristic
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(usually known as a tau-squared, τ2) between studies, for 
example, due to differences in the study populations or 
procedures used (note that a random-effects model does 
not assume a variation of direction of the study’s test 
accuracies). In the random-effects model, these two sources 
of variation are considered together in calculating a weight 
(wi*) for each of the included studies in terms of wi* = (τ2 
+ wi

-1)-1. Here, τ2 is the estimated variation or heterogeneity 
between the effects for test accuracy observed in different 
studies. The simplest, and hence most commonly used, 
method of pooling in a random-effects model is the 
DerSimonian and Laird method (17).

As noted in Part I of this review (9), heterogeneity 
is almost always presumed in diagnostic test accuracy 
systematic reviews, and hence, a use of a random-effects 
model is recommended by default. A use of a fixed-effects 
model is only appropriate when there are too few studies 
to estimate between-study variations or when there is 
no evidence for heterogeneity. A routine use of Cochran’s 
Q-test or Higgins’ I2 statistic, however, is not recommended 
in a diagnostic test accuracy review to assess an existence 
and degree of heterogeneity since they do not account for 
variation due to a threshold effect. Instead, the Cochrane 
handbook suggests graphical representation of the 
magnitude of heterogeneity; for example, the amount of 
heterogeneity due to the threshold effect in meta-analyzed 
studies could be examined by estimating the degree of 
closeness of observed study results to the SROC (15), as 
well as by calculating how much larger 95% prediction 
regions are compared with 95% confidence regions (18).

Pooling of a DOR
Diagnostic odds ratio is a single parameter of diagnostic 

accuracy, hence, it is relatively straightforward to compute 
pooled summary estimates of DOR. This parameter is also 
often reasonably constant regardless of variation in the 
threshold (1). Therefore, DOR can be pooled in the same 
way as the odds ratio, a common proportional outcome in 
therapeutic/interventional studies, using either the fixed-
effects model with an inverse-variance method or the 
DerSimonian and Laird random-effects model. The main 
disadvantage of using DOR as a summary measure is that it 
is less intuitive and more difficult to interpret in a clinically 
relevant way. Specifically, it does not distinguish between 
the ability to detect diseased cases (sensitivity) and the 
ability to detect non-diseased cases (specificity). The 
same DOR may also be achieved by different combinations 

of sensitivity and specificity. For this reason, DOR is not 
only rarely used as a summary statistic in primary studies 
for diagnostic test accuracy but also not recommended 
as an outcome index for its meta-analysis. One exception 
is studies with the specific aim to analyze the diagnostic 
association between sensitivity and specificity (19).

Joint Modeling of Sensitivity and Specificity
A joint modeling of both sensitivity and specificity to 

preserve the two-dimensional nature of diagnostic accuracy 
using hierarchical models is currently regarded as the 
optimal method for obtaining summary statistics for meta-
analysis of diagnostic test accuracy studies by several 
authoritative bodies such as the Diagnostic Test Accuracy 
Working Group of the Cochrane Collaboration or the AHRQ (3, 
11, 15, 16). These models are highly recommended when 
there is a threshold effect in meta-analysis (20). 

There are currently two analytical models available for 
hierarchical modeling: the bivariate model (3) and the 
hierarchical summary receiver operating characteristic 
(HSROC) model (21). The HSROC model is occasionally 
referred to as the Rutter and Gatsonis HSROC model, after 
the inventors of this model (3, 8, 21). Both models utilize 
a hierarchical structure of the distributions of data in terms 
of two levels, and provide equivalent summary estimates for 
sensitivity and specificity under the special condition, as 
described below. At the first level, a within-study variability 
(i.e., random sampling error) is considered by assuming a 
binomial distribution for the sensitivity and 1-specificity of 
each study, respectively. For example, the number of test 
positives (yij) for each study (i) in each disease group (j) 
is assumed to follow a binomial distribution of yij ~ B(nij, 
πij), j = 1, 2, where nij and πij represent the total number of 
tested subjects and the probability of a positive test result, 
respectively. The first level is the same in both models. 
However, they differ at the second level when modeling 
a between-study difference (i.e., heterogeneity). In the 
HSROC model, the probability of a subject in study i with 
disease status j being positive for a test (πij) is modeled 
with a cut-off point (i.e., the proxy of threshold) (θi) and 
an accuracy parameter (i.e., a natural logarithm of DOR) 
(αi) that incorporate both the sensitivity and specificity of 
the study i in the form of a logit (πij) = (θi + αi Xij) exp (-β 
Xij). In here, logit implies a natural logarithm of odds (odds 
is defined as the ratio of a probability being a success to 
a probability being a failure), the variable Xij represents a 
dummy variable for the true disease status of the subject 
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in study i with disease status j, and the parameter β 
is a scale parameter that is assumed to be a normally 
distributed random effect for a test accuracy, which can 
be used for modeling a possible asymmetry in the ROC 
curve. The between-study variation is, in fact, allowed in 
the HSROC model by assuming that parameters θi and αi 
are independently and normally distributed with a mean 
threshold of Θ and a mean accuracy of Λ, respectively. 
Covariates (Zi) that affect unexplained heterogeneity 
across studies, if any, can be taken into account in the 
HSROC model by assuming the mean of the parameters 
θi and αi as a function of the covariates, namely, Θ + YZi 
and Λ + λZi, respectively. Whereas, in the second level of 
the bivariate model, the logit-transformed sensitivity and 
specificity of the study i are assumed to have a bivariate 
normal distribution with means μA and μB, variances σ2

A 
and σ2

B, respectively, and the covariance σAB between logit 
sensitivity and specificity. This means that the bivariate 
model allows for a potential correlation between sensitivity 
and specificity and manages the differences in the precision 
of the sensitivity and specificity estimates using the five 
parameters, namely, μA, μB, σ2

A, σ2
B, and their correlation 

ρAB = σAB / (σAσB). Like the HSROC model, the bivariate 
model can also take into account the effect of covariates 
that affect sensitivity and specificity by replacing the 
means of μA and μB with linear predictors in the covariates. 
This means that explanatory variables can be added to 
the bivariate model, which leads to separate effects on 
sensitivity and specificity. Conceptually, the bivariate model 
is similar to the HSROC model except that the relationship 
between sensitivity and specificity is addressed by the 
correlation of its logit transformation in the former and the 
threshold in the latter. Further mathematical details are 
beyond the scope of this review, and interested readers are 
encouraged to read more technical articles (3, 7, 8). 

Both the bivariate model and Rutter and Gatsonis 
HSROC model could be used to estimate the SROC curve, 
the summary values of sensitivity and specificity, 95% 
confidence regions of the summary values, and its 95% 
prediction regions of the SROC curve. In the absence 
of covariates or when the same covariates are used for 
sensitivity and specificity (in the bivariate model) or for 
the cut-off point and accuracy parameters (in the HSROC 
model), the two models are mathematically equivalent and 
provide equivalent estimates of expected sensitivity and 
specificity (22). When there are covariates, the bivariate 
model is easier to use due to its ability to incorporate 

the covariates into the model, as compared to the HSROC 
model. The bivariate model is preferred for the estimation of 
a summary value of sensitivity and specificity, as well as for 
evaluating how their expected values may vary with study 
level covariates; whereas, the HSROC model is favored for 
the estimation of the SROC curve for assessing test accuracy 
and determining how the curve’s position and shape may 
vary with study level covariates (15). 

Methods to Obtain SROC Curves

It is recommended to summarize the results of primary 
studies with varying diagnostic thresholds, with a SROC 
curve, rather than using summary points such as summary 
sensitivity or specificity (1). This is because the sensitivity 
and specificity of a diagnostic accuracy test usually vary 
with variation in the threshold (i.e., threshold effect). 
Graphical examination is an easy way to evaluate the 
threshold effect. When pairs of sensitivity and specificity 
extracted from each primary study are plotted on a 
ROC space, a between-study heterogeneity as well as a 
relationship between sensitivity and specificity can be 
observed. The horizontal axis of the ROC space uses a false 
positive rate, that is 1-specificity, while the vertical axis 
uses sensitivity of primary studies. A SROC curve could be 
derived from this plot using various statistical modeling 
methods. 

Moses-Littenberg SROC Curve
The Moses-Littenberg method is the simplest and 

previously the most commonly used model for deriving a 
SROC in meta-analysis of diagnostic tests (5). This is a sort 
of fixed-effects model since it does not provide estimates of 
the heterogeneity between studies; hence, it should be used 
solely for exploratory purposes. The Moses-Littenberg model 
fits a straight regression line to the logits of sensitivity 
and 1-specificity of each study, and uses the estimated 
intercept and slope in a form of back-transformed values 
to construct the SROC curve (Fig. 1). A brief description 
on construction of the Moses-Littenberg SROC curve is as 
follows: First, the pairs of logit-transformed sensitivity 
and 1-specificity estimates from each study are used to 
compute D = logit (sensitivity) - logit (1-specificity) and 
S = logit (sensitivity) + logit (1-specificity). Note that the 
variable D is the natural logarithm of DOR itself, while the 
variable S is a quantity related to the overall proportion 
of positive test results. Note that, because S increases as 
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the overall proportion of test positives increases, S can 
be considered as a proxy for a test threshold. Second, a 
simple linear regression model D = α + βS + ɛ is fitted 
using D as a dependent variable and S as an independent 
variable. Third, use the parameter estimates of α and β 
to estimate an expected value of sensitivity using the 
following formula: E (sensitivity) = 1 / [1 + exp {-(α + 
[1 + β] logit [1-specificity]) / [1 - β]}]. Finally, an SROC 
curve can be derived by drawing a curve using the expected 
values of sensitivity across a chosen range of possible 
values of specificity on the original ROC coordinates. Note 
that the range of specificities over which the curve is drawn 
is usually confined to the range observed in the data. An 
explanation of a more detailed mathematical theory can be 
found elsewhere (23).

In the Moses-Littenberg model, the area under the ROC 
curve (AUC) and an index termed Q* are provided as global 
summary measures of the SROC curve. If a test is perfectly 
accurate, the value of AUC is 1.0, and decreases toward 
0.5 as the diagnostic performance of the test decreases. 
However, since ROC curves of different shapes can have the 
same AUC, it is inappropriate to interpret the AUC alone 
when the shape of the ROC curve is unknown. If the test 
results in the diseased and non-diseased groups have a 
logistic distribution with equal variance in both groups, the 
symmetric ROC curves can be obtained in which all points 
on the curve have a common DOR. When the DOR changes 
with threshold, the SROC curve becomes asymmetrical (4). 
Q* is a point where the SROC curve intersects the diagonal 

that runs from the top left to the bottom right of the ROC 
plot, in where sensitivity equals specificity. If Q* is located 
in the upper left corner on the SROC curve, it indicates 
that the test has a good diagnostic performance. The point 
Q* can also be calculated by Q* = (√DOR / [1 + √DOR]). 
However, the use of Q* to compare different diagnostic 
tests is controversial because the range of estimates of 
sensitivity and specificity from primary studies may not 
include values near the Q* point (1, 23). Since Q* often 
gives a wrong impression of accuracy if SROC curves are 
asymmetric, and it may bear little relation to the values 
observed in primary studies used in the meta-analysis, a 
use of Q* is generally discouraged (15). 

Although the Moses-Littenberg method allows for the 
correlation between sensitivity and specificity and is 
convenient for less mathematically or statistically complex 
meta-analyses, it has several limitations. First, this 
method is not statistically rigorous because the model’s 
independent variable S is not a fixed but a random variable. 
Thus, its inherent measurement error violates the basic 
assumptions of linear regression such as homogeneity of 
variance and covariates measured without error. Second, 
since the analysis is based on the DOR, summary measures 
of sensitivity and specificity are not directly estimated. 
Third, this method does not take into account the within- 
and between-study heterogeneity in test accuracy (8). In 
addition, this method can lead to improper SROC curves 
where sensitivity decreases as 1-specificity increases if 
there are outlying studies that influence the determination 

Fig. 1. Examples of forest plot, separate pooling of sensitivity and specificity, and construction of Moses-Littenberg SROC curve 
(method currently not recommended) using Meta-disc software.
A. Use of Meta-disc. First, data are entered in data window (1). In analyze tab, choose Plots function (2). Then, select plot to draw from new 
pop-up window (3). Results can be reviewed in Results window (4). B. Moses-Littenberg SROC curve. SROC curves and summary estimates, 
including area under ROC curve (AUC) and Q* index are presented. SROC = summary receiver operating characteristic

A B
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of the slope of the regression line (15). 

Hierarchical Models
As discussed earlier, hierarchical models, namely, the 

bivariate model and HSROC model, are multivariate methods 
that jointly analyze sensitivity and specificity. These 
models utilize the within-study binomial structure of the 
data while accounting for both within- and between-
study heterogeneity; hence, they are currently the most 
statistically rigorous and recommended methods for dealing 
with a threshold effect (3, 7). Both models produce a 
HSROC curve as well as summary points of sensitivity and 
specificity, together with their confidence and prediction 
region (Fig. 2). As explained earlier, the HSROC model 
directly estimates HSROC parameters such as accuracy 
(αi), threshold (θi), and shape parameter (β) as random-
effects variables, which enables direct construction of a 
HSROC curve. On the other hand, in the bivariate model, re-
calculation of HSROC parameters is required by transforming 
the estimated parameters of the bivariate model, and 
subsequently, a HSROC curve can be fitted. For these 
reasons, the HSROC model is preferred for estimating a 
HSROC curve. In the HSROC space, the confidence region 
and prediction region are used to describe an uncertainty of 
the summary sensitivity and specificity (24). The confidence 
region relates to the summary estimates of sensitivity and 
specificity jointly in the HSROC space while it also accounts 
for their inverse association based on the included studies. 

However, this region does not represent the between-study 
heterogeneity (1). On the other hand, the prediction region 
refers to potential values of sensitivity and specificity that 
might be observed in a future study by describing the full 
extent of the uncertainty of the summary points, which 
therefore can reflect the between-study heterogeneity. The 
prediction region is a region within which, assuming the 
model is correct, there is a 95% confidence for the true 
sensitivity and specificity of a future study (22). Therefore, 
the prediction region can predict the summary sensitivity 
and specificity of a similar prospective diagnostic accuracy 
study (1).

Software Programs

There are several statistical software programs available 
for meta-analysis of diagnostic test accuracy studies. The 
RevMan program (downloadable at http://tech.cochrane.
org/revman/download) provides a coupled forest plot, as 
well as the Moses-Littenberg SROC curve; the Meta-disc 
program (downloadable at http://www.hrc.es/investigacion/
metadisc_en.htm) is also quite straightforward to use and 
enables a separate pooling of sensitivity and specificity, 
drawing of the Moses-Littenberg SROC curve, and meta-
regression analysis using covariates (Fig. 1). However, 
since they do not provide hierarchical modeling, the 
methods provided by these software programs are no longer 
recommended. 

Fig. 2. Example of meta-analysis with hierarchical modeling (method currently recommended). Metandi module in STATA is used. 
A. Data input. Simply click data editor button (1) and enter data in Data Editor window (2). B. Calculation of summary estimates. Summary 
estimates of sensitivity, specificity, DOR, LR+, and LR- can be obtained using command “metandi tp fp fn tn”. C. HSROC curve is obtained using 
command “metandiplot tp fp fn tn”. Circles represent estimates of individual primary studies, and square indicates summary points of sensitivity 
and specificity. HSROC curve is plotted as curvilinear line passing through summary point. 95% confidence region and 95% prediction region are 
also provided. DOR = diagnostic odds ratio, HSROC = hierarchical summary receiver operating characteristic, LR = likelihood ratio

A B C
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Well-established software programs for hierarchical 
modeling include an open-access program language (R) 
or commercial statistical softwares (SAS or STATA). The 
available software programs for diagnostic meta-analysis 
with the bivariate model or the HSROC model include R 
(mada package), STATA (midas or metandi modules) or 
SAS (nlmixed procedure or metadas macros) (24, 25). The 
HSROC curves can be plotted through the RevMan using the 
parameter estimates obtained from these softwares as input 
values. The Diagnostic Test Accuracy Working Group of the 
Cochrane Collaboration has developed practical tutorials 
for the ‘metadas’ macro of the SAS, as well as the ‘metandi’ 
command of the STATA (http://srdta.cochrane.org/software-
development). 

CONCLUSION

The need for meta-analysis of diagnostic test accuracy 
studies has noticeably increased in recent decades with the 
rapid advances in diagnostic imaging tests and increased 
understanding of evidence-based medicine in the field. At 
the same time, the statistical methodology for meta-analysis 
of diagnostic test accuracy studies has been constantly 
evolving. Authoritative bodies such as the Cochrane 
Collaboration and the AHRQ currently recommend the use 
of hierarchical models; hence, the bivariate and HSROC 
models are expected to be used more frequently in meta-
analysis of diagnostic test accuracy studies. As a result, it 
is imperative for radiology researchers or practitioners to 
have a good understanding of the methodology and should 
strive towards a good conceptual grasp of the methods. At 
the same time, given the complexity of the new statistical 
methods, it is crucial for clinical researchers to closely 
collaborate with experienced biostatisticians.
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