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Abstract
Colorectal cancer (CRC) remains a leading cause of 
cancer death in both men and women worldwide. 
Among the factors and mechanisms that are involved 
in the multifactorial etiology of CRC, autophagy is an 
important transformational switch that occurs when a 
cell shifts from normal to malignant. In recent years, 
multiple hypotheses have been considered regarding 
the autophagy mechanisms that are involved in cancer. 
The currently accepted hypothesis is that autophagy has 
dual and contradictory roles in carcinogenesis, but the 
precise mechanisms leading to autophagy in cancer are 
not yet fully defined and seem to be context dependent. 
Autophagy is a surveillance mechanism used by normal 
cells that protects them from the transformation to 
malignancy by removing damaged organelles and 
aggregated proteins and by reducing reactive oxygen 
species, mitochondrial abnormalities and DNA damage. 
However, autophagy also supports tumor formation by 
promoting access to nutrients that are critical to the 
metabolism and growth of tumor cells and by inhibiting 
cellular death and increasing drug resistance. Autophagy 
studies in CRC have focused on several molecules, 
mainly microtubule-associated protein 1 light chain 
3, beclin 1, and autophagy related 5, with conflicting 
results. Beneficial effects were observed for some agents 
that modulate autophagy in CRC either alone or, more 
often, in combination with other agents. More extensive 
studies are needed in the future to clarify the roles of 
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autophagy-related genes and modulators in colorectal 
carcinogenesis, and to develop potential beneficial agents 
for the prognosis and treatment of CRC.
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Protein; Carcinogenesis
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Core tip: This review describes the role of autophagy 
in cancer, focusing on the involvement of autophagy in 
colorectal cancer (CRC). Initially, we describe the steps 
and components of autophagy, and we then further 
highlight the dual role of autophagy in cancer, where it 
can potentially act as both a promoter and an inhibitor 
during the transformation from normal to malignant cell. 
In particular, we emphasize the major autophagy genes 
involved in CRC pathogenesis along with autophagy-
modulating agents and their modes of action in the 
context of CRC therapy.
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INTRODUCTION
Despite advances in diagnosis and treatment, colorectal 
cancer (CRC) remains one of the major causes of cancer 
death in both sexes worldwide: It is the third most 
common diagnosed cancer in males and the second 
most common in females[1]. It is well known that many 
risk factors, including multiple genes and environmental 
influences, are involved in malignant transformation. 
Recent research provides new data regarding the 
complex mechanisms involved in colorectal carcinogene
sis. Among these mechanisms, autophagy is important 
in the switch from normal to malignant colorectal cells. 
The involvement of autophagy in cancer appears to be 
context specific, with evidence suggesting that it can 
have a dual role in both tumor suppressing and tumor 
promoting activities. Moreover, autophagy performs 
important functions in different processes that are 
connected to carcinogenesis, including inflammation, 
immune response and genome stability. 

Here, we describe the involvement of autophagy 
in carcinogenesis, with a particular emphasis on CRC. 
We summarize the components and steps of macroau
tophagy (herein referred to as autophagy), and we 
emphasize the conflicting roles of autophagy in cancer, 
indicating that it has both promoter and suppressor 
mechanisms during malignant transformations. The 

second part of this study is focused on the autophagy 
genes and proteins that are associated with CRC. Finally, 
the effects of autophagybased drugs in CRC treatment 
are discussed.

AUTOPHAGY STEPS AND REGULATION 
Autophagy is an evolutionarily conserved catabolic 
process that is characterized by cellular selfdigestion 
and the removal of excessive, longlived or dysfunc
tional organelles and proteins[2]. Autophagy occurs 
as a physiological process in normal cells at a basal 
level to assure cellular homeostasis, or as a strategic 
survival mechanism that recycles energy and nutrients 
under special conditions. Hypoxia, stress and nutrient 
deprivation trigger autophagy as a critical adaptive 
response during starvation[3]. Three morphologically 
distinct forms of autophagy can be distinguished: 
macroautophagy, microautophagy and chaperone
mediated autophagy[4]. Macroautophagy is identified by 
the presence of double membrane vesicles known as an 
autophagosomes, which engulf cytoplasmic components 
that include damaged organelles and deliver them 
to lysosomes for degradation. The other two forms, 
microautophagy and chaperonemediated autophagy, 
involve a direct membrane invagination to engulf 
damaged proteins and the translocation of soluble 
cytosolic proteins by chaperonedependent selection 
across the lysosomal membrane, respectively[5,6]. 

Autophagyrelated genes (ATGs) play a critical role 
in facilitating the regulation of wellorchestrated autop
hagy. To date, thirtysix ATGs have been identified[7]. 
Autophagosome formation is initiated by unc51like 
kinase (ULK) and class Ⅲ phosphatidylinositol 3kin
ase (PI3K) complexes. The ULK complex consists 
of ATG13, ATG101, ULK1/2 and familyinteracting 
protein FIP200[8,9]. Under normal growth conditions, 
the mammalian target of rapamycin (mTOR) complex 
inhibits the formation of the ULK complex, in effect 
blocking autophagy, and the ULK components are 
dissociated. Various stimuli (e.g., hypoxia, starvation) 
inhibit mTOR, allowing the ULK kinase complex to be 
activated, which initiates the formation of an isolation 
membrane (Figure 1) called a phagophore[10,11]. The 
origin of phagophores has not been explained, but 
the plasma membrane, endoplasmic reticulum, Golgi 
apparatus and mitochondria are all possible sources[12]. 
The completion of this critical step is driven by vacuolar 
sorting protein 34, a class Ⅲ PI3K that is bound to 
beclin1, and other ATG proteins (e.g., ATG14), which 
generate PI3K, the second complex, that catalyzes the 
production of phosphatidylinositol3phosphate[10,13].

Autophagosome elongation and closure steps and the 
further conversion to a nascent closed autophagosome 
are controlled by two ubiquitinlike conjugates. First, 
ATG12 forms a conjugate with ATG5 under the control 
of ATG7 and ATG10, which have E1 and E2like enzyme 
activity, respectively. The resulting ATG12ATG5 
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complex interacts with ATG16L1 to form a multimeric 
ATG12ATG5ATG16L1 conjugate that is located on 
the outer surface of the autophagosomal membrane. 
It will dissociate from the membrane upon completion 
of the autophagosome[14,15]. The second ubiquitinlike 
pathway involves the conjugation of the microtubule
associated protein 1light chain 3 (LC3Ⅰ) to the lipid 
phosphatidylethanolamine (PE) by ATG7 and ATG3, 
which is an E2like enzyme, to form the membrane
bound LC3Ⅱ. LC3 is initially synthesized as a precursor 
protein, proLC3, and is immediately processed to LC3
Ⅰ by ATG4 through cleavage of its Cterminal amino 
acid. The membranebound form of LC3, LC3Ⅱ, is 
recruited to both sides of the autophagosomal mem
brane[16,17]. After fusion with lysosomes, LC3Ⅱ on the 
cytoplasmic face of the autolysosome can be delipidated 
by ATG4 and recycled, whereas proteins located on 
internal surface of the autophagosome are processed for 
degradation by lysosomal enzymes in autolysosomes. 
During the maturation process, lysosomalassociated 
membrane protein 2 and the Rasrelated protein Rab
7a facilitate autophagosome fusion with endocytic and 
lysosomal compartments to form an autolysosome. 
Autophagic cargo is then degraded through the activity 
of lysosomal proteases[1821].

AUTOPHAGY: AN IMPORTANT SWITCH 
IN CANCER PATHOGENESIS
Autophagy plays crucial roles in the pathogenesis of 
various human diseases, including cancer, neurode
generative diseases, infection, and cardiovascular, 
metabolic, and pulmonary diseases, and aging[22]. The 
currently accepted hypothesis is that autophagy has 
dual, contradictory roles in carcinogenesis (Figure 2). 
First, autophagy is a surveillance mechanism in normal 
cells, where it acts to protect cells from malignant 
transformations by removing damaged organelles and 
aggregated proteins and reducing DNA damage, reactive 
oxygen species (ROS) and mitochondrial abnormalities. 
However, autophagy also supports tumor formation 
by providing access to nutrients that are critical to the 
metabolism and growth of tumor cells, and by inhibiting 

cellular death and increasing drug resistance[7,23]. The 
response of cells to autophagy during cancer metastasis 
is stage dependent. Autophagy may help to reduce 
cancer metastasis in the early steps of tumor cell dis
semination by promoting inflammatory responses 
against tumors. Furthermore, autophagy limits tumor 
necrosis and the expansion of dormant cancer cells into 
micrometastases, in tandem with impairing oncogene
induced senescence[24]. Autophagy seems to support 
metastasis during advanced stages of cancer by incr
easing the survival of detached metastatic cells in the 
absence of extracellular matrix, and by supporting the 
dissemination of cancer cells to distant organ sites by 
triggering tumor cells that lack a connection with the 
extracellular matrix in the new environment to shift to a 
dormant state until appropriate conditions occur[24,25].

Autophagy as a suppressor during early stages
Autophagy can prevent the transformation from normal 
to malignant through several suppressive mechanisms. 
An appropriate autophagic response is necessary for 
genome stability and for the clearance of mutagens 
because it acts to prevent the accumulation of the 
genetic defects that accompany malignant transfor
mations. Damaged mitochondria and the redoxactive 
aggregates of ubiquitinated proteins are removed by 
autophagy, resulting in avoidance of the overproduction 
of highly genotoxic ROS[26]. Inhibition of autophagy 
switches off this protection and can expose cells to 
ROS cytotoxicity, which promotes the activation of 
oncogenes[27,28]. In addition to mitophagy, autophagy 
supports genomic stability by enabling the discarding of 
micronuclei that are produced by cell cycle anomalies[29], 
and it may also promote autophagic cell death, known 
as type Ⅱ programmed cell death, under certain 
conditions[30,31]. 

The impact of autophagy on tumor progression 
exhibits a significant degree of context dependence[23]. 
BECN1 gene studies in hormonerelated cancers un
masked, for the first time, the possible tumor suppressing 
role of autophagy[32,33]. There remains significant debate 
regarding the role of BECN1 as a tumor suppressor due 
to the proximity of BECN1 to BRCA1, a wellknown tumor 
suppressor gene. Both of these genes are located on 
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Figure 1  Morphological steps of the autophagy process. Autophagy is initiated with the formation of a phagophore, which sequesters cellular material in a double-
membrane vesicle called an autophagosome. The autophagosome fuses with lysosomes to form an autolysosome.
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mitogenic cytokines[45]. Autophagy limits inflammation 
by efficiently disposing of inflammasomes, thereby 
inhibiting the pro-inflammatory signals that are delivered 
by some pattern recognition receptors, such as RIGI
like receptors[46], and limiting the abundance of Bcell 
CLL/lymphoma 10, a protein that is involved in pro
inflammatory NFκB signaling[47]. Autophagy ensures 
a wellcoordinated and appropriate response, enabling 
crucial cells in the immune system to develop properly 
and to produce interferon, secrete antimicrobial peptides 
or present antigens to stimulate adaptive immunity. 
Dying malignant cells may determine innate and/or 
adaptive antitumor immune responses by recruiting 
antigenpresenting cells and other cellular components 
of the immune system. Thus, defects in autophagy 
may prevent the host immune system from properly 
recognizing and eliminating premalignant and malignant 
cells. Moreover, autophagy mediates potent anti
inflammatory effects[48,49].

Autophagy plays a key role in the first line of defense 
against pathogens and thus has anticarcinogenic effects 
that combat viral and bacterial infections. A xenophagic 
response is required for the stimulation of pathogen
specific immune responses and for the rapid clearance 
of intracellular pathogens[48]. Some of these processes 
are associated with digestive cancers (e.g., Helicobacter 
pylori, which is associated with gastric carcinoma, 
or Streptococcus bovis, which may cause colorectal 
carcinoma)[50,51]. 

human chromosome 17q21[34]. The role of autophagy as 
an important tumor suppressive process that has been 
demonstrated in murine experiments. Lack of BECN1 
gene in embryoid bodies leads to embryonic death[35], 
and mice with a heterozygotic deletion of BECN1 
demonstrate increased susceptibility to tumorigenesis in 
multiple tissues[36,37]. Similarly, mice deficient for ATG5 
and ATG7 died after birth[38,39], while mice with mosaic 
deletion of ATG5 and liver-specific ATG7-deficient mice 
developed only benign liver adenomas[40]. Mice lacking 
autophagy genes ATG5 or ATG7 acquired premalignant 
pancreatic cancer, while the progression to pancreatic 
cancer driven by KRasG12D was blocked[41]. ATG7 
deletion in a murine model (BrafV600Einduced lung 
cancer) initially accelerated the proliferation of tumor 
cells, but at later stages of tumorigenesis it reduced 
tumor burden, blocked conversion to a more malignant 
phenotype and increased the life spans of experimental 
mice[42]. In the absence of autophagy, the advance 
to cancer can be arrested, resulting in protection 
from conversion into malignant cells. Progression to a 
malignant phenotype may require additional genetic 
alterations[43].

In addition, autophagy is involved in both innate and 
adaptive immune responses, by which it prevents the 
establishment and proliferation of malignant cells[44]. 
Malignant transformation can be stimulated by an 
inflammatory microenvironment, which contains high 
amounts of potentially genotoxic ROS as well as various 
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Autophagy increases drug 
resistance

Autophagy ensures the maintenance 
of the cancer stem cell

Autophagy promotes the survival 
of tumor cell in dormancy state

Autophagy stimulates clearance 
of intracellular pathogens

Autophagy supports 
genomic stability

Autophagy reduces DNA damage 
and reactive oxygen species

Tumor promoter role

Autophagy
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Autophagy provides an alternative 
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Figure 2  The dual and contradictory roles of autophagy in cancer. Autophagy can potentially act as either a promoter or an inhibitor during the transformation 
from normal cell to malignant cell. Autophagy supports tumor formation by providing an alternative energy source, increasing drug resistance, inhibiting cell death, 
promoting the survival of tumor cells in a dormant state and ensuring the maintenance of cancer stem cell compartments. Autophagy protects normal cells from 
malignant transformation by removing damaged organelles and proteins, reducing DNA damage and reactive oxygen species, supporting genomic stability, promoting 
autophagic cell death, limiting inflammation and stimulating the clearance of intracellular pathogens.
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Autophagy as a promoting factor during late stages
Autophagy seems to promote malignant progression and 
resistance to therapy following the initiation of tumor 
growth[2,27]. As a conserved cellular survival mechanism, 
tumor cells can use autophagy to provide a backup 
energy source for survival and expansion[52]. During 
the progression of tumors, malignant cells are under 
metabolic stress as a result of a high proliferation rate 
and exposure to hypoxia, and nutrient deprivation due 
to inadequate blood supply or selective pressure from 
therapeutic intervention[53]. Tumor cells usually have 
a high proliferation rate, which demands more energy 
and resources than normal cells, and both ATP and 
metabolites can be obtained by increasing autophagy[54]. 
Although angiogenesis does occur in tumors, the availa
bility of glucose and glutamine is reduced in some tumor 
regions due to the leakiness of tumorassociated vessels 
and continued hypovascularization[55].

Autophagy is activated in the hypoxic areas of 
tumors, and the inhibition of autophagy by AKT activ
ation or by monoallelic disruption of BECN1 promotes 
cell death specifically in those regions. These results 
support hypothesis that tumor cells can use autophagy 
as a surveillance mechanism under metabolic stress 
conditions, to provide an alternative energy source for 
the survival and proliferation of malignant cells[52]. 

The promalignant role of autophagy has been 
demonstrated in tumor studies in which the inhibition 
of autophagy was linked to reduced tumor processes. 
Moreover, downregulating the expression of essential 
autophagy proteins impaired tumor growth and led to 
the accumulation of abnormal mitochondria and reduced 
oxygen consumption, and autophagy was necessary to 
support the growth of Rasdriven tumors[56]. However, 
increased autophagy has also been associated with 
poor outcomes and short diseasefree periods in human 
pancreatic cancers[57]. In vitro studies have shown 
that the survival of Rasdriven cancer cells requires 
autophagy and that gaining autophagy results in a 
marked increase in the survival of malignant cells under 
conditions of metabolic stress[28]. Inhibiting autophagy by 
deleting ATG5 prevents the progression of premalignant 
lesions to cancer in either a p53independent or p53
dependent manner[41,58]. Furthermore, deletion of 
ATG7 decreases the tumor growth rate and induces 
nonmalignant tumor formation. In addition, nonRas
driven tumoral cell types also need autophagy for 
survival, and the loss of autophagy has been shown 
to inhibit malignant tumor development. For example, 
FIP200 deletion significantly reduced proliferation and 
suppressed mammary tumor initiation and progression 
in a mouse model of breast cancer driven by the PyMT 
oncogene[59]. In a Palb2 knockout mouse model, he
terozygous deletion of the autophagy gene BECN1 
reduced Palb2associated mammary tumorigenesis in a 
p53dependent manner, indicating that in the presence 
of DNA damage and oxidative stress, autophagy can 
support tumor development by suppressing p53[60]. 

Autophagy can improve the resistance of cancer 

cells to detachment from the basal membrane, resulting 
in transformed cells that are less sensitive to therapy
induced cell death. Moreover, this activity sustains the 
survival of cancer cells that enter a state of dormancy 
or senescence in response to therapy and ensures the 
maintenance of the cancer stem cell compartment[23].

Autophagic responses favor the growth and pro
gression of established tumors by reducing their 
sensitivity to different stimuli that would normally 
promote their death[61]. KRasG12Ddriven pancreatic 
adenocarcinoma cells that enter a state of dormancy 
in response to oncogene ablation have recently been 
shown to activate autophagy to efficiently counteract 
metabolic stress[62], demonstrating the functional and 
phenotypic features of cancer stem cells. In addition, 
mammary cancer stem cells are often characterized by 
elevated autophagic flux, and their ability to efficiently 
form tumors in vivo appears to rely on autophagy, as 
tumor formation can be abolished through the genetic 
inhibition of BECN1 or ATG4A[63,64]. Thus, autophagy 
may also sustain tumor progression by preserving the 
viability of the cancer stem cell compartment and/or by 
promoting the persistence of dormant cancer cells.

Moreover, autophagy is required not only for the 
emission of immunostimulatory signals by malignant 
cells succumbing to specific anticancer agents but also 
for the activation of tumortargeting innate and adaptive 
immune responses[49]. Cancer cells that have been 
isolated from established tumors where autophagy was 
inhibited were less resistant to exogenous stimuli than 
their wildtype counterparts[61]. In line with these data, 
autophagy-deficient tumors are often more sensitive to 
several chemotherapeutic agents and radiation therapy 
than their autophagy-proficient counterparts[65,66]. Cancer 
cells that are exposed to therapeutic interventions can 
also undergo senescence. Although senescent cells 
do not proliferate, they may support disease relapse 
by releasing a wide panel of proinflammatory and 
mitogenic cytokines into the microenvironment[67].

AUTOPHAGY GENE SWITCHES TO CRC
The autophagy machinery involves multiple genes 
and proteins that have critical functions in complex 
autophagic pathways, and these genes may be involved 
in the important switch from normal to colorectal 
pathology under specific conditions (Table 1).

LC3 gene
The LC3 gene family encodes three isoforms (LC3A, 
LC3B, and LC3C) and is the mammalian homologue 
of yeast ATG8[68]. The isoform LC3B is cleaved into the 
soluble form LC3BⅠ, which is conjugated with PE to 
generate the lipidated form (LC3BⅡ). LC3BⅡ accum
ulates specifically on nascent autophagosomes and is 
one of the most widely and reliably used markers for 
autophagy[69]. LC3 was the first autophagy marker 
proposed to be involved in human CRC[70]. LC3Ⅱ is 
overexpressed in CRC compared to normal tissue, 
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especially in advanced stages[20]. Zheng et al[71] reported 
that LC3BⅡ was overexpressed in cancer cells and 
that autophagy enhanced the aggressiveness of CRC. 
LC3B expression in the peripheral areas of CRC tissues 
was correlated with tumor differentiation, growth 
pattern at the tumor margin, pN and pStage, as well 
as vessel and nerve plexus invasion. An increased 
level of LC3Ⅱ protein was found in DLD1 and 
SW480 CRCderived cell lines that were treated with 
a combination of autolysosome inhibitors. Association 
with 3methyl adenine (3MA), an inhibitor of PI3K, 
blocks autophagosome formation and led to increased 
apoptosis in treated CRC cell lines[72]. The treatment 
of CRC cell lines with 5fluorouracil (5FU) activated 
the autophagic process as a protective mechanism in 
cancerous cells, increased LC3II levels and reduced the 
rate of apoptosis compared with untreated cell lines, 
and an increase in the apoptotic rate was induced by 
adding 3MA to 5FU[73]. Similar results were reported 
by Schonewolf et al[74], who reported that both 5FU 
treated and radiotreated CRC cell lines showed an 
increase in autophagy. After adding chloroquine (CQ) to 
the treatment, these authors reported an increase in the 
sensitivity of malignant cells to apoptosis. However, in 
early stages, LC3Ⅱ expression levels were decreased 
compared with normal tissue[20]. A low LC3 value has 
been associated with a good response to treatment 
and a good survival prognosis, especially in patients 
with advanced CRC[75,76]. Perinuclear LC3A expression 
has been shown to be a positive predictor in patients 
with stage ⅡAⅢ colorectal adenocarcinomas who 

were treated with only surgery, whereas an increased 
autophagic response was linked to metastasis and a 
worse prognosis[77]. 

BECN1 gene
BECN1, the mammalian orthologue of yeast ATG6, 
encodes the beclin1 protein, which exerts its biological 
activities through three identified structural domains: A 
Bcl2 homology domain, a central coiledcoiled domain 
and an evolutionarily conserved domain[78]. Beclin1 
plays a pivotal role in autophagy as a component of 
the autophagy class Ⅲ PI3K complex. By interacting 
with different factors, it regulates autophagy pathways, 
resulting in the gain (e.g., AMBRA 1, UVRAG) or 
loss (e.g., Bcl2) of autophagy. Moreover, beclin1 
dysfunction has been linked to immune disorders, neuro
degenerative diseases and cancer[79]. 

BECN1 plays a controversial role in colorectal carcin
omas in that it supports tumorigenesis[80] but may also 
inhibit CRC cell growth[81]. Higher expression levels of 
BECN1 have been reported in malignant colorectal tissue 
than in normal colorectal mucosa[82], with overexpression 
being especially associated with advanced stages 
of CRC[75,8385]. Using immunohistochemistry, Ahn et 
al[80]. showed increased BECN1 expression in 95% of 
colorectal carcinoma samples compared to normal 
mucosal epithelial tissue, but they found no significant 
association with invasion, metastasis or stage. High 
BECN1 expression has been linked to a good prognosis 
and longer survival in patients with stage ⅢB colorectal 
carcinoma[83]. Consistent with these findings, an 
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Gene/protein Expression level in colorectal cancer

LC3/LC3-Ⅱ Higher expression, especially in advanced stages[20]

Higher expression associated with aggressiveness[71]

Higher perinuclear expression associated with positive prognosis[77]

Higher levels in DLD-1 and SW480 CRC lines treated with autophagy inhibitors[72]

Higher levels in CRC cell lines treated with 5-FU[73]

Higher levels in CRC cell lines treated with 5-FU and radiotreated[74]

Lower levels associated with good outcome and treatment response[75,76]

Negative expression associated with poor clinical outcome and survival[87]

BECN1/ Higher expression, negatively linked to metastasis[82]

Beclin-1 Higher expression associated with favorable outcome[83]

Higher expression associated with longer survival in patients treated with 5-FU[84]

Higher expression associated with a worse survival in patients treated with 5-FU[85]

Higher expression associated with metastasis and worse prognosis[86]

Lower levels associated with increased survival in advanced CRC patients treated with cetuximab[75,76]

Lower levels associated with poor clinical outcome and survival[87]

Lower levels associated with a good response after chemoradiation in patients with rectal cancer[88]

ATG5 Higher levels associated with lymphovascular invasion[92]

Lower levels[91]

Lower expression associated with poor clinical outcome survival[87]

Lower expression enhanced sensitivity to oxaliplatin[93]

ATG10 Higher expression associated with tumor lymph node metastasis and poor survival[95]

ATG16L1 ATG16L1T300A polymorphism improved overall survival in human CRC patients[116]

BCL2/Bcl-2 Higher levels associated with migration and invasion[105]

Higher levels associated with resistance to paclitaxel[106]

Bif-1 Lower levels[109]

Table 1  Autophagy-related genes in colorectal cancer

LC3: Microtubule-associated protein 1 light chain 3; CRC: Colorectal cancer; 5-FU: 5-fluorouracil; Bif-1: Bax-interacting factor 1; BECN1: Beclin 1; ATG5: 
Autophagy related 5; BCL2: B-cell CLL/lymphoma 2.
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increased level of BECN1 expression was strongly 
associated with longer 5year survival in patients with 
locally advanced colon carcinomas who were treated 
with 5FU chemotherapy for six months after surgery[84]. 
Overexpression of BECN1 in patients with resected 
stage Ⅱ and Ⅲ colon carcinomas who were treated 
with 5FUbased adjuvant therapy was associated with 
worse overall survival, supporting a role for autophagy 
in drug resistance[85]. Moreover, in a metaanalysis, 
overexpression of BECN1 was associated with a poor 
prognosis and metastasis in patients with CRC[86]. 
Furthermore, low levels of BECN1 were correlated with 
a longer survival in advanced CRC patients who were 
treated with cetuximabcontaining chemotherapy[75,76]. 
Supporting this hypothesis, a lack of the expression 
of the autophagyrelated proteins LC3B, ATG5 and 
beclin1 is associated with poor clinical outcomes and 
poor survival in CRC patients[87]. Rectal adenocarcinoma 
patients exhibiting low expression levels of BECN1 
were more likely to experience a good response to 
chemoradiation than patients with increased expression 
levels of BECN1[88]. Moreover, the expression levels of 
BECN1 were reduced in a panel of human neoplasms, 
including brain tumors and gastric and colorectal 
carcinomas[89].

ATG5 gene
ATG5 protein is encoded by the ATG5 gene and forms a 
complex with ATG12 that participates in autophagosome 
membrane elongation[22]. Mutations in the ATG2B, 
ATG5, ATG9B, and ATG12 genes have been associated 
with CRC and gastric cancer[90]. An association between 
mutations in the ATG5 gene and reduced levels of ATG5 
protein expression has been shown in gastrointestinal 
cancers, including CRC[91]. ATG5 expression was down
regulated in 95% of CRC patients and, interestingly, 
increased ATG5 expression was associated with lymp
hovascular invasion[92]. Other research showed that 
ATG5 is downregulated in colorectal carcinoma, in both 
tissue samples and cell lines, and that downregulation 
of ATG5 in CRC enhanced sensitivity to oxaliplatin[93]. 
Heterozygous deletion of ATG5 predisposed mice to 
intestinal adenoma growth and enhanced the antitumor 
effect of interferon gamma. In CRC mouse models, 
treatment with ursolic acid promoted autophagic cell 
death through a path mediated by ATG5[94].

ATG10 gene
The ATG10 gene has been mapped to chromosome 5 
and encodes an E2 ubiquitin ligaselike enzyme that 
has essential functions in vesicle elongation, where it 
catalyzes the conjugation of ATG5 and ATG12[22]. ATG10 
was found to be upregulated in CRC tissues and high 
protein expression of ATG10 was associated with tumor 
lymph node metastasis and invasion. Moreover, the 
presence of ATG10 was correlated with poor survival, 
indicating that ATG10 may be a potential prognostic 
marker for CRC[95]. 

AMBRA1 gene
The AMBRA1 gene encodes the activating molecule 
in beclin1regulated autophagy (Ambra1) protein, 
which has roles in autophagy, cell growth, cell death, 
embryonic development and carcinogenesis[96]. AMBRA1 
is mutated in a subset of colorectal neoplasms[97].

UVRAG gene
The UV radiation resistanceassociated gene (UVRAG) 
encodes a tumor suppressor protein that induces autoph
agy by interacting with BECN1. In addition to its function 
in autophagy, UVRAG is also involved in endocytic tra
fficking, DNA damage repair and apoptosis[98]. UVRAG, 
in association with BECN1, supports the maintenance 
of genomic stability by protecting established CRC cells 
against radiationinduced DNA damage[99]. UVRAG is 
heterozygous mutated in a high proportion of gastric 
and colonic tumors[100,101]. 

BCL2 gene
The BCL2 gene encodes the antiapoptotic Bcell 
lymphoma 2 (Bcl2) protein, which inhibits autophagy 
by directly binding to the BH3 domain of beclin1 and 
blocking its activity[102]. A recent report suggested that 
the prosurvival Bcl2 protein modulates autophagy only 
indirectly, by inhibiting the apoptosis mediators Bax and 
Bak[103]. Bcl2 has been associated with migration and 
invasion of malignant cells and with the prevention of 
apoptosis in pT3 CRC patients[104,105]. In addition, the 
overexpression of Bcl2 in CRC was correlated with 
resistance to paclitaxel[106]. Furthermore, the role of 
Bcl2 in modulating autophagy has been investigated 
in different cancer cell lines, including colon carcinoma, 
where the deletion of the BH4 domain in the Bcl2 
protein in HT29 colon carcinomas was not found to affect 
tumorigenicity[107]. 

Bif-1 gene
The Bif-1 gene encodes Baxinteracting factor (Bif1), 
also known as endophilin B1, which is involved in the 
control of membrane dynamics in cytosolic organelles, 
such as the Golgi complex and mitochondria, as well 
as in autophagosomes. Bif1 induces the formation of 
autophagosomes and modulates autophagyenhancing 
PI3K lipid kinase activity by interaction with beclin1 
through UVRAG[108]. The expression of Bif1 was found 
to be reduced in colorectal carcinomas and the loss of 
Bif1 suppressed programmed cell death and promoted 
colon adenocarcinomas. Bif1 null mice developed 
normally, with the exception of an enlarged spleen, 
but they had an increased incidence of spontaneous 
tumor formation: 82.8% of Bif1 null mice developed 
lymphoma compared with 14.3% of their wildtype 
counterparts[109].

IBD susceptibility genes
Autophagy has also been linked to CRC through 
inflammatory bowel disease (IBD). In the complex 
pathogenesis leading to colitisassociated cancer, the 
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severity of inflammation is a risk factor for CRC[110]. 
Cytokines released by epithelial and immune cells 
play an important role, and autophagy can affect the 
regulation of both inflammation and immune system 
functions[22]. Autophagy contributes to intestinal 
homeostasis by ensuring intracellular defenses against 
microbes, by maintaining the integrity of secretory gran
ules in Paneth cells, and by regulating the inflammasome 
or mediating antigen presentation[111]. Genomewide 
association studies provided the first link between 
autophagy and IBD by showing that the ATG16L1 T300A 
polymorphism is associated with an increased risk of 
Crohn’s disease (CD)[112114]. In addition, IRGM, NOD2, 
and LRRK2 have been identified as additional markers 
of CD risk, and autophagy and DAP1 were associated 
with ulcerative colitis[115]. Recently, the ATG16L1T300A 
polymorphism was found to improve overall survival in 
human CRC patients and to enhance the production of 
type Ⅰ interferon[116]. 

AUTOPHAGY DRUGS IN CRC
Recent data indicate that only tumors that utilize 
excessive levels of autophagy, even in nutrientrich con
ditions and in the absence of stressful stimuli, respond 
to autophagy inhibitors in vivo[117]. This suggests that 
only a fraction of cancer patients may benefit from the 
administration of autophagy inhibitors. Along similar 
lines, autophagy has been shown to underlie, at least 
in part, the therapeutic activity of some anticancer 
regimens[118,119].

Autophagy promotes cancer cell survival under 
stressful conditions or nutrient deprivation and thus 
may contribute to chemoresistance. The drugs targeting 
various autophagy pathways can either induce gain 
or loss of autophagy. The exaggerated and sustained 
autophagy that is trigged by anticancer therapies can 
lead to type Ⅱ cell death in various cancers, including 
CRC. Increased autophagy in the early stages of cancers 
can induce protection by suppressing tumorigenesis, 
necrosis, and chronic inflammation[13]. On the contrary, 
inhibition of autophagic influx may accelerate the initial 
steps of tumorigenesis and reduce protein degradation, 
and as a consequence, the reduced protein turnover 
might induce the early tumor progression. 

In advanced stages, tumor cells use autophagy 
to survive cellular metabolic stress and to provide 
essential nutrients to tumor cells that are experiencing 
ischemia. Therefore, inhibiting autophagy in latestage 
cancers can suppress tumor progression by blocking 
this prosurvival mechanism in nutrientdeprived tumor 
cells and by preventing protein recycling and cellular 
growth[120]. On the other hand, inhibition of autophagy 
can also lead to a decrease in the antitumorigenic 
activity achieved by promoting nonapoptotic cell death. 

This prosurvival autophagy mechanism can be 
overcome by inhibition. Autophagyinhibiting compounds 
include lysosomotropic agents[121]. These agents target 
acidic compartments, such as lysosomes, but are not 

specific to tumor cells and therefore have a range of 
effects on other cells. Lysosomotropic agents cross the 
lysosomal membrane and are then protonated within 
the acidic vesicle[122]. This results in an increased pH, 
which prevents cellular degradation and indirectly 
inhibits autophagy. Preclinical studies have demonstrated 
the effects of lysosomotropic agents, including CQ, 
which include the indirect modulation of latestage 
autophagy[123]. Furthermore, CQ inhibits phospholipase 
A2 and lysophospholipid acylhydrolase, enzymes that 
are required for the acidification of lysosomes[124].

Treating human colon carcinoma HT29 cells with 
CQ sensitized mouse colon cancers to antiangiogenic 
and cytotoxic therapy[93]. Moreover, the combination 
of CQ and 5FU displayed a significant advantage 
over treatment with 5FU alone in inhibiting tumor 
growth in colon 26 cells, which are a CRC cell line[125]. A 
combination of the autophagy inhibitor CQ and vorino
stat, a histone deacetylase inhibitor, was shown to 
significantly reduce tumor growth and induce apoptosis 
in a colon cancer xenograft model[126]. Notably, the 
combination of CQ with saracatinib, an inhibitor of Src 
nonreceptor tyrosine kinase, enhanced apoptotic cell 
death and resulted in 64% tumor growth inhibition 
compared with saracatinib alone[127]. Autophagy 
inhibitors shown synergy with proteasome inhibitors; for 
example, the simultaneous use of bortezomib and CQ in 
a colon cancer xenograft model decreased tumor growth 
to a greater extent than the use of either of these drugs 
alone[128]. 

Interestingly, treatment of human HCT15 colon 
adenocarcinoma culture cells with Bgroup soyasa
ponins induced autophagy and suppressed prolifer
ation through a marked increase in autophagic cell 
death[129]. In addition to its effects on cell viability 
and anchorageindependent growth inhibition, the 
flavonoid quercetin induced autophagic processes in 
HaRas transformed human colon cells and has been 
proposed to have anticancer properties[130]. Vitamin D 
can trigger autophagy by enhancing BECN1 expression 
and inducing PI3KC3 expression[131]. Cetuximab (an 
antibody for EGFR) generates autophagy and it is 
currently used to treat KRas mutationnegative, EGFR
expressing, metastatic CRC[121]. Moreover, MS275, a 
synthetic benzamide derivative of HDAC, promoted Atg7 
protein expression and induced autophagy to switch to 
apoptosis through the modulation of p38 in human colon 
cancer cells[132].

Curcumin is a natural polyphenolic compound that 
is isolated from the plant Curcuma longa. In addition 
to apoptosis, curcumin also promotes autophagic cell 
death type Ⅱ[133] by inhibiting the Akt/mTOR/p70S6K 
pathway or by activating the ERK1/2 pathway[134]. 
The proliferation of HT29 and HCT15 human colon 
cancer cell lines was inhibited by curcumin treatment, 
which arrested the cell cycle in the G2/M phase with 
no detected apoptosis[135]. Curcumin administered 
in combination with 5FU plus oxaliplatin resulted in 
increased inhibition of growth and enhanced apoptosis 
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in HCT116 and HT29 colon cancer cells compared 
to each of these drugs alone, and these effects were 
attained mainly through the attenuation of the EGFR 
and IGF1R signaling pathways[136]. The induction of 
autophagy activation and ROS production was observed 
in HCT116 human colon cancer cells that were treated 
with curcumin, and they showed higher mRNA and 
protein LC3 levels[137]. 

Autophagy facilitates cancer cell resistance to chemo
therapy treatments, and the inhibition of autophagy 
may resensitize resistant tumor cells to anticancer 
therapy, thus enhancing the efficacy of the treatment. 
For example, imatinib induces nonapoptotic autophagic 
cell death, while the inhibition of autophagy enhances 
its cytotoxicity, but only at a late stage[138]. Autophagy 
activation was observed in colon cancer stem cells 
by analysis of the expression of the intestinespecific 
transcription factor Cdx1, which plays a crucial role in 
chemoresistance to paclitaxel[106]. Similarly, autophagy 
increased resistance to photodynamic therapyinduced 
apoptosis in CRC stemlike cells[139]. However, this report 
did not address whether the protective autophagy that 
was induced in cancer stem cells was due to a drug
mediated response to stress or to the inherent ability 
of cancer stem cells to maintain a high threshold for 
autophagy. Suppression of protective autophagy by 
3-MA was reported to enhance the therapeutic efficacy 
of cisplatin and 5FU in digestive cancers, including 
colon cancer[140].

Many mTOR inhibitors with effective antitumor 
activity have been developed. However, they also 
have downstream effects that include the activation of 
autophagy, which is linked to prosurvival mechanisms 
in tumor cells through the recycling of damaged cellular 
contents. The addition of an autophagy inhibitor could 
solve this complication by excluding this alternate 
recovery pathway and sensitizing malignant cells to 
anticancer therapies[141,142]. 

Taken together, these observations suggest that 
autophagy supports the progression of established 
neoplasms through several mechanisms and that phar
macological inhibitors of autophagy may exert robust 
antineoplastic effects, at least in some settings.

Future research aimed at exploring the context 
specific role of autophagy in particular cancer types can 
provide new opportunities to develop personalized thera
peutic strategies based on the regulation of autophagy, 
and autophagy modulators may become a targetable 
option for enhancing the efficacy of anticancer therapies 
used alone or, more likely, in combination with other 
chemotherapeutic drugs[120].

CONCLUSION
Multiple genes and proteins are involved in the complex 
steps of autophagy. Recent evidence has suggested 
that autophagy plays an important role in all stages of 
carcinogenesis, by influencing initiation, progression and 
metastatic capacity in tumors. The precise mechanisms 

that involve autophagy in cancer are not yet defined, 
and they seem to be context dependent, having both 
promoting and inhibiting roles. During the first steps 
of cancer, autophagy may have a suppressive effect, 
whereas it may alternatively act as tumor promoter 
during advanced cancer stages. It is necessary to 
determine how these dual roles of autophagy in CRC 
are regulated and identify the signals, molecules, 
and mechanisms that enable autophagy to play a 
dominant promalignant role in one situation and the 
opposite role in another. The most important research 
on CRC has been focused on several molecules, mainly 
LC3, BECN1, ATG5, and these studies have produced 
conflicting results. Several therapeutic agents that 
modulate autophagy in CRC have been developed and 
show promising results supporting their use either 
alone or, more likely, in combination with other drugs. 
Further research is required to better understand 
the relationship between CRC and autophagy, and to 
produce potentially beneficial agents for the prognosis 
and therapy of CRC. 
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