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Abstract
Since the introduction of the term “gut-liver axis”, 
many studies have focused on the functional links of 
intestinal microbiota, barrier function and immune res
ponses to liver physiology. Intestinal and extra-intestinal 
diseases alter microbiota composition and lead to 
dysbiosis, which aggravates impaired intestinal barrier 
function via  increased lipopolysaccharide translocation. 
The subsequent increased passage of gut-derived 
product from the intestinal lumen to the organ wall 
and bloodstream affects gut motility and liver biology. 
The activation of the toll-like receptor 4 (TLR-4) likely 
plays a key role in both cases. This review analyzed 
the most recent literature on the gut-liver axis, with a 
particular focus on the role of TLR-4 activation. Findings 
that linked liver disease with dysbiosis are evaluated, 
and links between dysbiosis and alterations of intestinal 
permeability and motility are discussed. We also examine 
the mechanisms of translocated gut bacteria and/or the 
bacterial product activation of liver inflammation and 
fibrogenesis via  activity on different hepatic cell types. 
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Core tip: Liver disease is associated with significant 
changes in intestinal microbiota, but whether liver 
disease modifies the complement of gut bacteria or 
dysbiosis causes liver disease is not clearly understood. 
This review outlines current knowledge on the gut-
liver axis, with a particular focus on the role of toll-
like receptor 4 activation in functional gastrointestinal 
disorders, liver inflammation and fibrosis.
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INTRODUCTION
The term gut-liver axis was introduced approximately 
40 years ago, when Volta et al[1] described the pro
duction of IgA antibodies directed against intestinal 
microorganisms and food antigens in liver cirrhosis. 
The functional link between the gut and liver has 
been extensively investigated since this first report[1]. 
Intestinal microbiota, barrier function and immune 
responses that link the gut and liver are intriguing and 
promising research topics.

Growing evidence demonstrates that gut micro
biota play an important role in the gut-liver axis[2]. 
Disturbances in gut microbiota composition may con
tribute to many diseases and affect local and remote 
organ systems[3]. Several conditions are associated 
with specific microbial patterns and/or leaky gut. These 
disorders range from intestinal diseases, such as irritable 
bowel syndrome and inflammatory bowel diseases, to 
numerous extra-intestinal diseases[3], including diseases 
that affect the liver[4]. The intestinal mucosa exhibits 
impaired barrier function in the presence of abnormal 
microbiota, such as increased intestinal permeability and 
endotoxin translocation, with the subsequent increased 
passage of waste materials from the intestinal lumen to 
the organ wall and bloodstream[2,5]. The gut epithelium 
is a natural barrier that allows the selective entry of 
substances present in the lumen and avoids the entry 
of harmful elements, including bacteria and their bio-
products[6]. 

Toll-like receptors (TLRs) are a family of highly 
conserved receptors that recognize pathogen-associated 
molecular patterns and allow the host to recognize 
bacteria, mycobacteria, yeast membrane/wall compo­
nents and several gut-derived products. TLR-4 is one 
of the most intriguing of these receptors because it 
plays a key role in innate immunity by triggering inflam­
matory responses. TLR-4 initiates innate immune 
responses via nuclear factor kappa B (NF-κB) when 
it is activated by its primary ligand, Gram-negative 
bacterial lipopolysaccharides (LPS), which results in the 
transcription of several genes that encode inflammatory 
cytokines, chemokines and antimicrobial agents[7,8]. 

This review analyzed the most recent literature on 
the gut-liver axis, with a particular focus on the role 
of TLR-4 activation. First, we evaluated the evidence 
that links liver disease with the condition of dysbiosis. 
Second, we discuss the links between dysbiosis and 
alterations in intestinal permeability and motility. Finally, 
we examine the mechanisms of translocated gut bac
teria and/or the bacterial product activation of liver 

inflammation and fibrogenesis via activity on different 
hepatic cell types.

DYSBIOSIS DURING CHRONIC LIVER 
DISEASE AND CIRRHOSIS
Liver disease is associated with significant qualitative 
and quantitative changes in intestinal microbiota, which 
is defined as “dysbiosis”. Dysbiosis is directly involved 
in the pathogenesis of several different forms of hepatic 
injury and many complications of advanced cirrhosis. 
Whether liver disease modifies the complement of gut 
bacteria or dysbiosis causes liver disease is not clearly 
understood. Existing evidence supports the need to 
contextualize the argument within the etiology of liver 
disease. Conversely, advanced liver disease is associated 
with dysbiosis that is independent from the original 
cause of hepatic damage. The hypothesis of a vicious 
circle in which microbiota alterations are supported 
by cirrhosis, which contributes to many cirrhosis com
plications seems appropriate and well structured. 

Most of the research on dysbiosis during chronic liver 
disease investigated non-alcoholic fatty liver disease 
(NAFLD). Qualitative and quantitative dysbiotic changes 
are clearly documented during NAFLD in patients with 
simple fatty liver and non-alcoholic steatohepatitis 
(NASH). NAFLD patients exhibit a high prevalence of 
small intestinal bacterial overgrowth[9,10], and microbial 
samples from NAFLD and NASH patients exhibit a 
significantly lower proportion of members of the Rum­
inococcaceae family than healthy subjects[11]. Some 
conflicting results emerged in studies that compared 
the microbiota between NAFLD and NASH patients, and 
further studies are anticipated on this subject. 

The feeding of a high-fat/high-polysaccharide or 
a calorie-restricted diet to wild-type mice significantly 
alters microbial taxonomic composition in experimental 
models[12,13], and gut microbiota exacerbate NAFLD 
development via several different mechanisms. First, 
gut microbes participate in calorie extraction from food 
and regulate obesity and its complications, including 
NAFLD. Human enzymes cannot degrade most complex 
carbohydrates and plant polysaccharides, which are 
fermented in the colon by intestinal microbes. The 
resultant short-chain fatty acids account for approxi
mately 10% of daily energy intake[14] and stimulate 
de novo lipogenesis[15]. The intestinal microflora is 
also responsible for the increased endogenous ethanol 
production that is observed during NAFLD. An age-
related increase in breath ethanol content was reported 
in ob/ob mice, and neomycin treatment abolished this 
effect[16]. Increased systemic ethanol levels were also 
confirmed in NASH patients[17], which may contribute to 
hepatocyte trygliceride accumulation and reactive oxygen 
species production. Bacterial conversion of dietary choline 
into methylamines experimentally produced similar 
effects of choline-deficient diets and caused NASH[18]. 
More recently, gut microbiota, which are responsible for 
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the conversion of cholic and chenodeoxycholic acid into 
secondary bile acids, were suggested to control lipid and 
glucose metabolism through the regulation of bile acid 
pools. Bile acids also function as signaling molecules and 
bind to cellular receptors. For example, bile acid synthesis 
controls the activation of nuclear receptor farnesoid X 
receptor and the Takeda G-protein-coupled receptor 
5[19,20], which are strongly implicated in the modulation of 
glucose metabolism[21,22]. Hepatotoxic bacterial products 
that pass across a dysregulated intestinal barrier trigger 
liver damage, as discussed below, and provoke systemic 
inflammation and insulin resistance[23], which is a primary 
event in NAFLD pathogenesis. Circulating levels of LPS, 
which is a component of the outer membrane of Gram-
negative bacteria, are elevated in rodent NAFLD[24,25] and 
NAFLD patients[26,27]. 

Research on the role of the microbiome in alcoholic 
liver disease is not as advanced as NAFLD, but dysbiosis 
is clearly associated with alcohol-induced liver damage. 
Significant microbial alterations were observed in the 
Tsukamoto-French model of alcoholic liver disease in 
mice[28], and Lactobacilli administration reduced the 
features of alcoholic liver disease in several animal 
models[29,30]. Significant changes in the composition of 
the microbiome are also observed in alcoholic patients, 
which is consistent with these experimental results[31,32]. 
There are several mechanisms by which alcohol may 
contribute to dysbiosis. Commensal flora produce and 
metabolize ethanol, and alcohol intake may influence 
the complement of bacteria. Alcohol also produces 
intestinal dysmotility, alters gastric acid secretion and 
impairs the intestinal innate immune response[33]. 

Dysbiosis is closely associated with advanced liver 
disease, e.g., liver cirrhosis. An apparent increase in 
potentially pathogenic bacteria occurs during cirrhosis 
independently of the etiology of liver disease, with a 
greater abundance of Gram-negative taxa (Entero­
bacteriaceae, Bacteroidaceae)[34,35]. Similar to alcohol 
abuse, impaired intestinal motility and innate immunity 
may represent a basis for the dysbiosis that is observed 
during cirrhosis[36]. Cirrhotic patients are frequently 
exposed to hospitalization, antibiotics and dietary modi
fications, which are potential factors associated with 
alterations in the intestinal microbiome.

DYSBIOSIS: BARRIER DAMAGE, 
BACTERIAL TRANSLOCATION AND 
INTESTINAL DYSMOTILITY
Experimental models suggest that dysbiosis itself contri
butes to intestinal inflammation and mucosal leakage, 
which favors the translocation of several inflammatory 
bacterial products[37,38]. Intestinal decontamination with 
non-absorbable antibiotics also significantly reduces 
intestinal inflammation and permeability[38].

Intestinal barrier damage allows bacterial trans
location, which is defined as the migration of viable micro­
organisms and microbial products (e.g., LPS, lipoteichoic 

acid, bacterial DNA) across the intestinal barrier, from the 
intestinal lumen to mesenteric lymph nodes and other 
extra-intestinal organs and sites[39]. The translocation 
of viable bacteria may induce “spontaneous” bacterial 
infections in some cases, such as the spontaneous 
bacterial peritonitis that is observed during cirrhosis. 
The translocation of bacterial products that enter the 
systemic circulation via the portal vein and activate 
inflammatory pathways of hepatic cells contributes to the 
progression of liver damage in other cases, as discussed 
below. Viable microbes and bacterial fragments entering 
the systemic circulation via the portal vein or following 
the enteric lymphatic drainage trigger a proinflammatory 
state by provoking the release of cytokines, such as 
tumor necrosis factor-alpha (TNF-α), interleukin-6 
(IL-6) and IL-1β, which contributes to the hyperdynamic 
circulation and portal hypertension that are typical of 
advanced liver cirrhosis[40]. Recent evidence suggests that 
intestinal barrier damage is due to a microbial imbalance 
that influences gut motility[41]. The observations of intesti
nal dysmotility in germ-free animals further suggest 
that microbiota play a crucial role in the modulation of 
intestinal motility[42]. TLRs may explain how microbiota 
act on gut motility and the gut-liver axis because TLR 
activation during conditions of impaired intestinal barrier 
mediates intestinal and liver disorders. Intestinal dis
orders that are associated with impaired motility may be 
caused by intestinal dysbiosis[41], which further increases 
intestinal permeability and the translocation of bacterial 
substances, especially LPS, that may reach the liver[5] 
(Figure 1).

The importance of aberrant intestinal microbiota in 
the pathogenic mechanisms of several gastro-intestinal 
diseases was raised previously, in addition to its health-
inducing effects[2]. Commensal microbiota provides 
beneficial effects, including neuroimmune and pain 
modulation, and a possible effect on intestinal motility 
modulation. Polymicrobial sepsis induces a complex 
inflammatory response within the intestinal muscularis 
with the recruitment of leukocytes and the production 
of mediators that inhibit intestinal muscle function[43]. 
Therefore, the intestine is a source of bacteremia and an 
important target of bacterial products that affect intestinal 
motility[43]. Barbara et al[42] suggested in a recent paper 
that one of the possible mechanisms of microbiota in
fluence on gut motor function occurs through the release 
of bacterial substances and the effects of mediators 
released by the gut immune response[42]. These inflam­
matory changes are partially determined by IL-1β 
mucosal expression, which is higher in patients suffering 
from post-infective irritable bowel syndrome (PI-IBS) 
than in patients without post-infectious symptoms[44]. 
Patients with IBS present increased IL-1β expression by 
peripheral blood mononuclear cells[45], and prolonged 
exposure to IL-1β alters neurotransmitter and electrically 
induced Ca2+ responses in the myenteric plexus[46]. The 
immune response also includes the release of histamine, 
tryptase and prostaglandins by mucosal-activated mast 
cells in PI-IBS[41] or activated macrophages during sepsis. 
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Notably, modulation of the intestinal microflora 
balance using probiotics likely plays an important role in 
the treatment and prevention of various gastrointestinal 
disorders[55]. The specific mechanisms underlying 
probiotic efficacy are not clearly elucidated, but most 
gastrointestinal diseases in which probiotics exhibit 
efficacy are associated with non-specific alterations 
of gastrointestinal motility, which suggests that the 
modulation of intestinal motility is another possible 
mechanism for the benefits of probiotic[55]. For example, 
Lactobacillus paracasei attenuated persistent muscle 
hypercontractility of jejunal strips in an animal model of 
PI-IBS[56], and Bifidobacterium and Lactobacillus, but not 
Streptococcus, alleviated visceral hypersensitivity and 
recovered intestinal barrier function and inflammation 
in a recent study in the PI-IBS mouse model, which 
correlated with an increase in tight junction proteins[57], 
such a claudin-1 and occludin. One of the mechanisms 
that underlies the altered permeability in IBS includes 
changes in the expression, localization and function of 
tight junctions[58]. Decreased levels of zonule occludin-1 
(ZO-1) protein expression and disruption of claudin-1, 
occludin and ZO-1 expression were found in the apical 
region of the enterocytes during the course of IBS[59,60]. 
An increased risk of developing PI-IBS was also conferred 
by single nucleotide polymorphisms in the that gene 
encodes the tight junction protein E-cadherin[61].

Our group demonstrated that exposure of human 
colonic mucosa to Lactobacillus rhamnosus GG (LGG) 
may affect smooth muscle contraction, suggests that the 
modulation of muscle contractility represents a possible 
mechanism of action of these bacteria[62]. Notably, LGG 
acts through the direct activation of the Gram-positive 
sensing TLR-2, which is expressed on the surface of 
human colonic SMCs. We recently demonstrated that 
the surface expression of TLR-2 in resting cells was 
significantly decreased in cells exposed to LGG. This 
reduction in available receptors for monoclonal anti-TLR-2 

Increased mucosal permeability was widely demon
strated during the course of sepsis and cases of severe 
mucosal inflammation[5], and impairment of contraction 
in these conditions seems to be related to the activation 
of normally quiescent intestinal muscularis macrophages 
by LPS or inflammatory mediators released by the 
mucosa[47-49]. Activated macrophages secrete several 
mediators, including prostaglandins, H2O2, cytokines 
and nitric oxide. Many of these mediators also alter the 
kinetic properties of smooth muscle cells (SMCs)[49-51]. 
Cyclooxygenase (COX)-1 and COX-2 are expressed in 
the neuromuscular compartment of the human colon, 
and these enzymes appear to modulate the cholinergic 
excitatory control of colonic motility at prejunctional 
and postjunctional sites, respectively[52]. IL-1β induces 
a decrease in tonic contraction in rat mesenteric lym
phatic muscle cells in a COX-2 dependent manner via 
prostaglandin E2

[53].
Scirocco et al[54] demonstrated the constitutive ex

pression of functionally active TLR-4 on primary human 
colonic SMCs in an in vitro model. Notably, exposure of 
SMCs to LPS caused contractile alterations[54]. This result 
suggests that the gastrointestinal dysmotility that occurs 
during acute infection is related to inflammation and a 
direct effect of circulating LPS on SMCs. TLR-4 activation 
following LPS binding leads to NF-κB activation, which 
participates in oxidative-dependent transcriptional changes 
in SMCs that modify the agonist-induced contraction[49,54]. 
LPS may also directly affect muscle cell contractility 
via alterations in electro-mechanical coupling[54], which 
could trigger a wide cascade of intracellular events that 
modify SMC integrity and function. Our group recently 
demonstrated that acute exposure of the human 
colonic mucosa to pathogenic LPS[49] impairs muscle cell 
contractility, and this effect was due to LPS translocation, 
which directly affects smooth muscle contractility, or the 
mucosal production of free radicals and inflammatory 
mediators that reach the muscle layer[49].

Normal microbiota

LPS

A

Microbiota imbalance
Early inflammation
Mucosal leakage

LPS LPS

Dysbiosis
Barrier damage
Bacterial translocation

B C
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Figure 1  The results of intestinal disorders that are associated with impaired motility. A: Normal conditions with intestinal mucosa tolerance; B: In the 
presence of microbiota imbalance, intestinal mucosa is characterized by a leak and mild inflammatory infiltrate. The subsequent passage of modest quantities of 
lipopolysaccharides (LPS) induces activation of resident macrophages (MΦ) with the release of inflammatory mediators, such as prostaglandins (PGs) and nitric 
oxide (NO). LPS can also reach the muscle layer and bind to smooth muscle cell (SMC) toll-like receptor 4 (TLR-4). Both conditions cause morpho-functional changes 
of SMCs. The reduced intestinal motility further induces intestinal microbiota imbalance, which leads to dysbiosis; C: Dysbiosis induces barrier damage and relevant 
bacterial and LPS translocation. The large amount of translocated LPS reaches the blood vessels through the portal vein and reaches the liver.
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binding further suggests the occurrence of an interaction 
of LGG with TLR-2 receptors. TLR-2 activation likely 
induces transitory myogenic changes with alterations 
in morpho-functional parameters in muscle tissue and 
isolated SMCs[63]. TLR-2 activates an intrinsic myogenic 
response that likely counteracts the damage that is 
induced by the pro-inflammatory burst from pathogen 
LPS on human gastrointestinal smooth muscle[63]. LGG 
likely protects human SMCs from LPS-induced damage 
via LGG binding to TLR-2, and TLR-2 activation leads to 
IL-10-mediated anti-inflammatory effects.

TLR-4-EXPRESSING CELLS AND 
SIGNALING IN THE LIVER
Inflammation during chronic liver damage correlates 
with fibrosis progression, but the molecular mechanism 
that links inflammation and fibrosis are not definitively 
understood. Several factors that participate in inflam
mation and liver fibrosis at the molecular and cellular 
levels were mentioned, regardless of the specific etiology 
involved. One of the pathways that has attracted the 
most attention in recent years as the putative link 
between liver inflammation and fibrosis is regulated by 
TLR-4 activation. 

Several cell types express TLR-4 in the liver, 
including Kupffer cells, hepatic stellate cells (HSCs), 
biliary epithelial cells, hepatocytes and liver sinusoidal 
endothelial cell (LSECs)[64]. TLR-4 expression in healthy 
liver tissue is generally low because of the high degree 
of tolerance of this organ to the continuously incoming 
gut-derived TLR-4 ligands. The liver receives high 
concentrations of gut-derived endotoxin because of its 
location between the systemic and portal bloodstream 
and the connection with the intestine through the biliary 
tract. Kupffer cells and hepatocytes take up the incoming 
LPS, which removes it from the blood and places it into 
the bile[65-67]. Increased TLR-4 expression is induced in 
the injured liver, and inflammatory signaling cascades 
are triggered by this activation[68]. Two microRNAs are 
primarily involved in the regulation of “LPS tolerance”. 
TLR-4 activation increases miR-155 levels, which 
leads to the degradation of Src homology 2 domain-
containing inositol-5-phosphatase 1, a down-regulator of 
TLR-4 signaling, and stimulation of the TLR-4 signaling 
pathway[69]. However, TLR-4 activation increases miR-21 
expression, which upregulates IL-10 via programmed 
cell death protein 4 inhibition[70]. TLR-4-induces IL-10, 
which inhibits miR-155 and downgrades TRL-4 signaling. 
Therefore, the balance between miR-21 and miR-155 
likely plays a pivotal role in the regulation of “LPS 
tolerance”. Other microRNAs are as fundamental in the 
control of the TLR-4-induced inflammatory response, 
particularly miR-146a and miR-9, which resolve the pro-
inflammatory response by targeting key components 
in the TLR-4 signaling pathways, and miR-147, which 
promotes an anti-inflammatory response via repression 
of cytokine production[71].

Once normal immune tolerance is exceeded, LPS 
directly activates the TLR-4 signaling pathway on Kupffer 
cells, HSCs, hepatocytes and cholangiocytes (Figure 
2). LPS cooperates with circulating LPS-binding protein 
and binds to TLR-4 on the plasma membrane of cells 
with two co-receptors [CD14 and myeloid differentiation 
protein (MD)2] to activated TLR-4 signaling pathways 
in a myeloid differentiation factor (MyD)88-dependent 
or independent manner[72]. The MyD88 dependent 
signaling pathway primarily uses the iκB kinase and 
mitogen-activated protein kinase signaling pathways, 
which determines the activation of NF-κB and activator 
protein-1, respectively, and regulates the expression of 
pro-inflammatory cytokines and other genes related to 
immune functions[72]. The MyD88-independent signaling 
pathway is mediated by the Toll/interleukin-1 receptor 
domain-containing adaptor inducing interferon-β, which 
activates interferon regulatory factor 3 and induces the 
expression of interferon (IFN)-β and genes that respond 
to IFN[72].

LPS, via activation of TLR-4 and the consequent 
inflammatory cascade in target cells, plays a key role 
in the pathogenesis and progression of fatty liver of 
alcoholic and non-alcoholic origin[24,73]. Szabo et al[73] 
recently suggested that alcohol and its metabolites 
regulate the intestinal barrier and allow increased LPS 
blood concentrations to reach the liver via the portal 
blood and promote TLR-4-induced inflammation and 
liver damage. The molecular mechanisms triggered by 
the LPS/TLR-4 binding are likely crucial in NAFLD. Animal 
models of genetically induced obesity demonstrate an 
increased susceptibility to liver damage from endotoxin,
and exposure to low doses of LPS also determines steato
hepatitis development[74]. Animal models of diet-induced 
steatohepatitis also exhibit increased levels of portal 
endotoxemia and TLR-4 hepatic hyperexpression[24]. 
Probiotic treatment prevents the histological features 
of NASH in genetically obese animal models[75], which 
supports the hypothesis of the pathogenetic role of 
intestinal-derived bacterial products.

TLR-4 likely plays a role in viral hepatitis C, but the 
relationship between hepatitis C virus (HCV) and TLR-4 
is quite complex. HCV infection directly induces TLR-4 
expression[76] and may determine the loss of tolerance 
to TLR-4 ligands by monocytes and macrophages[77]. 
The TLR-4 signal may also regulate HCV replication[78]. 
Variants of the TLR-4 gene modulate the risk for 
liver fibrosis in Caucasian patients with chronic HCV 
infection[79,80]. TLR-4 was also involved in the cooperation 
between HCV and alcohol towards liver damage and 
hepatic oncogenesis in the liver progenitor cell trans
plantation model[81].

Inflammation (with secretion of TNF-α and IL-6) 
and anti-viral effects (with secretion of IFN-β) are 
determined by TLR-4 activation, depending on whether 
the MyD88-dependent or independent pathway is 
induced, respectively[82]. The function of TLR-4 in LPS-
stimulated proinflammatory responses of Kupffer cells is 
well characterized[76,77], but new insights were proposed 
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recently. A TLR-4-driven metalloprotease expression 
has been postulated since matrix metalloproteinase 
(MMP)-10 was recently added to the list of genes that 
TLR-4 induces in liver macrophages[83]. MMP-10 was 
induced during hepatic injury and played a fundamental 
role in liver tissue repair[83]. Monocytes/macrophages 
represent the primary cellular targets of intestinal-
derived endotoxin, and they are primary effectors of 
LPS-induced liver regeneration after partial hepatectomy 
and the experimental cholestatic liver disease, in which 
LPS promotes fibrogenesis[84,85]. 

TLR-4 expression by HSCs suggests a direct role of 
the receptor in hepatic fibrogenesis[72]. Transforming 
growth factor-β (TGF-β) signaling and liver fibrosis were 
enhanced by TLR-4 expression in HSCs[86], and the 
apoptotic threshold of HSCs is lowered by two TLR-4 
polymorphisms that are protective against fibrosis[87].

The expression of chemokines and adhesion mole
cules in HSCs by TLR-4 signaling is likely also involved in 
macrophage recruitment to fibrogenesis sites[86]. 

LSECs and Kupffer cells play important roles in 
the clearance of gut-derived LPS without inducing 
local inflammatory reactions under physiological condi
tions. LPS tolerance in LSECs depends on reducing 
the nuclear translocation of NF-κB without a change in 
TRL-4/CD14 surface expression or scavenger activity[88]. 
The C-X-C chemokine receptor type-(CXCR)4 was 
recently demonstrated to be a part of the LPS “sensing 
apparatus”, and inhibition of CXCR4 expression in 
endothelial cells (by RNA interference) decreased IL-6 
production, LPS binding and chemotaxis[89]. CXCR4 over-

expression on the LSECs membrane is driven by chronic 
injury[90,91], and CXCR4 expression likely plays a central 
role in provoking fibrosis after chronic insult. CXCR4 down­
regulation (together with CXCR7 expression) stimulates 
regeneration immediately after injury. LSEC phenotype 
conversion from a CXCR7- to a CXCR4-expressing cell 
may enhance the response to gut-derived LPS, which 
provides a further mechanism for the induction of TLR-4 
activation and pro-fibrogenic cascade.

Hepatic progenitor cells, which were traditionally 
not described as TLR-4-expressing elements, were also 
recently demonstrated to be involved in TLR-4 signaling. 
TLR-4 expression by hepatic progenitor cells and inflam­
matory cells at the porto-septal and interface level in 
patients with NAFLD, was supported by increased LPS 
activity and associated with the activation of fibrogenic 
cells and the degree of fibrosis[92]. Biliary cells of the 
interlobular bile ducts and liver progenitor cells exhibit 
the highest TLR-4 immunohistochemical expression in 
patients with chronic hepatitis C, which correlated with 
the degree of inflammation, portal/septal myofibroblasts 
activity and fibrosis stage[93]. 

Hepatic progenitor cells, which are bipotential stem 
cells that reside in human and animal livers, differen
tiate towards hepatocytic and cholangiocytic lineages, 
and proliferation leads to the so-called “ductular reac
tion”[93-96]. Studies in patients with biliary disorders and 
experimental models of biliary fibrosis demonstrated that 
the ductal epithelium expressed several profibrogenic 
and chemotactic proteins[97-100], and TLR-4 expression by 
biliary epithelial cells was associated with inflammation 
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Figure 2  Hepatic cell types express toll-like receptor-4. In the presence of the loss of lipopolysaccharides (LPS) tolerance, such as during non-alcoholic fatty 
liver disease, non-alcoholic steatohepatitis or HCV chronic hepatitis, TLR-4 is activated by gut-derived LPS and overexpressed. An altered balance of known miRNAs 
(miR155, miR21, let-7i) and chemokine receptors (CXCR4, CXCR7) could promote this condition. Then, activation and recruitment of inflammatory cells, ductular 
reaction and activation of endothelial and stellate cells drive liver inflammation and fibrosis. On the right, the mediators mainly involved in the fibrosis are presented 
(TGF-β, IGF-1, TNF-α, IL-6), on the left, mediators related to the inflammation are shown (TNF-α, IL-6, IL-1α, IL-8, GM-CSF, IFN-γ). TLR-4: Toll-like receptor-4; 
TNF-α: Tumor necrosis factor alpha; IL: Interleukin; GM-CSF: Granulocyte-macrophage colony-stimulating factor; IFN: Interferon; HCV: Hepatitis C virus; MMPs: 
Matrix metalloproteinases; NAFLD/NASH: Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis.
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and fibrosis progression[93,101,102]. Proinflammatory cyto­
kines produced in response to TLR-4 signaling may 
participate in the cross-talk between hepatic progenitor 
cells and proliferating cholangiocytes or inflammatory 
cells and portal/septal myofibroblasts[93].

Increased TLR-4 expression by cholangiocytes 
represents a marker of loss of tolerance to LPS, which 
contributes to chronic biliary inflammation[102]. TLR-
4-expressing cholangiocytes produce high levels of 
IL-1β, IL-8, IFN-γ, TNF-α, granulocyte-macrophage 
colony-stimulating factor (GM-CSF) and TGF-β[101]. LPS 
treatment of cultured biliary epithelial cells induces 
nuclear translocation of NF-kB, NF-kB-DNA binding and 
the production of TNF-α[103]. Human cholangiocytes 
cultured under normal physiological conditions express 
let-7i (a family members of let-7 miRNA), which post-
transcriptionally downregulates TLR-4 expression[104]. 
The formation of an NF-kB p50-C/EBPβ silencer complex 
after LPS treatment or Cryptosporidium parvum infec
tion inhibits the transcription of Let-7i and leads to 
increased TLR-4 expression[104,105]. This mechanism 
was hypothesized to allow detection and response to 
microbes without enhancing the inflammatory response. 

Activation of the hepatic progenitor cell compart
ment and the consequent ductular reaction are also 
associated with the severity of nonbiliary chronic liver 
disease[93,106-108], and endotoxin also exhibits a role in stem 
cell/progenitor activation in other organs. LPS directly 
induces the proliferation of embryonic stem cells and adult 
tissue-specific stem cells/progenitors[109], hematopoie
tic progenitors[110], bone marrow mesenchymal stem 
cells[111]. The transplantation of p53-deficient hepatic 
progenitor cells transduced with TLR-4 results in liver-
tumor development in mice following repetitive LPS 
injection[80]. 

CONCLUSION
The term “gut-liver axis” comes from the evidence 
of a strict interconnection between the gut and liver 
physiology and pathophysiology, and gut microbiota 
were recently claimed as a key mediator of this linkage. 
Chronic liver diseases are associated with qualitative 
and quantitative changes in the intestinal microbiota, 
which are partially dependent on the specific hepatic 
disease, and dysbiosis is almost always present during 
liver cirrhosis, regardless of the etiology of liver injury. 
Altered gut microflora contribute to intestinal dysmotility, 
inflammation and mucosal leakage. Finally, intestinal 
barrier damage allows the translocation of viable micro
organisms and bacterial products, which reach the 
liver through portal blood and activate inflammatory 
pathways on liver cells. 

These bases suggest that the TLR-4 receptor for 
bacterial endotoxin plays a starring role in the gut-
liver axis. TLR-4 is activated in intestinal muscolaris 
macrophages, which are stimulated to produce and 
release prostaglandins and cytokines, and intestinal 
SMCs, which exhibit altered contractility with resulting 

dysmotility. TLR-4 activation in the gut exacerbates 
intestinal mucosal damage and bacterial translocation. 
Finally, most hepatic cell types express TLR-4, and 
LPS directly activates TLR-4 signaling in the liver once 
normal immune tolerance is exceeded. TLR-4 activation 
in Kupffer cells, HSCs, hepatocytes and cholangiocytes 
is implicated in most of inflammatory and fibrogenic 
pathways and activation contributes to the progression of 
liver disorders and complications of liver cirrhosis.

There are two promising strategies to hinder the 
deleterious effects of excessive TLR-4 activation: 
Modulation of gut microbiota to reduce the amount of 
TLR-4 ligand and direct interference with TLR-4 signaling. 
Drugs that are capable of attaining the first outcome, 
such as probiotics, prebiotics and antibiotics, already 
exist, and probiotic therapy produces beneficial effects 
on the liver, at least in the context of NAFLD[112]. Drugs 
of the second class are far from clinical application, 
but TLR-4 antagonism could weaken host immunity. 
However, some interesting evidence already comes from 
experimental studies, and the TLR-4 antagonist eritoran 
tetrasodium was recently demonstrated to attenuate 
liver damage in a liver ischemia/reperfusion injury 
model[113].

In conclusion, TLR-4 has emerged as a clear prota
gonist in the gut liver-axis over the past few years. Now 
that the pathophysiological basis is mostly known, it is 
time to see whether we can convert this knowledge into 
effective therapeutic interventions.
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