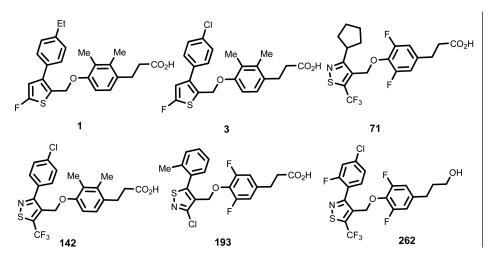
ACS Medicinal Chemistry Letters

Therapeutic Potential of GPR120 Agonists for the Treatment of Type 2 Diabetes

Ahmed F. Abdel-Magid*

Therachem Research Medilab (India) Pvt. Ltd., Jaipur, India


Patent Application Title:	Isothiazole Derivatives as GPR120 Agonists for The Treatment of Type 2 Diabetes						
Patent Application Number:	WO 2015/134039 A1	Publication date:	11 September 2015				
Priority Application:	None given						
Inventors:	Illig, C. R.; Player, M. R.; Zhang, X.						
Assignee Company:	Janssen Pharmaceutica NV; Turnhoutseweg 30, B-2	2340 Beerse (BE)					
Disease Area:	Type 2 Diabetes and obesity-related disorders	Biological Target:	G-protein coupled receptor 120 (GPR120)				
Summary:	The invention in this patent application relates to iso	thiazole and thiophene de	rivatives represented generally by formula (I), which are				
	GPR120 agonists and may potentially be useful for the treatment of Type 2 diabetes mellitus, obesity, obesity-related disorders,						
	impaired oral glucose tolerance, and insulin resis	stance.					
	Statistics have shown that current drug therapies for Type 2 diabetes are lacking durable efficacy. More than half of patients on current						
	oral medications fail to reach the targeted blood glucose control after 5 years of treatment. Thus, there is an urgent need for new d						
	therapies to treat Type 2 diabetes.						
	Glucagon-like peptide-1 receptor (GLP-1) is a member of the glucagon receptor family of G protein-coupled receptors. It is a key						
	regulator of glucose homeostasis, which is secreted by the L-cells in the colon following meals. It is an incretin hormone that						
	1 0 0	insulin secretion, reduces glucagon secretion, preserves β -cell function, and improves satiety. GLP-1 has been a target for several of the recently approved Type 2 diabetes drugs including Januvia (Merck) and Galvus (Novartis),					
			betes drugs including Januvia (Merck) and Galvus (Novartis), n), which acts by activating the GLP-1 receptor.				
	1 1 0, 7 7 7		ession of diabetes. While the acute exposure of FFAs in				
		-	and GLP-1 release, chronic exposure of FFAs impairs				
	•		in insulin responsive tissues such as muscles and liver				
			ed to increased accumulation of fatty acids and hepatic				
	0 1 1		cycle of disease progression. Currently available Type 2				
	diabetes drugs can only treat some of the damaging effects of FFAs on the progression of diabetes. Therefore, researchers are aiming to develop effective new therapies that can address all or most of these effects to efficiently potentiate the release of GLP-1,						
	significantly improve blood glucose control, maintain β -cells function, and may additionally be capable of treating obesity.						
	G-protein coupled receptor 120 (GPR120) is a member of the rhodopsin family of G protein-coupled receptors (GPCRs), which also includes GPR40, GPR41, and GPR43. GPR120 is expressed predominantly in the intestine and adipose tissue and functions as a						
			s, which stimulate the secretion of GLP-1. It is believed				
			which summate the secretion of GLP-1. It is believed				
			le data suggest that GPR120 agonists would potentiate				
	,		neficial effects of elevating GLP-1 levels are already well				
	e e ,		therapeutic target to develop novel treatments for Type				
		÷ ,	ompounds described in this patent application may be				
	•	•	esity. They might additionally act as complementary				
	treatments to existing diabetes therapies that affe						
	treatments to existing thatetes theraples that and	ee nver mounn sensitivity	and mose that preserve preeits function.				

Important Compound Classes:

Formula (I)

Received: October 6, 2015 Published: October 16, 2015 **Key Structures:**

The inventors listed the structures of 279 examples of formula (I) including the following compounds:

Biological Assay:

In Vitro Assays:

- Human GPR120 DiscoveRx PathHunter Beta-Arrestin Assay
- Human GPR120 in Calcium Flux Assay
- In Vivo Assays:
 - GPR120 DIO Mice OGTT Screening
- A: GPR120 C57bl6Mouse IPGTT
- B: C57bl6 mouse OGTT

Biological Data:

The biological data obtained from testing the above represented examples are listed in the following tables:

Table 1: In Vitro Assays								
	hGPR120	hGPR120	GPR120	GPR120				
Compound	β-Arrestin A	β-Arrestin B	Ca ²⁺ Assay A	Ca ²⁺ Assay B				
	EC ₅₀ (μM)	EC ₅₀ (μM)	EC50 (µM)	ΕС50 (μΜ)				
1	0.218	0.205	0.024					
3		0.083	0.049					
71	0.278	0.139	0.037					
142	0.141	0.100	0.155					
193	0.322	0.990	0.344					
262		0.080		0.139				

Table 2: In Vivo Assays								
Compound	GPR120 DIO Mice OGTT	GPR120 C57bl6 Mouse IPGTT OGTT						
	DIO Lowering Glucose AUC (-30 to 90)	C57IPGTT			C57OGTT			
	@ 10 mg/kg	3 mg/kg	10 mg/kg	30 mg/kg	3 mg/kg			
1	-0.26							
71	-0.52	-14			-37			
142		-34	-61	-53	-			

Recent Review Articles:

Li, A.; Li, Y.; Du, L. Future Med. Chem. 2015, 7 (11), 1457–1468.
Cornall, L.M.; Mathai, M. L.; Hryciw, D. H.; McAinch, A. J. Drug Discovery Today 2014, 19 (5), 670–679.

3. Halder, S.; Kumar, S.; Sharma, R. Expert Opin. Ther. Pat. 2013, 23 (12), 1581-1590.

AUTHOR INFORMATION

Corresponding Author

*Address: 1383 Jasper Drive, Ambler, Pennsylvania 19002, United States. Tel: 215-913-7202. E-mail: afmagid@comcast.net.

Notes

The authors declare no competing financial interest.