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ABSTRACT

The HIV-1 accessory protein Vpr displays different activities potentially impacting viral replication, including the arrest of the
cell cycle in the G, phase and the stimulation of apoptosis and DNA damage response pathways. Vpr also modulates cytokine
production by infected cells, but this property remains partly characterized. Here, we investigated the effect of Vpr on the pro-
duction of the proinflammatory cytokine tumor necrosis factor (TNF). We report that Vpr significantly increases TNF secretion
by infected lymphocytes. De novo production of Vpr is required for this effect. Vpr mutants known to be defective for G, cell
cycle arrest induce lower levels of TNF secretion, suggesting a link between these two functions. Silencing experiments and the
use of chemical inhibitors further implicated the cellular proteins DDB1 and TAK1 in this activity of Vpr. TNF secreted by HIV-
1-infected cells triggers NF-kB activity in bystander cells and allows viral reactivation in a model of latently infected cells. Thus,
the stimulation of the proinflammatory pathway by Vpr may impact HIV-1 replication in vivo.

IMPORTANCE

The role of the HIV-1 accessory protein Vpr remains only partially characterized. This protein is important for viral pathogene-
sis in infected individuals but is dispensable for viral replication in most cell culture systems. Some of the functions described for
Vpr remain controversial. In particular, it remains unclear whether Vpr promotes or instead prevents proinflammatory and an-
tiviral immune responses. In this report, we show that Vpr promotes the release of TNF, a proinflammatory cytokine associated
with rapid disease progression. Using Vpr mutants or inhibiting selected cellular genes, we show that the cellular proteins DDB1
and TAK1 are involved in the release of TNF by HIV-infected cells. This report provides novel insights into how Vpr manipulates

TNF production and helps clarify the role of Vpr in innate immune responses and inflammation.

hronic immune activation is a hallmark of HIV-1 infection in

humans and is a good predictor of disease progression (1, 2).
HIV-1 activates the immune system through indirect mechanisms
(3) and through direct virus-mediated effects, including the stim-
ulation of innate host responses (4) and triggering of pyroptotic
cell death (5, 6). This constant activation of the immune system is
associated with exacerbated production of proinflammatory and
antiviral cytokines (7). Understanding how viral proteins manip-
ulate this proinflammatory state is crucial to design better thera-
peutic strategies.

In addition to structural and enzymatic proteins, HIV encodes
accessory proteins that often antagonize cellular antiviral restric-
tion factors (8). For instance, Vpu counteracts tetherin (9) and Vif
degrades APOBECS3 proteins (10). Some accessory proteins regu-
late the intensity of innate immune responses. Vpu, by degrading
tetherin, avoids the stimulation of the NF-«kB pathway by tethered
virions (11-14). In contrast, Nef enhances NF-«kB activation (14)
and HIV-2 Vpx, by degrading SAMHDI (15, 16), promotes infec-
tion and subsequent innate sensing in myeloid cells (17-19). The
role of HIV-1 Vpr in the modulation of innate responses remains
partly characterized. Vpr is closely related to Vpx. These two pro-
teins have a common evolutionary origin (20, 21), share similar
amino acid sequences and three-dimensional (3D) structures
(22), and are both incorporated in virions (23, 24). Despite these
similarities, the two proteins display different activities (25).
HIV-1 Vpr does not degrade SAMHDI, and its effect on viral
replication remains unclear. Indeed, Vpr is not required for infec-
tion of most cell lines and primary CD4™ T cells (26-28). A rep-
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lication defect for vpr-deleted viruses has been reported in den-
dritic cells and macrophages, with important donor-to-donor
variability (27, 29-32). It was recently suggested that Vpr favors
infection of macrophages by counteracting a restriction factor tar-
geting Env expression and viral release (33). Vpr is also necessary
for efficient cell-to-cell spread of HIV-1 from macrophages to
CD4" T lymphocytes (34). Vpr plays an important role in vivo.
Rhesus macaque simian immunodeficiency virus (SIVy,c) Avpr
viruses rapidly revert to a wild-type (WT) version when injected in
rhesus macaques (35). A similar reversion was observed in a lab-
oratory worker accidentally contaminated with a vpr-deficient
strain of HIV-1 (36, 37). Several researchers also reported muta-
tions in the vpr gene in patients who were long-term nonprogres-
sors (LTNP) (38-41).

Many activities have been described for Vpr. It induces G, cell
cycle arrest (42—45), stimulates the DNA damage response (DDR)
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and apoptosis pathways (46-52), and may facilitate several steps
of the viral cycle such as nuclear import and transcription (29, 53,
54). Vpr localizes to the nuclear envelope (30) and/or inside the
nucleus, where it may form foci and colocalize with DNA damage
proteins (55). Vpr arrests the cell cycle in the G, phase by hijacking
the DCAF1-DDB1-Cul4A ubiquitin-ligase complex (56-61). It
has also been reported that the premature activation of the struc-
ture-specific endonuclease regulator SLX4 complex (SLX4com)
by Vpr, through its interaction with DCAF1, mediates G, cell cycle
arrest (62, 63). The SLX4com is involved in the Fanconi anemia
DNA repair pathway, thus linking the DDR with the effect of Vpr
on the cell cycle. How G, arrest may affect viral replication and
pathogenicity is not fully understood. It was suggested previously
that viral transcription is favored in the G, phase of the cell cycle
(37, 64). In HIV-infected humanized mice, T regulatory lympho-
cytes are arrested in the G, phase of the cell cycle upon infection
and undergo apoptosis in a vpr-dependent fashion, leading to en-
hanced replication (65). Besides the SLX4com, Vpr interacts with
numerous cellular proteins, but the relevance of these interactions
is not always clear (66). For instance, Vpr degrades UNG2, a cel-
lular protein involved in the removal of misincorporated uracil in
DNA and for which a role during the HIV-1 life cycle remains a
subject of debate (67-69). Vpr also binds to TAKI, a kinase in-
volved in NF-kB signaling (70, 71). Vpr binding to TAK1 activates
the IkB kinase (IKK) complex, triggering the degradation of IkB,
the NF-kB inhibitory subunit (71).

Vpr influences cellular responses to infection, with various
outcomes. Vpr has been reported to inhibit the secretion of type I
interferon (IFN) (33, 62, 72, 73) and of other proinflammatory
cytokines such as tumor necrosis factor (TNF), MIP-1a, MIP-1j3,
and RANTES (74, 75). In contrast, other studies suggested that
Vpr stimulates type I IFN production in astrocytes (76) and in-
duces interferon-stimulated genes (ISGs) in macrophages and
monocytes (77, 78) and the proinflammatory cytokines interleu-
kin-1B (IL-1pB), IL-8, and TNF in various cells (70, 71, 79-82).
These opposing results may reflect cell type differences or the use
of different methods to express Vpr (infection, overexpression of
Vpr, and treatment with Vpr recombinant protein).

TNF is a proinflammatory cytokine induced in HIV-infected
individuals, especially during the acute phase of infection (83, 84).
High TNF levels have been associated with poor virus control and
disease progression (85, 86). TNF signaling induces NF-kB trans-
location to the nucleus, where it may bind to regulatory sequences
in the HIV-1 long terminal repeat (LTR) promoter to stimulate
viral transcription (87). This phenomenon is especially relevant
during early transcription, when Tat is absent, and in latently in-
fected T cells, in which TNF is an efficient activator of viral repli-
cation (88, 89). In addition to lymphocytes, TNF enhances HIV-1
infection in macrophages, dendritic cells, and Langerhans cells
(32, 90, 91). Therefore, understanding how viral proteins influ-
ence the secretion of TNF will provide new insights into the mech-
anisms of HIV replication in these key cell types in vivo.

Here, we examined the impact of Vpr on TNF release by HIV-
1-infected T cells. We report that Vpr increases the secretion of the
proinflammatory cytokine by infected MT4 lymphoid cells and
primary CD4™ T lymphocytes. We further characterized the effect
of various point mutations in Vpr and demonstrate the in-
volvement of the cellular proteins DDBI1 and TAK1 in this
activity of Vpr.
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MATERIALS AND METHODS

Cells, reagents, and viruses. MT4C5 (92), HEK293T, and J-Lat cells and
primary CD4" T cells were grown in RPMI 1640 with GlutaMAX or
Dulbecco modified Eagle medium (DMEM), supplemented with 10%
heat-inactivated fetal bovine serum (FBS) and antibiotics. Primary CD4™"
T cells were purified from human peripheral blood mononuclear cells by
Ficoll centrifugation, followed by immunomagnetic selection (Miltenyi
Biotec). The blood was provided by the EFS (Etablissement Francais du
Sang [the French Official Blood Bank]). About 98% of the cells were
CD4" CD37 cells after purification. CD4™ T cells were activated with
phytohemagglutinin (PHA; Remel Europe Ltd.) (1 mg/ml) for 24 h and
then cultured with interleukin 2 (IL-2; Abcys) (50 U/ml). 293T CD4*
CXCR4™ cells (92) and J-Lat 10.6 cells (93, 94) were described previously.
J-Lat 10.6 cells are Jurkat cells carrying a latent, integrated, and env-de-
leted copy of the HIV-1 genome, encoding green fluorescent protein
(GFP) instead of Nef. Nevirapine (NVP) (used at 25 nM) and raltegravir
(used at 1 uM) were from the NIH AIDS Reagents Program. The TAK1
inhibitor (5Z)-7-oxozeaenol (Sigma) was diluted in dimethyl sulfoxide
(DMSO) and used at the indicated concentrations (5 to 50 nM). Viability
stainings were performed before fixation using Aqua Vivid reagent (Live/
Dead fixable Aqua Dead Cell stain kit from Life Technologies). Phorbol
myristate acetate (PMA) and ionomycin (Sigma) were used at doses rang-
ing from 1 to 50 ng/ml and from 20 to 1,000 ng/ml, respectively. The HIV
Avpr provirus was a kind gift of F. Margottin-Goguet. vpr-mutated pro-
viruses were generated by introducing point mutations in HIV-1 NL4-3
provirus using a QuikChange XL site-directed mutagenesis kit (Strat-
agene). The Anef and Anef Avpr proviruses were generated as previously
described (95). The primers used are indicated in Table S1 in the supple-
mental material. The NL4-3 Vpr S79A provirus was a kind gift of C.
Ramirez. The anti-IL-1B blocking antibody (Ab) was a kind gift of E.
Laplantine. The NIH45-46 anti-HIV1 broadly neutralizing Ab (used at 50
nM) was a kind gift of Hugo Mouquet.

Infection and viral production. MT4C5 and primary cells were in-
fected with the indicated viruses, pseudotyped with the vesicular stoma-
titis virus type G (VSV-G) envelope (0.4 to 400 ng Gag p24/ml for 10°
cells). Gag levels were monitored at 24 or 48 h. Cells were fixed in phos-
phate-buffered saline (PBS)—4% paraformaldehyde (PFA) for 5 min, per-
meabilized and stained with anti-Gag antibody (clone KC57-PE; Beck-
man Coulter) (1/500), and analyzed by flow cytometry on a FacsCanto II
system (Becton Dickinson). HIV-1 strains were produced by calcium-
phosphate transfection of 293T cells. VSV-G-pseudotyped viruses were
obtained by cotransfection of HEK293T cells with the NL4-3 provirus and
VSV-G expression plasmid (5:2 ratio). Hemagglutinin-Vpr (HA-Vpr)-
complemented virions were obtained by cotransfection of the NL4-3 Avpr
provirus and the HA-Vpr expression plasmid (2:1 ratio). Lentivectors
encoding short hairpin RNAs (shRNAs) were produced by cotransfection
of HEK293T cells by the packaging plasmid (R8-2), the DDB1 GipZ
shRNA lentiviral plasmid (DDB1 no. 1, V3LHS_646157; DDBI1 no. 2,
V3LHS_646437; Dharmacon), and VSV-G expression plasmid (5:5:1
ratio).

NF-kB activation assay. 293T CD4" CXCR4™" cells were plated in
48-well plates (4 X 10* cells per well). After 24 h, cells were cotransfected
using FuGENE 6 (Roche Diagnostics) with 100 ng of NF-kB-luciferase
reporter plasmid (provided by R. Weil and J. Hiscott) and 20 ng of pRSV—
B-galactosidase to control DNA uptake and expression. After 24 h, cells
were cocultured with HIV-infected MT4C5 cells at a 1:1 ratio for 16 h. In
some experiments, donor cells were preincubated with anti-TNF blocking
antibodies (1 pg/ml) for 30 min at room temperature and incubated with
293T CD4"* CXCR4™ cells. Cells were lysed and processed as previously
reported (92). Results are expressed as relative luciferase units (RLU)
normalized to B-galactosidase activity. Results were normalized using
HIV results (set as 100%).

TNF quantification. MT4C5 and primary cells were infected as pre-
viously described. Medium was changed every day, and supernatants were
collected and stored at —20°C without detergent. TNF secretion was de-
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termined using ProcartaPlex immunoassay kits with magnetic beads
(eBiosciences). Samples were acquired using a MagPix System (Life Tech-
nology). In some experiments, TNF secretion was monitored by enzyme-
linked immunosorbent assay (ELISA), using an anti-TNF human DuoSet
kit (R&D Systems). The method of detection of TNF did not impact the
results obtained.

Vpr incorporation in virions. To verify the incorporation of HA-
tagged Vpr, viral stocks were lysed in PBS—1% Triton X-100 and analyzed
by Western blotting. Gag p24 (20 ng) was loaded into each lane. HA-Vpr
was detected using anti-HA monoclonal antibody (MAD) (clone 12CAS;
Abcam) (1:1,000). Gag-p24 levels were detected using the anti-Gag MAb
183-H12-5C (NIH AIDS Reagent Program) (1:1,000). To assess incorpo-
ration of Vpr mutants, virions were concentrated and purified as
described previously (96). Virions were filtered and ultracentrifuged
(100,000 X g, 2 h at 4°C) through a cushion of 6% iodixanol (Optiprep;
Gibco) diluted in PBS. Gag p24 (60 ng) was loaded into each lane. Endog-
enous Vpr was detected using the anti-Vpr MAb (clone 8D1; Cosmo Bio)
(1:200). The band intensity was measured using Image Studio Lite soft-
ware (Li-COR Biosciences).

RESULTS

Vpr enhances TNF secretion by infected cells. TNF is a proin-
flammatory cytokine influencing HIV replication in numerous
cell types (32,90, 91). We first asked whether the accessory protein
Vpr modulates TNF production by HIV-1-infected lymphocytes.
With that aim, we exposed MT4C5 cells and primary CD4" T
lymphocytes to HIV or Avpr HIV from the NL4-3 strain (pseu-
dotyped with the VSV-G envelope) and measured TNF levels in
the supernatants for several days postinfection (p.i.). We did not
observe notable differences in viral replication in the absence of
Vpr in either cell type, as indicated by the detection of equivalent
percentages of infected cells across the conditions (Fig. 1). In
MTA4CS5 cells, we detected a significant production of TNF peaking
at day 2 p.i. (Fig. 1A). After 2 to 3 days, nearly 100% of the cells
were infected. Noninfected, HIV-infected, and HIV Avpr mutant-
infected cells displayed similar viability levels at 48 h p.i. (see Fig.
S1 in the supplemental material), and significant cell death was
usually observed in productively infected cells at day 3 p.i. (data
not shown). At the peak of production (2 days p.i.), TNF levels
were consistently 3-fold to 7-fold higher in the presence of Vpr,
regardless of the amounts of TNF produced by wild-type HIV-
infected cells (Fig. 1B). This increase of TNF release was also vis-
ible when infections were performed with HIV-1 NL4-3 or
NLADS strains not pseudotyped with VSV-G (data not shown). In
primary T cells, TNF release peaked after 2 days and then de-
creased, probably because of cell death or loss of cellular activation
(Fig. 1C). Vpr significantly enhanced TNF release by primary
CD4" T lymphocytes from several donors, although this effect
was less marked than in MT4CS5 cells (Fig. 1D). Therefore, Vpr
enhances TNF secretion by HIV-1-infected MT4C5 cells and pri-
mary lymphocytes.

Previous studies in 293T cells and quiescent CD4 T cells sug-
gested a role for Nef in TNF production through its effects on
exosomes (97, 98). Therefore, we assessed the contribution of Nef
to TNF release by infecting MT4C5 cells with viruses deleted for
vpr or for nef or deleted for both genes (see Fig. S2 in the supple-
mental material). We did not observe any effect of nef deletion on
TNF production by cells infected with WT or Avpr HIV. This
suggests that in activated CD4 T cells, Vpr, and not Nef, stimulates
TNF production.

De novo synthesis of Vpr is required to trigger TNF secre-
tion. Vpr is packaged into virions by interaction with the p6 do-
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main of Gag (23, 24). In infected cells, Vpr proteins can thus
originate from incoming viral particles or from the pool of newly
synthesized viral proteins. Virion-associated Vpr was previously
described to promote apoptosis and G, cell cycle arrest, although
to a lower extent than newly synthesized Vpr (99-101). We deter-
mined which step of the viral cycle is associated with Vpr-induced
TNF secretion and asked whether incoming Vpr proteins are suf-
ficient to promote this phenomenon. We infected MT4C5 cells in
the presence of inhibitors of reverse transcription (nevirapine
[NVP]) or integration (raltegravir [RAL]). The two molecules in-
hibited TNF production (Fig. 2A; see also Fig. S3A in the supple-
mental material), suggesting that infection has to proceed until
viral integration to trigger the release of the cytokine. We then
infected MT4C5 cells with HIV, Avpr HIV, or with a Avpr HIV
mutant complemented in trans with a N-terminally HA-tagged
Vpr (HA-Vpr). Western blot experiments demonstrated that HA-
Vpr was incorporated into virions (Fig. 2B). The three virus
strains infected MT4CS5 cells to similar levels (Fig. 2C; see also Fig.
S3B). However, trans-complementation of the HIV Avpr mutant
with HA-Vpr did not rescue TNF production. trans-complemen-
tation with another Vpr construct (Flag-Vpr) also had no effect on
TNF production (data not shown). Together, these results show
that Vpr stimulates TNF production during or after viral integra-
tion and suggest that the presence of virion-incorporated Vpr is
not sufficient to promote this phenomenon.

Vpr mutants differentially activate TNF synthesis. To deter-
mine which activities of Vpr are important for stimulation of TNF
production, we analyzed the behavior of a panel of Vpr mutants.
We selected mutants previously described as impaired in their
ability to induce G, cell cycle arrest (K27M, Q65R, S79A, and
R80A) (59, 102) or apoptosis stimulation (Q65R, R77Q, and
R80A) (48,102, 103) or to localize at the nucleus/nuclear envelope
(K27M, S79A, R62P, and Q65R) (30, 40, 55, 104). The R62P mu-
tant is unable to form nuclear foci (55). We also used mutants
unable to bind proteins known to interact with Vpr, such as
UNG2 (W54R) (30, 105), TAK1 (S79A) (71), the nuclear envelope
protein hCG1 (K27M) (30), and members of the SLX4com
(Q65R, R80A) (62, 63). We introduced the corresponding muta-
tions into the HIV-1 NL4-3 provirus and measured infection and
TNF levels as previously described. The Vpr-mutated HIV-1
strain infected MT4C5 cells as efficiently as the WT virus (Fig. 3A;
see also Fig. S4A in the supplemental material). All Vpr mutants
were expressed and packaged into viral particles, albeit at different
levels (Fig. 3B). The G, arrest-defective mutants K27M, R80A, and
(to alesser extent) Q65R were impaired in their ability to stimulate
TNF secretion (Fig. 3C). Interestingly, the ability of S79A Vpr to
induce TNF was also reduced (Fig. 3C). This mutant is unable to
arrest the cell cycle (106) or to bind to TAKI, a kinase involved in
NEF-kB signaling (70, 71). The other Vpr mutants tested (W54R,
R62P, and R77Q) efficiently triggered TNF release (Fig. 3C). The
characteristics of the Vpr mutants as well as our TNF production
results are summarized in Table 1. Taken together, our results
suggest that the previously reported G, cell cycle arrest activity of
Vpr correlates at the molecular level with its ability to stimulate
TNF production.

DDBI1 and TAKI are required for TNF induction. We then
analyzed the role of selected cellular proteins that may be involved
in the induction of TNF by Vpr. From our mutant analysis, we
determined that the previously reported cell cycle arrest activity of
Vpr correlates with upregulation of TNF. Thus, we first investi-
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FIG 1 Vpr enhances TNF secretion by HIV-1-infected T cells. (A) HIV-1 replication and TNF secretion in MT4CS5 cells. MT4C5 cells were infected with HIV
or Avpr HIV (0.4 to 4 ng of Gag p24/ml/10° cells). Noninfected cells (NI) were used as a control. Infection was monitored by measuring the percentages of Gag™
cells by flow cytometry, and TNF was quantified in the supernatants by Luminex assay or ELISA at the indicated days postinfection. Data represent the results of
one kinetic experiment of viral replication (left panel) and TNF production (right panel) of four performed. (B) Infection levels and TNF production in six
independent experiments. MT4C5 cells were infected and analyzed as described for panel A. Data represent the means = standard deviations (SD) of the results
of 10 independent experiments, with Gag-positive (Gag™") cells measured at 24 h and TNF at 48 h postinfection. Individual experiments are depicted with
matching symbols.*, P < 0.05 (Wilcoxon test). (C) HIV-1 replication and TNF secretion in primary CD4 ™" T cells. The cells were infected with HIV or Avpr HIV
(40 to 400 ng of Gag p24/ml/10° cells). Infection was monitored by measuring the percentages of Gag" cells by flow cytometry, and TNF was quantified in the
supernatants by Luminex assay or ELISA at the indicated days postinfection. Data represent the results of one kinetic experiment of viral replication (left panel)
and TNF production (right panel) of six performed. (D) Infection levels and TNF production in primary CD4 " T cells in six independent donors. The cells were
infected and analyzed as described for panel C. Data represent means *+ SD of the results of 6 experiments, with Gag" cells measured at 24 h and TNF at 48 h
postinfection. Individual donors are depicted with matching symbols. *, P < 0.05 (Wilcoxon test).
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FIG 2 TNF secretion by infected T cells requires viral integration and Vpr neosynthesis. (A) Effect of antiretroviral drugs on TNF release by infected cells. MT4C5
cells were infected with HIV or Avpr HIV in the presence or absence of the reverse transcriptase inhibitor nevirapine (NVP; 25 nM) or the integrase inhibitor
raltegravir (RAL; 1 wM). Nontreated cells (NT) were used as a control. Infection levels at 24 h and TNF release at 48 h were measured as described for Fig. 1. TNF
levels obtained with wild-type HIV and no antiretroviral drugs were set at 1. Results represent means = SD of the results of 3 independent experiments. (B)
trans-complementation of Avpr HIV. Avpr HIV was complemented in trans with HA-Vpr by cotransfection of virus-producing 293T cells. The indicated viruses
were analyzed by Western blotting for HA-Vpr incorporation (upper panel). A 20-ng volume of Gag p24 was loaded in each lane. Levels of Gag p24 were assessed
as a control (lower panel). Data represent the results of one representative experiment. (C) Effect of Vpr trans-complementation on TNF release. MT4C5 cells
were infected with HIV, Avpr HIV, or Avpr HIV plus HA-Vpr. Infection levels at 24 h and TNF release at 48 h were measured as described for Fig. 1. Levels

obtained with wild-type HIV were set at 1. Data represent means = SD of the results of 3 independent experiments.

gated the role of DDBI, a protein critical for several Vpr activities
such as DNA damage and cell cycle arrest (55, 59, 62, 63). MT4C5
cells were transduced with control or DDB1-specific shRNA lentivec-
tors and selected with puromycin. Western blot analysis indicated
thatabout 70% of DDB1 was silenced in these cells, with two different
shRNAs (Fig. 4C). Silenced cells were then infected with WT and
Avpr viruses, and levels of TNF were measured in the supernatants.
DDBI silencing impacted neither infection (Fig. 4A) nor cell viability
(data not shown). We observed a 5-fold reduction of TNF synthesis
when DDBI was silenced (Fig. 4A). It is noteworthy that the amounts
of TNF produced by HIV Avpr mutant-infected cells were also re-
duced in the absence of DDBI, suggesting that DDB1 enhances TNF
synthesis independently of Vpr (Fig. 4A).

The Vpr S79A mutant, which no longer binds TAK1 (71), was
impaired in its ability to trigger TNF activity (Fig. 3C). To further
investigate the role of TAK1, we used (5Z)-7-oxozeanol, a chem-
ical inhibitor of this kinase (71, 107). (5Z)-7-oxozeanol was not
toxic at the doses employed (data not shown) and did not impact
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viral replication but reduced dramatically the production of TNF
by infected cells (Fig. 4B). The residual production of TNF by HIV
Avpr mutant-infected cells was also decreased in the presence of
the TAK1 inhibitor. Together, these results suggest that DDB1 and
TAK]1 are implicated in the enhanced production of TNF by in-
fected cells but also play a role when Vpr is absent.

We assessed the role of DDB1 and TAK in TNF production in
the absence of infection, using PMA or PMA plus ionomycin as
stimuli (Fig. 4D). DDBI silencing did not significantly affect TNF
production induced by treatment with PMA or PMA plus iono-
mycin. In contrast, the TAK1 inhibitor almost completely abro-
gated TNF production by PMA-treated cells. This was expected
given the implication of TAK1 in the NF-kB pathway that controls
TNF production. These results strongly suggest that the induction
of TNF by HIV-infected cells involves a canonical pathway of
synthesis of this cytokine.

TNF secreted by infected cells enhances NF-kB activity and
viral reactivation in bystander cells. TNF signaling induces the
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results of 4 independent experiments. (B) Expression and incorporation of Vpr mutants. Cell lysates were obtained from transfected 293T cells. Viral particles
were purified by ultracentrifugation on an iodixanol (Optiprep) cushion. Vpr levels were assessed by Western blot analysis performed with an anti-Vpr
monoclonal antibody. For cell lysates and purified virions, 45 ng and 100 ng of Gag p24 were loaded in each lane, respectively (upper panel). Levels of Gag p24
were assessed as a control (lower panel). Relative band intensities were calculated using ImageStudio Lite and are indicated for each lane. Data represent the
results of one representative experiment. (C) TNF induction in MT4CS5 cells infected by the Vpr-mutated viruses. TNF was measured in the supernatants of
infected cells at 48 h p.i. as described for Fig. 1, with the levels obtained with wild-type HIV set at 1. Data represent means = SD of the results of 4 independent
experiments.

December 2015 Volume 89 Number 23 Journal of Virology jviasm.org 12123


http://jvi.asm.org

Roesch et al.

TABLE 1 The ability of Vpr to induce TNF correlates with its previously reported cell cycle arrest activity”

Vpr WT or mutant result(s) (reference([s])

Activity WT K27M W54R R62P Q65R R77Q R80A S79A
Cell cycle arrest + —(102) + (56) =+ (55, 104) - (59) + (103) — (56) —(102)
Apoptosis + +(102) ND ND —(102) — (48) — (48) +(102)
Nuclear localization + - (30) + (30) — (55, 104) — (40) + (40) + (30) — (55)
Disrupted interaction(s) hCG1 (30) UNG2 (105) DDBI1 (57), DCAF1 (59), MUS81 (62), TAK1 (71)
SLX4 (62, 63), MUS81 PLKI (62)
(62), PLK1 (62)
TNF induction + - + + + + - -

“ Summary of the main properties of the Vpr mutants used in this study. The ability of Vpr mutants to induce cell cycle arrest and apoptosis, to localize to the nucleus/nuclear
envelope, and to bind known interactants, as described in the literature, is shown. The corresponding references are indicated in parentheses. ND, not determined. Our TNF
production results are presented in bold. +, wild-type activity; =, intermediate phenotype; —, decreased or absent activity.

nuclear translocation of NF-«kB, which may activate the LTR pro-
moter as well as a proinflammatory innate response (87, 108). To
assess whether Vpr-induced TNF can signal in bystander cells, we
cocultivated infected MT4C5 cells with 293T CD4" CXCR4 ™ cells
carrying a NF-kB-luciferase reporter plasmid (Fig. 5A). In these
cells, TNF signaling would lead to NF-kB-mediated expression of
luciferase. The absence of Vpr did not impact viral cell-to-cell
transmission from MT4CS5 cells to target 293T cells (Fig. 5B). Co-
culture with HIV-1-infected cells triggered NF-kB activity in 293T
cells (Fig. 5C). Consistent with our previous results determined on
the basis of TNF production, there was a 2-fold to 3-fold decrease
in luciferase levels in the absence of Vpr (Fig. 5C). To determine if
this increased NF-kB activity was due to TNF signaling, we
performed coculture experiments in the presence of antibodies
blocking TNF. As expected, anti-TNF antibodies neutralized the
action of recombinant TNF (data not shown). In the presence of
these antibodies, NF-«kB activation mediated by HIV-1 was re-
duced (see Fig. S5A in the supplemental material). Thus, Vpr-
induced TNF can stimulate the NF-kB pathway in bystander cells.

TNF promotes viral reactivation in different models of latently
infected T cells (89). This prompted us to examine whether HIV-
1-infected cells could trigger viral reactivation in bystander cells
through the effect of Vpr on TNF production. To this end, we used
J-Lat 10.6 cells, a Jurkat T cell derivative carrying a latent, inte-
grated viral genome where env is deleted and nefis replaced by gfp
(94). Without cell activation, GFP is not produced, but treatment
with TNF, PMA, or other molecules induces HIV-1 reactivation
and GFP expression (93, 94). MT4CS5 cells were infected with HIV
or the HIV Avpr mutant and cocultivated with J-Lat cells (Fig.
5D). GFP levels were monitored by flow cytometry 24 h after
stimulation. In this short-term coculture system, direct activation
of the LTR by incoming Tat contributed only modestly to reacti-
vation, since anti-Env broadly neutralizing antibodies successfully
blocked infection of Jurkat T cells but not reactivation of J-Lat
cells (see Fig. S5B and C in the supplemental material). Consistent
with increased TNF production, reactivation was stronger when
J-Lat cells were cocultivated with MT4C5 cells infected with WT
HIV-1 (Fig. 5E). This effect of Vpr was visible using various viral
inputs (Fig. 5E) and was inhibited by anti-TNF antibodies (Fig.
5F). Therefore, by increasing TNF levels produced by infected
cells, Vpr may favor viral reactivation in bystander cells.

DISCUSSION

We have characterized the effect of Vpr on the release of TNF by
HIV-1-infected T cells. Contradictory results regarding the role of
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Vpr in the modulation of cytokine production have been re-
ported. Some studies indicated that Vpr stimulates the IFN path-
way, whereas others indicated that Vpr decreased IFN production
(33, 62, 72, 73). The effect of Vpr on the NF-kB pathway remains
controversial as well. It has been proposed that Vpr may impair
NE-kB nuclear translocation by inducing and/or stabilizing the
IkBa inhibitory subunit (14, 74, 109). In contrast, it has been
suggested that Vpr interaction with TAK1 leads to IKKa/p phos-
phorylation and ultimately results in IkBa degradation (70, 71).
Vpr may also activate NF-«kB through other pathways such as the
Jun N-terminal protein kinase (JNK) pathway or AP1 pathway
(80). These discrepancies may be explained by the different cell
types used and by the method of Vpr expression. Overexpression
of Vpr might be deleterious to the cells, due to its proapoptotic
properties. The use of recombinant Vpr proteins may introduce
bacterial contaminants, triggering immune side effects. Vpr ex-
pressed alone or in the context of infected cells may also exert
different effects. Thus, using a relevant system to study the effect of
Vpr on TNF is critical. Here, we infected CD4™ T cells with wild-
type or vpr-deleted viruses and observed that Vpr stimulates the
secretion of TNF in productively infected cells. Our results con-
firm and extend earlier studies showing that CD4" T lympho-
cytes, dendritic cells, and macrophages infected by HIV produce
higher levels of TNF in the presence of Vpr (79, 81, 82). Using
inhibitors of reverse transcription and integration, as well as Avpr
viruses complemented in trans with HA-Vpr, we found that de
novo synthesis of Vpr was required for this effect. Additionally,
some Vpr mutants (W54R and R62P) are less extensively incor-
porated than wild-type Vpr but still trigger TNF release. This
could suggest that TNF stimulation and G, cell cycle arrest require
different levels of Vpr expression.

To gain further insight into the viral and cellular components
required to trigger TNF production in CD4™ T cells, we analyzed
the behavior of a panel of Vpr mutants and investigated the role of
host factors DDB1 and TAK1. Vpr mutants previously reported to
be defective for cell cycle arrest were unable to stimulate TNF
production. This is consistent with our observation that silencing
of DDBI, a protein critical for Vpr-mediated G, cell cycle arrest,
also decreased TNF release. Whether TNF production is a down-
stream event of the cell cycle arrest remains to be determined. It is
noteworthy that only the Q65R mutant was defective for both
TNF stimulation and DCAF1 binding. This suggests that binding
to DCAF1 by Vpr is necessary but not sufficient to enhance TNF
production. Q65R and R80A, both unable to stimulate TNF pro-
duction, do not bind the SLX4com (62, 63). Thus, it will be worth
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FIG 4 DDBI1 and TAK1 mediate TNF release by infected cells. (A) DDBI is required for TNF release by infected cells. Control or DDB1-silenced MT4CS5 cells
were infected with HIV or Avpr HIV. Infection levels at 24 h and TNF alpha (TNF-«) release at 48 h were measured as described for Fig. 1. Levels obtained with
wild-type HIV and control cells were set at 1. Data represent means = SD of the results of 3 independent experiments. (B) TAK1 is required for TNF release by
infected cells. MT4C5 cells were infected with HIV or Avpr HIV in the presence of increasing concentrations (5, 15, and 50 nM) of (5Z)-7-oxozeaenol, a
previously described TAK1 inhibitor. Infection levels at 24 h and TNF release at 48 h were measured as described for Fig. 1. Levels obtained with wild-type HIV
and nontreated (NT) cells were set at 1. Data represent means * SD of the results of 3 independent experiments. (C) DDBI silencing efficiency. MT4C5 cells were
transduced with lentiviral vectors expressing control or anti-DDB1 shRNAs and selected by puromycin. DDBI levels were assessed by Western blot analysis
(upper panel), with dynamin used as a loading control (lower panel). Relative band intensities were calculated using ImageStudio Lite and are indicated for each
lane. Data represent the results of one representative experiment. (D) Effect of TAK1 inhibition and DDB1 depletion on PMA-induced TNF production. Control,
DDBIl-silenced, and (5Z)-7-oxozeaenol (50 nM)-treated cells were stimulated with PMA (10 ng/ml) alone or in combination with ionomycin (200 ng/ml). TNF
levels were quantified after 20 h. Data represent means * SD of the results of 5 independent experiments. *, P < 0.05 (Mann-Whitney test).

examining whether the untimely activation of the SLX4com by  for thiskinase (71, 107), we found that TAK1 is required to trigger
Vpr is mediating TNF release. TNF release. This suggests that HIV-induced TNF production oc-

By using the Vpr S79A mutant, which is unable to bind to the  curs mainly through the NF-kB pathway. The TAKI inhibitor
TAKI1 kinase, and (5Z)-7-oxozeanol, a chemical inhibitor specific ~ almost completely abrogated TNF production by both WT and
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FIG 5 TNF produced by HIV-1-infected cells stimulates NF-«kB and viral reactivation in bystander cells. (A) NF-kB activity in bystander cells (experimental
outline). 293T CD4 " CXCR4™ cells were transiently transfected with a NF-kB-luciferase reporter plasmid and cocultivated for 16 h with MT4C5 cells infected
with either HIV or Avpr HIV. The percentage of Gag™ cells was quantified by flow cytometry, and luciferase levels were measured with a luminometer. (B) Gag
levels in MT4C5 donor and 293T CD4 " CXCR4 " target cells. Results represent means = SD of the results of 7 independent experiments. (C) NF-kB activity in
the coculture. The values obtained with wild-type HIV were set at 1. Results represent means * SD of the results of 6 independent experiments. *, P < 0.05
(Wilcoxon test). (D) Viral reactivation in latently infected bystander cells (experimental outline). MT4C5 cells were infected with HIV or Avpr HIV and
cocultivated with J-Lat 10.6 cells at a 1:1 ratio. Prior to and during coculture, donor cells were treated with anti-TNF antibodies (1 pg/ml). Viral reactivation was
quantified after 24 h by measuring the percentages of GFP™ cells by flow cytometry. (E) Dose-response analysis of viral reactivation in J-Lat cells. MT4CS5 cells
infected at increasing levels (from 5% to 25% of Gag ™ cells, for both HIV and Avpr HIV) were used as donors. As a control, J-Lat cells were cultured alone (NT)
or with noninfected MT4C5 (NI). Data represent the results of one representative experiment. (F) Viral reactivation in bystander cells is enhanced by Vpr. The
result obtained with wild-type HIV was set at 1. Data represent means = SD of the results of 4 independent experiments. *, P < 0.05 (Wilcoxon test).

Avpr mutant-infected cells, whereas Vpr S79A had only a partial also been reported to increase exosomal release by infected
phenotype. Additionally, both DDB1-silenced and HIV Avprmu-  cells, leading to a processing of pro-TNF to TNF (97, 98). We
tant-infected cells produced low but detectable amounts of TNF.  did not observe an impact of Nef on TNF release in our system.
Even if the residual DDB1 could still interact with Vpr through ~ This result might reflect cell type-specific differences, since
DCAFI to induce TNF, these results may indicate that the re- previous studies used quiescent CD4 T cells and 293T cells.
quirement for Vpr and G, arrest for TNF induction is not ab-  Future work will help to clarify whether Vpr, by hijacking the
solute. Thus, TNF production by infected cells might be trig-  ubiquitin ligase complex DCAF1-DDB1-Cul4, enhances the ef-
gered by a Vpr-independent TNF pathway involving TAK1 and  fect of other HIV proteins such as Tat and gp41 or acts by
DDBI, a phenomenon that would be enhanced by the presence  enhancing TNF production triggered by viral reverse transcrip-
of Vpr. TNF production is known to be additionally triggered tion, integration, or another step of the viral life cycle. It will
by other viral proteins such as Tat or gp41 (110-112). Nef has  also be of great interest to determine precisely whether Vpr acts
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at the transcriptional level or by stimulating maturation and/or
release of TNF.

What could be the biological consequences of this increased
release of TNF by infected cells? TNF signaling has a significant
impact on the HIV-1 life cycle, facilitating viral replication in a
variety of cell types (87, 90, 91) as well as reactivation from the
reservoir (88, 89, 98). Our experiments using NF-kB reporter cells
and a model of latently infected Jurkat-derived cells suggest that
the variations of TNF levels may modulate NF-kB activation and
viral reactivation in bystander cells. Moreover, in addition to di-
rect effects on the virus, these enhanced levels of TNF will likely
impact survival, apoptosis, and activation of bystander cells and
host inflammation (113, 114), which are key to the progression to
AIDS.

In summary, our work shows that Vpr displays proinflamma-
tory features by potentiating TNF release by infected cells, a phe-
nomenon that likely impacts HIV replication and pathogenesis.
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