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Human cytomegalovirus (HCMV) pUL93 is essential for virus growth, but its precise function in the virus life cycle is unknown.
Here, we characterize a UL93 stop mutant virus (UL93st-TB40/E-BAC) to demonstrate that the absence of this protein does not
restrict viral gene expression; however, cleavage of viral DNA into unit-length genomes as well as genome packaging is abol-
ished. Thus, pUL93 is required for viral genome cleavage and packaging.

Human cytomegalovirus (HCMV) protein pUL93, a puta-
tive tegument protein, is required for the growth of

HCMV (1, 2), but the exact function of this protein is un-
known. There is no functional study done to date on HCMV
pUL93; however, pUL17, the positional homolog of pUL93 in
herpes simplex virus 1 (HSV-1), has been shown to be required
for the localization of capsids to the DNA replication compart-
ments in the infected cell nucleus, where viral genome cleavage
and packaging take place (3, 4). pUL17 has also been found to
interact with pUL25, a homolog of HCMV pUL77, to form the
capsid vertex-specific component (CVSC), which is found at
the 12 vertices of the icosahedral capsid (4–10). The exact func-
tion of the CVSC is currently unknown, but it is thought to aid

in capsid stability and nuclear egress (10–13). pUL25-null mu-
tants package viral DNA only transiently and produce mostly
empty capsids, while pUL17-null mutants completely abolish
DNA packaging (3, 14). It is important to note that pUL17 and
pUL93 are positional homologs that share only 1.5% sequence
identity, 1.9% sequence similarity, and no distinct conserved
domains (based on amino acid ClustalW alignment). More-
over, several HCMV proteins have been found to have very
different functions compared to their homologs in other her-
pesviruses, highlighting the importance of studying HCMV
proteins independently. For example, HCMV pUL50 and
pUL53 were presumed to recruit host protein kinase C (PKC)
for disruption of the nuclear lamina based on data from other
herpesviruses but were instead found to recruit viral protein
kinase pUL97 for this purpose (15). Targeting of essential
structural viral proteins holds great promise for the develop-
ment of antivirals that would be highly specific and effective
and also less susceptible to the development of resistance be-
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FIG 1 Construction and growth of a UL93 stop mutant virus. (A) Schematic
of the UL92-to-UL94 region in TB40/E-BAC (top line) with other bacmid
constructs shown below. A UL93 stop mutant virus (UL93st-TB40/E-BAC)
was constructed using two-step BAC recombineering (17). In the first step, a
kanamycin (Kan) cassette fused to the UL93 stop mutation and an I-SceI site
was inserted in the BAC genome using homologous recombination. The Kan
cassette was then spliced out utilizing the I-SceI site, leaving only the UL93 stop
mutation in the genome. (B) Final virus yields were determined at day 10
postinfection for wild-type TB40/E (WT-TB40/E in HF), UL93st-TB40/E-
BAC in complementing cells (UL93st in FLAG-UL93 HF), and UL93st-TB40/
E-BAC in noncomplementing cells (UL93st in HF). N.D., not detected, as the
number of PFU in this preparation was below the threshold of detection in the
assay.

FIG 2 pUL93 is not required for viral gene expression. HF were infected with
WT-TB40/E or UL93st-TB40/E-BAC virus (UL93st) at an MOI of 3.0 or mock
infected, and cells were harvested at 72 h postinfection for immunoblot assays
probing for early (IE1), delayed early (pUL44), and late (gB) viral proteins.
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cause the mutation of a structural protein would likely com-
promise capsid assembly and maturation (16). Characteriza-
tion of pUL93 will aid in the development of these promising
antivirals in addition to advancing our understanding of
HCMV maturation events.

Here, we have characterized a UL93 stop mutant virus. We report

that although pUL93 is not required for expression of different ki-
netic classes of viral genes, DNA-containing C-capsids and virions
cannot be detected in the nucleus and the cytoplasm, respectively, of
infected cells in the absence of pUL93. Upon further investigation,
pUL93 was found to be required for the cleavage of viral genomic
DNA into unit-length genomes.

FIG 3 pUL93 is required for nucleocapsid maturation. (A to F) Transmission electron micrographs (TEM) of HF infected with WT-TB40/E (A, C, and E) or
UL93st-TB40/E-BAC (UL93st) (B, D, and F) viruses at an MOI of 3.0 and fixed for processing at 4 days postinfection. (A and B) A single infected cell showing
nuclear inclusion (NI) as well as cytoplasmic inclusion (CI). (C and D) Nuclear inclusion illustrating A- (black arrowhead), B- (black-tailed arrow), and C-
(white-tailed arrow) capsids. (E and F) Cytoplasmic inclusion illustrating mature virions (white-tailed arrow) and dense bodies (white arrowhead). Bars, 4 �m
(A and B), 500 nm (C and D), and 1 �m (E and F). (G to K) Magnified images (not to scale) of A-capsids (G), B-capsids (H), C-capsids (I), virions (J), and dense
bodies (K) are shown. (L and M) A-, B-, and C-capsids in the nucleus (L) and virions, dense bodies, and nontypeable particles in the cytoplasm (M) were
enumerated in 4 individual infected cells, and the mean values are displayed.
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pUL93 is dispensable for viral gene expression. To study the
role of pUL93 in the HCMV life cycle, we engineered a UL93
stop mutant (UL93st-TB40/E-BAC) by replacing the initiating
codon (ATG) in UL93 with a stop codon (TAG) using two-step
bacterial artificial chromosome (BAC) recombineering (Fig.
1A) (17–19). BAC constructs were validated by restriction frag-
ment length polymorphism (RFLP) and PCR sequencing of the
region of the BAC genome containing this change (data not
shown). Upon transfection in human foreskin fibroblasts
(HF), this mutant BAC did not yield any detectable infectious
virus particles in cell culture medium. To enable the growth of
this virus, we constructed pUL93-complementing cells by
transducing HF with a lentiviral vector (pLV-EF1�-MCS-
IRES-Puro; cDNA-pLV01 [20]) that expressed FLAG-tagged
pUL93. These complementing cells were then transfected with
UL93st-TB40/E-BAC to grow this virus. Upon infection in
noncomplementing HF, UL93st-TB40/E-BAC virus did not
yield any detectable infectious virus particles in cell culture
medium when monitored for up to 10 days postinfection (dpi),
but in complementing HF, the UL93st-TB40/E-BAC virus grew
to high titers (2.24 � 108 PFU/ml) (Fig. 1B). We used the
harvested UL93st-TB40/E-BAC virus to infect noncomple-
menting HF at a multiplicity of infection (MOI) of 3.0. Cells
were harvested at 3 dpi, and immunoblot (IB) assays probing
for viral immediate early (anti-IE1/2 antibody [CH160];
P1215; Virusys Corporation, Taneytown, MD), delayed early
(anti-pUL44 antibody [ICP36]; CA006-100; Virusys Corpora-
tion, Taneytown, MD), and late (anti-gB antibody; CA005-
100; Virusys Corporation, Taneytown, MD) proteins in whole-
cell lysates showed expression of all these classes of viral genes,
indicating that pUL93 is not required for viral gene expression
(Fig. 2). Nevertheless, levels of gB expression were slightly re-
duced in UL93st-TB40/E-BAC virus infection compared to the
wild-type virus infection, indicating some impact on late gene
expression.

pUL93 is required for nucleocapsid maturation. To further
study the stage of the HCMV life cycle where pUL93 functions
are critical, we performed transmission electron microscopy
(TEM) of HF infected with either wild-type (WT) TB40/E or
UL93st-TB40/E-BAC viruses. HF were infected at an MOI of
3.0 with either of the viruses and fixed for TEM at 4 dpi. Ultra-
structural analysis of the nucleus and the cytoplasm of WT-
TB40/E-infected cells revealed the presence of empty (A-),
scaffold-containing (B-), and genome-containing (C-) capsids
in the nucleus, and virions as well as dense bodies in the cyto-
plasm, typical of a productive infection in fibroblasts (19, 21,
22), while C-capsids and virions were not detected in cells in-
fected with UL93st-TB40/E-BAC virus (Fig. 3A to F). We enu-
merated mature and immature virus particles in each infection
group based on the established morphological characteristics
of these particles, which are illustrated in Fig. 3G to K (23, 24).
Four individual WT-TB40/E-infected cells showed an average
of 10 A-capsids, 54 B-capsids, and 13 C-capsids in the nucleus,
while four individual UL93st-TB40/E-BAC virus-infected cells
showed an average of less than 1 A-capsid and 45 B-capsids in
the nucleus (Fig. 3L). C-capsids were absent from the nuclei of
UL93st-TB40/E-BAC virus-infected cells. In the cytoplasm,
four WT-TB40/E-infected cells showed an average of 56 viri-
ons, 7 dense bodies, and 12 nontypeable particles, compared to
no virions, 78 dense bodies, and 8 nontypeable particles in

UL93st-TB40/E-BAC virus-infected cells (Fig. 3M). Thus,
pUL93 is required for the production of C-capsids and mature
virions.

pUL93 is required for viral genome cleavage. Based on the
above data that show that C-capsids and virions are absent
during infection with a UL93 stop mutant virus, we hypothe-
sized that this could be due to two reasons: pUL93 is required
for viral genome cleavage and packaging and it could also be
necessary for maintaining capsid stability after genome cleav-
age and packaging. Proteolytic digestion of capsid scaffold and
packaging of viral DNA are believed to occur simultaneously
(25–29), and A-capsids are generated as a result of abortive
attempts to package viral DNA (24, 30). Although roles of A-
and B-capsids as intermediate or abortive capsid forms in the
life cycle of herpesviruses have not been clearly distinguished,
we hypothesized that a defect in virus genome packaging would
arrest the virus capsid maturation prior to the production of
C-capsids (capsids with packaged DNA). A defect after pack-
aging would result in the instability and probable complete
degradation of C-capsids, which may not be limited to the
ejection of viral DNA, considering that C-capsids sustain much
higher internal pressure from the packaged DNA. Thus, A-cap-
sid numbers may not increase despite a reduction in the num-
ber of C-capsids. To explore the possibility of a DNA packaging
defect, DNA was harvested from WT-TB40/E or UL93st-TB40/
E-BAC virus-infected HF and digested with either EcoRI or
KpnI, and Southern blot assays were performed to probe for
viral terminal DNA. The use of Southern blot assays to probe
for terminal and junction fragments in herpesviruses has been
well established (31–35). As a control, HF were infected with
WT-TB40/E and treated with 2-bromo-5,6-dichloro-1-(�-D-
ribofuranosyl) benzimidazole (BDCRB; a viral terminase in-
hibitor in HCMV) (36, 37) or mock treated. BDCRB selectively
inhibits pUL56 and pUL89, thereby blocking viral genome
cleavage without affecting viral gene expression or capsid and
dense body formation (24, 38–42). The presence of the 4.4- and

FIG 4 pUL93 is required for viral genome cleavage. DNA extracted from HF
infected with WT-TB40/E in the presence of BDCRB, infected with WT-
TB40/E in the absence of BDCRB, or infected with UL93st-TB40/E-BAC virus
(UL93st) at an MOI of 3.0 was digested with EcoRI or KpnI, size fractionated
by gel electrophoresis, and blotted. Hybridization was performed using a ter-
minal DNA probe. Fragments labeled 6 and 12 in the autoradiographic image
are terminal fragments that represent cleaved viral genomic DNA. Fragments
1, 2, 3, 4, 5, 7, 8, 9, 10, and 11 are all possible junction fragments.
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4.5-kb terminal fragment in WT-TB40/E digested with EcoRI
and KpnI, respectively, indicates the occurrence of genome
cleavage. As expected, this band was not detected in the BD-
CRB-treated control. Importantly, this band was also absent in
UL93st-TB40/E-BAC virus (Fig. 4), indicating that pUL93
is required for the cleavage of viral genomic DNA. Based on
the TB40/E genome sequence (GenBank accession no.
EF999921.1), there can be multiple junction fragments that would
bind to a terminal probe in a Southern blot assay. The number of
these fragments will depend on the presence or absence of differ-
ent genomic isomers in virus stock. However, all these junction
fragments will be larger than the terminal fragment, as seen in the
Southern blot image (Fig. 4).

Together, our data confirm an essential role of pUL93 during
HCMV infection and indicate that this protein is critical for viral
genome cleavage and packaging. Future studies will examine if
pUL93 interacts with pUL77 to form a structure similar to the
CVSC in HSV-1 and contributes to capsid stability and/or nuclear
egress.
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