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ABSTRACT

Despite encoding multiple viral proteins that modulate the retinoblastoma (Rb) protein in a manner classically defined as inacti-
vation, human cytomegalovirus (HCMV) requires the presence of the Rb protein to replicate efficiently. In uninfected cells, Rb
controls numerous pathways that the virus also commandeers during infection. These include cell cycle progression, senescence,
mitochondrial biogenesis, apoptosis, and glutaminolysis. We investigated whether a potential inability of HCMV to regulate
these Rb-controlled pathways in the absence of the Rb protein was the reason for reduced viral productive replication in Rb
knockdown cells. We found that HCMV was equally able to modulate these pathways in the parental Rb-expressing and Rb-de-
pleted cells. Our results suggest that Rb may be required to enhance a specific viral process during HCMV productive replication.

IMPORTANCE

The retinoblastoma (Rb) tumor suppressor is well established as a repressor of E2F-dependent transcription. Rb hyperphosphory-
lation, degradation, and binding by viral oncoproteins are also codified. Recent reports indicate Rb can be monophosphorylated, re-
press the transcription of antiviral genes in association with adenovirus E1A, modulate cellular responses to polycomb-mediated epi-
genetic methylations in human papillomavirus type 16 E7 expressing cells, and increase the efficiency of human cytomegalovirus
(HCMV) productive replication. Since Rb function also now extends to regulation of mitochondrial function (apoptosis, metabolism),
it is clear that our current understanding of this protein is insufficient to explain its roles in virus-infected cells and tumors. Work here
reinforces this concept, showing the known roles of Rb are insufficient to explain its positive impact on HCMV replication. Therefore,
HCMV, along with other viral systems, provide valuable tools to probe functions of Rb that might be modulated with therapeutics for
cancers with viral or nonviral etiologies.

Retinoblastoma (Rb) protein function is modified by multiple
viruses (1–3). Through transcriptional repression of the E2F-

responsive genes required for DNA replication, hypophosphory-
lated (active) Rb impedes cell cycle transit through G1 and into S
phase (4). Rb can also induce the formation of heterochromatin at
E2F responsive genes, leading to permanent transcriptional si-
lencing and replicative senescence (5, 6), providing a tumor sup-
pressive function. As the role of Rb as a mediator of senescence
and restrictor of cell cycle progression has long been acknowl-
edged, the prevailing model in the field of DNA virology has asso-
ciated viral targeting of Rb with maintaining a cell cycle state con-
ducive to viral replication (7). Specifically, it was proposed that
viruses alter the function of Rb to provide an S-phase-like envi-
ronment where the enzymes and small molecule precursors nec-
essary for DNA synthesis would be readily available for viral DNA
replication. Indeed, the ability of the E7 protein of the high-risk
human papillomavirus strain 16 to bind Rb is necessary for viral
DNA replication (8).

However, we recently reported that transient and stable Rb
knockdown reduces the efficiency of human cytomegalovirus
(HCMV) DNA synthesis and productive replication (9). This re-
sult was unexpected as HCMV encodes at least four viral proteins
reported to modify several biological functions of Rb (2). There-
fore, the relationship between viruses and Rb appears more com-
plicated than the current paradigm allows.

In recent years Rb has been shown to affect many facets of
mitochondrial function in addition to its critical role in control-
ling the cell cycle. These include mitochondrial biogenesis, apop-

tosis, and the utilization of glutamine for the tricarboxylic acid
(TCA) cycle and the production of glutathione. In the absence of
Rb, cells have lower ratios of mitochondrial to cellular DNA, and
this has been ascribed to defects in mitochondrial biogenesis (10,
11). Rb regulates apoptosis directly at the mitochondria by bind-
ing to Bax (12, 13). Interestingly, it is a phosphorylated form of Rb
that interacts with Bax, and loss of this form can trigger apoptosis
(12). Rb also impacts apoptosis indirectly in the nucleus by re-
pressing the transcription of E2F-responsive proapoptotic genes
such as Apaf1 and caspases (14). In the absence of Rb, proapop-
totic proteins can accumulate, making cells more sensitive to
stress-induced apoptosis. Rb also controls metabolic reactions
that impinge upon the ability of mitochondria to generate ATP
under conditions of stress (15, 16). Rb loss can decrease cell energy
expenditure (17), and direct glutamine catabolism toward the
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production of glutathione and therefore away from anaplerotic
supplementation of the TCA pathway (10, 18).

Provocatively, viruses, including HCMV, also modulate all of
these cellular operations regulated by Rb. We reasoned that the
dependence of efficient HCMV replication on the presence of Rb
might be related to the control this protein exerts over these cel-
lular processes. Therefore, we tested whether the inability of
HCMV to arrest the cell cycle, invoke senescence, prevent apop-
tosis, alter mitochondrial abundance and morphology, or balance
metabolic pathways in the absence of Rb could potentially explain
the replication defect observed in the absence of this crucial tumor
suppressor. We found HCMV fully capable of wild-type level ma-
nipulation of these cellular pathways in the absence of Rb. Our
work points to the strong potential for a direct effect of Rb on a
viral process critical for efficient HCMV replication and perhaps
for the success of other viral infections as well.

MATERIALS AND METHODS
Cells, plasmids, and viruses. Primary normal human dermal fibroblasts
(NHDFs; Clonetics) transduced with retroviruses expressing scrambled
shRNA (19), shRNA against Rb (Rb2), or p107 (107.2, formerly Rb-sh2
and 107-sh2, respectively [20]) were derived and cultured as previously
described (9, 21). The Lonza nucleofection system (VPI-1002; Lonza) was
used according to the manufacturer’s instructions to transiently express
HCMV UL97 (pCGN-HA-UL97) (22) and a green fluorescent protein
(GFP)-lamin A fusion protein (pEGFPhLA-WT) (23). Then, 1 �g of each
plasmid was transfected per 5 � 105 cells, and the cells were plated on glass
coverslips in complete medium for 24 h before fixation and immunoflu-
orescence staining, as previously described (21). Cells were infected as
previously described (9) with wild-type AD169 or an AD169 derivative
expressing IE2 fused to GFP (AD169 IE2-GFP) (24) when indicated. Virus
titers were measured by standard plaque assay on nontransduced NHDFs.

Inhibitors, chemicals, and antibodies. Z-VAD-FMK (20 �M; Calbi-
ochem) dissolved in dimethyl sulfoxide (DMSO) was added at the time of
infection and replenished every 48 h. Mitochondria were stained by add-
ing MitoTracker Red CMXRos (250 nM in DMSO [Life Technologies])
for 30 min prior to fixation and immunofluorescence staining. Dimethyl
2-oxoglutarate (�-ketoglutarate, 7 mM; catalog no. 349631 [Sigma]), py-
ruvate (Pyr; 4 mM; catalog no. S8636 [Sigma]), oxaloacetic acid (OAA; 4
mM; catalog no. O7753 [Sigma]) or N-acetyl-L-cysteine (NAC; 5 mM;
catalog no. A9165 [Sigma]) dissolved in water were added at the time of
infection and replenished every 48 h as previously described (25). No-
codazole (100 ng/ml [VWR]) and phosphonoacetic acid (250 �g/ml;
Sigma) were added at 12 h postinfection (hpi) and maintained on cells
until harvesting at 48 hpi, as previously described (26). Commercially
available primary antibodies used in these experiments are: anti-Rb (4H1
[Cell Signaling] and 554136 [BD Pharmingen]), anti-p107 (C-18; Santa
Cruz), anti-E2F1 (3742; Cell Signaling), anti-tubulin (DM 1A; Sigma),
anti-p53 (OP43; Calbiochem), anti-Daxx (M-112; Santa Cruz), and
anti-HA (11867423001; Roche). Monoclonal antibodies against pp71
(2H10-9) and IE1 (1B12) have been described previously (27). IR dye 680-
and 800-conjugated secondary antibodies (LiCor) were used for Western
blot analyses, and Alexa 488- and 594-conjugated secondary antibodies
(A-11017 and A-11007; Life Technologies) were used for immunofluores-
cence.

Immunoblots and flow cytometry. Equal cell numbers were lysed and
analyzed by SDS-PAGE and immunoblotting for indicated antibodies as
previously described (9). Flow cytometry was performed as previously
described (9, 26, 28).

SA-�-Gal staining. Infected or mock-infected cells were rinsed in the
cell culture plate with Dulbecco phosphate-buffered saline (DPBS; catalog
no. 14190-144 [Life Technologies]) and fixed with 4% formaldehyde in
DPBS at 4°C overnight. Cells were then rinsed several times with DPBS
before being stained with a X-Gal (5-bromo-4-chloro-3-indolyl-�-D-ga-

lactopyranoside) staining solution (5 mM potassium ferricyanide, 5 mM
potassium ferrocyanide, 2 mM MgCl2, 150 mM NaCl, and 1 mg of X-
Gal/ml in 40 mM citric acid-sodium phosphate buffer [pH 6.0]) overnight
at 4°C (29). Cells were washed once in DPBS, and nuclei were stained with
0.2 mg of Hoechst/ml in DPBS. Cells were visualized and counted by light
and fluorescence microscopy on a Nikon Eclipse TE2000-S microscope.
At least 70 cells were counted for each condition, and HCMV infection
experiments were repeated three times. The percentages of positive cells
are represented as the number of cells in a field of view with blue X-Gal
staining divided by the number of Hoechst-stained nuclei.

Trypan blue exclusion viability assay. Serum-starved scrambled or
Rb knockdown cells infected at a multiplicity of infection (MOI) of 1 were
harvested by trypsinization at 72 h postinfection, and cells were diluted 1:1
in a 0.2% solution of trypan blue in PBS (T8154; Sigma). At least 80 cells
were counted by using a hemocytometer and blue staining identified non-
viable cells. Viability is represented as the percentage of viable cells over
the total number of cells counted.

Quantitative real-time PCR. mRNA was isolated from equal numbers
of cells using total RNA minikit (IB47323; IBI). cDNA was generated
using SuperScript III first-strand synthesis SuperMix (catalog no. 11752;
Invitrogen) for quantitative reverse transcription-PCR (qRT-PCR).
Transcripts were measured for ASCT1 (forward [Fwd], 5=-CCC GTT
TGC ATC ATC TCC AG-3=; reverse [Rev], 5=-TCT GGC AAA AGA CGG
GGT TC-3=), ASCT2 (Fwd, 5=-TGG ACT GGC TAG TCG ACC G-3=; Rev,
5=-GCT TGG AAT GTC ACC TGG AG-3=), GLS1 (Fwd, 5=-GAC ATG
GAA CAG CGG GAC TA-3=; Rev, 5=-GAG GTG TGT ACT GGA CTT
GGT-3=), and GCL (Fwd, 5=-TAC AGT TGA GGC CAA CAT GC-3=; Rev,
5=-GCT TGG AAT GTC ACC TGG AG-3=) and normalized to glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) transcripts (30). Total
DNA was extracted from equal numbers of cells using a genomic DNA
minikit (IB47202; IBI). Mitochondrial DNA was measured with 16S
primers (Fwd, 5=-CCG CAA GGG AAA GAT GAA AAA T-3=; Rev, 5=-
TCG TCT GGT TTC GGG GGT CT-3=) and normalized to cellular DNA
amplified with the GAPDH primers. cDNA or total DNA were quanti-
tated using iTaq Universal SYBR green Supermix (172-5124; Bio-Rad) on
an Applied Biosystems 7900HT instrument.

RESULTS
Cells with reduced levels of Rb produce fewer infectious parti-
cles compared to cells expressing a scrambled control shRNA at
multiple times postinfection. We previously reported that HCMV
produces less progeny virions at 96 h postinfection in cells with
reduced levels of Rb (9). It was not clear whether the reduction in
infectious virions was due to an overall decrease in the ability to
produce virions or whether there was a delay in the accumulation
of infectious virions. To differentiate between the two possibili-
ties, we performed a growth curve assay measuring the production
of infectious virions by scrambled control or Rb knockdown cells
at multiple times postinfection. Although the viral inoculum con-
tained comparable levels of virus (0 days postinfection), the Rb
knockdown cells consistently produced fewer infectious virions
than the scrambled control cells (Fig. 1). This suggests that the Rb
knockdown cells have a reduced capacity to replicate HCMV viri-
ons and the decreased levels of Rb do not simply delay viral repli-
cation.

HCMV arrests cell cycle progression in Rb knockdown cells.
Rb can restrict cell cycle progression through G1 and into the S
phase. HCMV infection also arrests cells with a G1 DNA content
(31–33). Importantly, HCMV replicates efficiently only in G1 and
not in subsequent phases of the cell cycle (34). We therefore
sought to determine whether HCMV replicated less efficiently in
Rb knockdown cells because it could no longer arrest cell cycle
progression in G1. To gauge cell cycle arrest during mock or
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HCMV infections, we used propidium iodide (PI) staining and
flow cytometry to monitor the ability of cells released from serum
starvation induced G1 synchronization to accumulate with S- or
G2-phase DNA content. Rb knockdown cells synchronize in G1 by
serum starvation with similar efficiency as the control cells (Fig.
2A) (9). Serum-stimulated cells were treated with the microtubule
depolymerizing agent nocodazole to prevent passage through mi-
tosis and conversion of a cell with a G2 DNA content into two cells
each with a G1 DNA content. Furthermore, phosphonoacetic acid
(PAA) was added to inhibit the viral DNA polymerase, a necessary
supplement as accumulating viral DNA stains with PI and thus
undermines the ability of the technique to define cell cycle status.
G1 serum starved cells expressing either an shRNA targeting Rb or
a scrambled control shRNA were equally able to enter S phase and
accumulate in G2 phase upon serum stimulation and mock infec-
tion (Fig. 2B). The Rb knockdown cells displayed an apparent
increase in the percentage of cells in S phase after serum stimula-
tion (Fig. 2E.). Cells lacking Rb are reported to spend longer in S

FIG 1 Cells with reduced levels of Rb accumulate fewer replicated virions than
scrambled control cells at multiple times postinfection. Viral replication after
infection with HCMV at an MOI of 1 in scrambled control (Scr) or Rb knock-
down (Rb) cells was determined by plaque assay of the viral inoculum at the
time of infection (day 0) and of cell-free and cell-associated virus at the indi-
cated days postinfection. Error bars represent the standard errors from three
biological replicates. Student t test was used to determine the statistical differ-
ence between Scr and Rb knockdown cells at each time point (*, P � 0.05).

FIG 2 Rb is not required to maintain a cell cycle block during HCMV infection. Total cellular DNA content was measured by flow cytometry and propidium
iodide (PI) staining of scrambled control (Scr) or Rb knockdown cells after serum starvation for 48 h (A), serum starvation followed by addition of serum
containing media for 48 h (B), or serum starvation followed by concurrent addition of serum containing media and infection with AD169 IE2-GFP virus at an
MOI of 1 before analysis at 48 h postinfection (hpi) (C). (B and C) Nocodazole and phosphonoacetic acid (PAA) were added to both serum-stimulated infected
cells and mock-infected cells at 12 h after the addition of the serum and maintained until 48 h after the addition of serum-containing medium. Representative
histograms from each condition from three biological replicates are shown. (D to F) The average percentages of scrambled control (Scr) or Rb knockdown cells
present � the standard deviations in each phase of the cell cycle after serum starvation (D), serum stimulation and treatment with nocodazole and PAA (E), or
infection with nocodazole and PAA treatment (F) are shown. A Student t test determined there was no statistical difference in the accumulation of cells in each
phase of the cell cycle between the scrambled control and Rb knockdown cells under any condition (P � 0.35).
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phase (35), possibly explaining this observation. Furthermore,
both control and Rb knockdown cells were equally able to prevent
serum-induced cell cycle progression after HCMV infection (Fig.
2C). We conclude that HCMV efficiently blocks cell cycle progres-
sion in the absence of Rb (Fig. 2D, E, and F), and thus an inability
to prevent entry into the S phase is not the reason why HCMV
replicates inefficiently in Rb-depleted cells.

HCMV induces senescence in Rb knockdown cells. In addi-
tion to temporarily restricting cell cycle progression in G1, Rb can
mediate a permanent withdrawal from the cell cycle into a G0 state
also termed senescence (36). Senescence is induced in response to
cellular stress (37), and Rb is required to establish senescence-
associated heterochromatin (SAHC) at E2F-responsive promot-
ers, rendering them permanently silenced and thus inhibiting cell
cycle progression (5). HCMV infection also induces a senescence-
like phenotype, and senescence induction prior to infection en-
hances HCMV replication (38). We therefore sought to determine
whether HCMV replicated less efficiently in Rb knockdown cells
because it could no longer induce senescence. To gauge senes-
cence induction, we stained cells for senescence-associated �-ga-
lactosidase (SA-�-Gal) activity at neutral pH (29). SA-�-Gal ac-
tivity was clearly evident (Fig. 3A) in primary fibroblasts induced
to senesce by high-density seeding combined with prolonged ex-
posure to growth factors (38). The same cells transiently arrested
in G1 by serum starvation showed no SA-�-Gal staining (Fig. 3B).
HCMV infection was equally able to induce SA-�-Gal staining in
both control and Rb knockdown cells (Fig. 3C, D, and E). We
conclude that HCMV efficiently induces senescence in the ab-
sence of Rb, and thus an inability to induce senescence is not the
reason why HCMV replicates inefficiently in Rb-depleted cells.

HCMV replicates efficiently in p107 knockdown cells. We
considered one additional manner in which the absence of Rb
could skew cell cycle status and thereby impair HCMV replica-
tion. We previously showed (9) and confirm here (Fig. 4A) that
the S-phase-specific p107 protein, an Rb family member encoded
by an E2F-responsive gene, accumulates upon Rb knockdown
(39). Whether or how p107 impacts HCMV infection is not
known. However, because an S-phase-specific gene can have a
deleterious impact on HCMV infection when overexpressed (40),
we sought to determine whether p107 restricts HCMV infection.
Although HCMV replication was impaired in Rb knockdown cells
(Fig. 4B), the virus was able to productively replicate equally in
control and p107 knockdown cells (Fig. 4C). We conclude that
p107 does not restrict HCMV infection and thus p107 accumula-
tion is not the reason why HCMV replicates inefficiently in Rb-
depleted cells.

HCMV induces mitochondrial biogenesis in Rb knockdown
cells. Rb controls the expression of genes required for mitochon-

FIG 3 HCMV is able to efficiently induce a senescence-like phenotype in
infected cells that have reduced levels of Rb. (A and B) Passage 6 fibroblasts
were induced to undergo senescence by plating at a high density and mainte-
nance in complete media for 48 h (A) or plated at a subconfluent density and
serum-starved for 48 h before fixation and staining for senescence-associated
�-galactosidase (SA-�-Gal, left) and Hoechst to visualize nuclei (right) (B).
(C) HCMV-infected scrambled control cells were serum starved and infected
at an MOI of 1, and at 72 h postinfection the cells were stained for SA-�-Gal
and the percentages of positive cells were calculated. The horizontal bar rep-
resents the mean from three biological replicates, and the individual symbols
represent the values from three biological replicates. A paired Student t test was
used to evaluate statistical significance (not significant, P � 0.9). (D and E)
Representative images of the SA-�-Gal staining of scrambled control (Scr) (D)
or Rb knockdown (Rb2) (E) cells used to generate the results for panel C are
shown.

FIG 4 Rb knockdown deregulates p107 expression, but p107 is not a restrictive factor for HCMV replication. (A) Protein lysates from equal numbers of cycling
primary fibroblasts stably expressing a scrambled shRNA (Scr), Rb targeting shRNA (Rb2), or p107 targeting shRNA (107.2) were analyzed with the indicated
antibodies by Western blotting. (B and C) Serum-starved scrambled control (Scr) and Rb knockdown cells (B) or scrambled control (Scr) and p107 knockdown
(107.2) cells (C) were infected at an MOI of 1. Combined cell-free and cell-associated virus was collected 4 days postinfection, and the virus titers were determined
by standard plaque assay. The data are mean titers � the standard deviations from six biological replicates. A Student t test was used to determine the statistical
difference between Scr and Rb knockdown or 107.2 cells (*, P � 0.05; not significant [n.s.], P � 0.44).

VanDeusen and Kalejta

11968 jvi.asm.org December 2015 Volume 89 Number 23Journal of Virology

http://jvi.asm.org


drial biogenesis (41), and in a cell-type-specific manner, can reg-
ulate the number of mitochondria within a cell, assayed by the rela-
tive amount of mitochondrial genomes compared to the cellular
genome. For example, mouse embryonic fibroblasts contain fewer
mitochondria in the absence of Rb (10), whereas adipocytes contain
more (17). HCMV infection increases mitochondrial biogenesis,
which supports efficient viral replication (42). We therefore sought to
determine whether HCMV replicated less efficiently in Rb knock-
down cells because it could no longer induce mitochondrial biogen-
esis. HCMV infection was equally able to induce mitochondrial bio-
genesis in both control and Rb knockdown cells assayed by
determining the DNA ratio of the mitochondrial genome encoded
16S rRNA gene compared to the nuclear genome encoded glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) gene (Fig. 5A). Fur-
thermore, HCMV infection was equally able to induce previously
observed morphological changes in mitochondria (43) in both con-
trol and Rb knockdown cells (Fig. 5B, C, and D). We conclude that
HCMV efficiently induces mitochondrial biogenesis and modifies
mitochondrial morphology in the absence of Rb, and thus an inability
to modify mitochondrial numbers or morphology is not the reason
why HCMV replicates inefficiently in Rb depleted cells.

A pan-caspase inhibitor does not improve HCMV produc-
tive replication in Rb knockdown cells. Rb loss leads to the in-
duction of E2F1 (39) (Fig. 4A). Although E2F1 is required for
efficient HCMV replication (44), high-level expression combined
with genotoxic stress can induce apoptosis (45). Apoptosis can
reduce the ability of HCMV to replicate in the absence of viral
genes that block this cell death process (46–48). We therefore
sought to determine whether HCMV replicated less efficiently in
Rb knockdown cells because it could no longer effectively inhibit
apoptosis. HCMV infection in Rb knockdown cells was not im-
proved by the addition of the pan caspase inhibitor Z-VAD-FMK
(Fig. 6A). Likewise, the proapoptotic p53 protein, which is in-
duced subsequent to Rb loss (49) and upon HCMV infection (50),
accumulated to similar levels in control and Rb-depleted cells
(Fig. 6B). In addition to apoptosis, other forms of cell death such
as necroptosis can impair cytomegalovirus infections (51, 52). We
found that identical percentages of cells were viable 72 h after
HCMV infection of either control or Rb knockdown cells (Fig.
6C), a time when infected cells are under significant virus-induced
stress (53). We conclude that HCMV efficiently avoids cell death
pathways in the absence of Rb, and thus an inability to maintain
cell viability is not the reason why HCMV replicates inefficiently
in Rb depleted cells.

HCMV modulates glutaminolysis equivalently in control
and Rb knockdown cells. Rb depletion leads to oxidative stress,
which is counteracted through the conversion of glutamine to
glutathione, a reducing agent (10, 18). HCMV uses glutamine for
anaplerotic restoration of TCA cycle intermediates that are de-
pleted because glucose is shunted away from the TCA cycle and
toward fatty acid biosynthesis in HCMV-infected cells (Fig. 7A)
(25, 54). In Rb-depleted cells infected with HCMV, competing
processes (glutathione production and anaplerosis) would vie for
the limiting amounts of glutamine. We therefore sought to deter-
mine whether HCMV replicated less efficiently in Rb knockdown
cells because it could no longer effectively regulate glutamine me-
tabolism. The mRNA levels of two genes encoding key glutamine
transporters (ASCT1 and ASCT2) were not dramatically different
in HCMV-infected control and Rb knockdown cells, although the
Rb knockdown cells did show statistically higher levels of ASCT2

transcripts than did control cells (Fig. 7B). The mRNA levels of
glutaminase (GLS1), the enzyme that converts glutamine to glu-
tamate plus ammonia, were also unchanged between HCMV-in-
fected control and Rb knockdown cells (Fig. 7C). Likewise, the
mRNA levels of glutamine-cysteine ligase (GCL), the enzyme that
converts glutamate to glutathione, were also unchanged between
HCMV-infected control and Rb knockdown cells (Fig. 7D). Thus,

FIG 5 HCMV-infected cells induce mitochondrial biogenesis and mitochon-
drial morphological changes in the absence of Rb. (A) Serum-starved scramble
control (Scr) or Rb knockdown cells (Rb) were mock infected or infected at an
MOI of 1, and the ratio of mitochondrial DNA (16S) to cellular genomic DNA
(GAPHD) was measured by quantitative PCR at 8 or 72 h postinfection. Bars
represent the means � the standard deviations of three biological replicates.
Statistical significance was determined by using a Student t test. There was a
statistically significant increase in the relative accumulation of mitochondrial
DNA at 72 h compared to mock-infected cells in both the scrambled and Rb
knockdown cells (P � 0.05); however, there was no statistical significance
between the scrambled control and Rb knockdown cells at any time point (n.s.,
P � 0.3) (B to D) Representative images of serum-starved scrambled control
(Scr) or Rb knockdown (Rb2) cells either mock infected (B) or infected at an
MOI of 1 for 5 h (C) or 72 h (D) before staining with MitoTracker Red (red),
pp71 (green), and Hoechst (blue). The green channel was omitted from the 72
hpi to aid in the visualization of the mitochondria.
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at the mRNA level, the glutamine metabolism enzymes are not
perceptibly different between HCMV infections of control or Rb
depleted cells.

Our transcript analysis cannot determine whether glutamin-
olysis enzyme levels or activity are different between HCMV-in-
fected control and Rb knockdown cells. Therefore, we added cell
permeable small molecules downstream of glutamine to Rb-de-
pleted cells to determine whether such supplementation could
enhance HCMV productive replication. Neither the TCA inter-
mediates pyruvate (PYR) or oxaloacetic acid (OAA), nor the
strong antioxidant N-acetyl cysteine (NAC) substantially im-
proved HCMV productive replication in Rb knockdown cells
(Fig. 8A). However, addition of the TCA intermediate alpha-ke-
toglutarate (�KG) showed a reproducible 4-fold induction of
HCMV productive replication in Rb knockdown cells (Fig. 8B).
However, �KG supplementation also bolstered HCMV produc-
tive replication in control cells (Fig. 8B), indicating that while
�KG is limiting for HCMV infection, this condition is not specific
for Rb knockdown cells. We conclude that HCMV efficiently
modulates glutamine metabolism in the absence of Rb, and thus a
deficiency in this phase of intermediary metabolism is not the
reason why HCMV replicates inefficiently in Rb depleted cells.

HCMV proteins that inactivate Rb do not require Rb to func-
tion. Having exhausted the known cellular pathways controlled by
Rb, we turned to viral proteins that may require this tumor sup-
pressor to exert their positive effects on HCMV replication. We
focused on the only two HCMV proteins demonstrated to regu-
late Rb during HCMV infection, pp71 and UL97. pp71 is a tegu-
ment protein that binds to and degrades the hypophosphorylated
form of Rb during HCMV infection (55–57). pp71 also degrades
Daxx in a reaction required for efficient viral immediate-early
gene expression (21). Daxx and Rb can both localize to promyelo-
cytic leukemia nuclear bodies (PML-NBs) (58), and thus pp71
could potentially require the presence of Rb to help it target Daxx
at PML-NBs. We therefore sought to determine whether HCMV
infection promoted Daxx degradation less efficiently in Rb knock-
down cells. HCMV infection was equally able to degrade Daxx in
both control and Rb knockdown cells (Fig. 9A).

UL97 is a v-Cdk that phosphorylates and inactivates Rb (55, 59,
60). UL97 also phosphorylates lamin proteins to induce partial
lamina breakdown at the inner nuclear envelope (61) that theo-
retically promotes nuclear capsid egress and thus efficient HCMV
productive replication. Rb can also interact with lamin proteins
(62, 63), and thus UL97 could potentially require the presence of
Rb to help it target lamin proteins for phosphorylation. We there-
fore sought to determine whether UL97 could disrupt the nuclear
lamina in Rb knockdown cells. Transfected UL97 was equally able
to displace an ectopically expressed GFP-lamin A fusion protein
from the nuclear lamina in both control and Rb knockdown cells
(Fig. 9B). We conclude that the known HCMV Rb modulating
proteins pp71 and UL97 efficiently perform their respective tasks
that promote HCMV productive replication in the absence of Rb,
and thus deficiencies in their function is not the reason why
HCMV replicates inefficiently in Rb depleted cells. In total our
work points toward a novel, likely viral process directly impacted
by Rb that is required for efficient HCMV replication.

DISCUSSION

Despite encoding at least four viral proteins reported to target
aspects of Rb function, HCMV replicates less efficiently in cells
with reduced levels of the cellular tumor suppressor protein.
There is significant overlap between the cellular pathways that Rb
regulates and those that are modified during HCMV infection,
providing ample opportunities for Rb to contribute in a positive
way to efficient HCMV replication. However, we show here that
HCMV remains able to modulate these overlapping pathways of
cell cycle (Fig. 2), cell death (Fig. 6), and mitochondrial biology
(Fig. 5) and chemistry (Fig. 7) in Rb-depleted cells. How Rb pro-
motes efficient HCMV replication remains to be discovered.

Aberrantly modified cellular pathways do not seem responsible
for the impaired replication of HCMV in the absence of Rb. How-
ever, our targeted approach analyzed pathways known to be reg-
ulated by Rb. Thus, it remains possible that HCMV exploits a yet
to be determined function of Rb for efficient replication. Unbi-
ased, global, hypothesis-generating experiments comparing epig-
enomes, transcriptomes, proteomes, and metabolomes between

FIG 6 The decrease in virus production is not due to infected Rb knockdown cells undergoing apoptosis. (A) Serum-starved scrambled control cells (Scr) or Rb
knockdown cells (Rb2) were infected at an MOI of 1 and treated with DMSO or pan-caspase inhibitor Z-VAD-FMK at the time of infection and replenished at
48 h postinfection. Combined cell-free and cell-associated virus was collected 4 days postinfection, and the titers of virus were determined by standard plaque
assay. The data are mean titers � the standard deviations from six biological replicates. The statistical significance was determined by a permutation test (*, P �
0.02; n.s., P � 0.45). (B) Protein lysates from equal numbers of serum-starved scrambled control cells (Scr) or Rb knockdown cells (Rb2) mock infected or
infected at an MOI of 1 for 6 or 72 h were analyzed with the indicated antibodies by Western blotting. (C) Serum-starved scrambled control cells (Scr) or Rb
knockdown cells (Rb2) were infected at an MOI of 1, and 72 h later the cell viability was determined by trypan blue exclusion. At least 80 cells were counted per
replicate, and the bars represent the mean percentages of live cells � the standard deviations of three biological replicates. Statistical significance was assayed by
using the Student t test (n.s., P � 0.17).
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HCMV-infected control and Rb-depleted cells could provide
clues as to how Rb supports efficient HCMV replication. The de-
fect in HCMV replication when Rb is reduced could be used as a
tractable assay to discover new functions for Rb that might be
important for its tumor suppressor function.

An alternative hypothesis is that Rb controls a critical viral
process. The two HCMV proteins known to modulate Rb during
infection (pp71 and UL97) efficiently perform their other essen-
tial tasks (Daxx degradation and lamina disruption, respectively)
when Rb is reduced (Fig. 9). A third viral protein, IE1, interacts
with p107 in transfection and infection assays (64). However,
since p107 is dispensable for efficient HCMV replication (Fig. 3),
it seems unlikely that this interaction contributes to the replica-
tion defect observed in the absence of Rb. The fourth viral protein
reported to interact with Rb in vitro is IE2 (65, 66), a protein that
arrests cell cycle progression (33, 67), stimulates cellular E2F-re-
sponsive transcription (65, 68), and can both positively and neg-
atively regulate viral transcription (65, 69, 70). HCMV remained
able to arrest cell cycle progression (Fig. 2), and E2F-responsive
genes are expressed (Fig. 4) in Rb-depleted cells, so deficiencies in
these activities of IE2 do not appear to cause the drop in replica-
tion observed in Rb knockdown cells. Whether or not the multiple

FIG 7 Rb knockdown cells efficiently express key glutaminolysis enzymes
required to support viral replication. (A) An oversimplified illustration of
pathways utilized for nucleic acids, amino acids, and lipid synthesis to illustrate
the ability of citric acid cycle intermediates to facilitate macromolecule synthe-
sis as well as oxidative phosphorylation. Citric acid cycle intermediates citrate,
�-ketoglutarate (�-KG), and oxaloacetic acid (OAA) can be used as carbon
sources for the synthesis of nucleic acids, amino acids, and lipids. To meet the
energetic and physical requirements of HCMV replication, cells will increase
glutamine uptake to replenish citric acid cycle intermediates that become de-
pleted when glucose undergoes aerobic glycolysis and the pyruvate does not
enter the citric acid cycle. The enzymes regulated by Rb that are involved in
glutaminolysis and glutathione synthesis are ASCT2 (but not ASCT1), glutam-
inase (GLS1), and glutamine-cysteine ligase (GCL). (B) Transcript levels of
glutamine transporters ASCT1, ASCT2 (C) glutaminase (GLS1), or (D) gluta-
mate cysteine ligase (GCL) from HCMV-infected scrambled control (Scr) or
Rb knockdown cells (Rb2) at 72 h postinfection were analyzed by qRT-PCR
and normalized to GAPDH. (B to D) Bars represent the mean � the standard
deviation of 4 biological replicates. Prior to normalization, a paired Student t
test was used to determine statistical significance (*, P � 0.05; n.s., P � 0.2).

FIG 8 Rb knockdown cells produce sufficient citric acid cycle intermediates
and antioxidants to support efficient HCMV replication (A) Serum-starved Rb
knockdown cells were infected at an MOI of 1, and the medium was supple-
mented with �-ketoglutarate (�-KG), pyruvate (Pyr), oxaloacetic acid (OAA),
or the antioxidant N-acetyl cysteine (NAC) at the time of infection and replen-
ished at 48 h postinfection. Combined cell-free and cell-associated virus was
collected 4 days postinfection, and the titers of virus were determined by stan-
dard plaque assay. The symbols represent individual experiments and hori-
zontal bars are the mean from two experiments. (B) Serum-starved scrambled
control (Scr) and Rb knockdown cells were infected at an MOI of 1 and left in
normal medium or supplemented with �-KG, as in panel A. Combined cell-
free and cell-associated virus was collected at 4 days postinfection, and the
titers of virus were determined by standard plaque assay. The data are mean
titers � the standard deviations from six biological replicates. Statistical sig-
nificance was determined by using the Student t test (*, P � 0.001). A Sen-
Adichie test for parallelism determined there was no significant difference
between the �-KG mediated increase in virus titers in the scrambled control
and Rb knockdown cells (P � 0.3).
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effects of IE2 on viral transcription are altered in Rb-depleted cells
remains to be directly explored, although we previously detected
little to no effect of Rb knockdown on HCMV immediate-early or
early protein accumulation (9), so IE2 seems capable of regulating
viral transcription when the levels of Rb are reduced.

In addition to the four proteins implicated in Rb regulation
listed above, HCMV encodes 14 other proteins with canonical
Rb-binding LxCxE motifs (9) that conceivably could require Rb
for their functions. UL77 and UL93, two of the LxCxE containing
proteins, are essential for viral replication, while several more
(US26, UL20, UL29, and UL69) enhance viral replication (71).
Determining whether any of these proteins use their LxCxE motifs
to interact with Rb, support efficient viral replication, or both
could help us to understand the role of Rb during viral replication.

It is possible that the function of Rb required for efficient
HCMV replication combines both cellular and viral pathways. For
example, recent evidence indicates that adenovirus E1A, an Rb-
binding LxCxE-containing protein, redirects Rb and its associated
chromatin remodeling complexes to cellular genes that encode
antiviral proteins (72). This correlates with silencing of their

transcription and presumably, enhanced adenoviral replication.
HCMV could invoke a similar strategy, utilizing a viral Rb-bind-
ing protein to direct Rb to viral or cellular genes to modulate their
transcription.

Rb accumulates in phosphorylated forms during HCMV infec-
tion (31, 55, 60). Classically, phosphorylated Rb is considered in-
active (73); thus, it was surprising that HCMV replication was
inefficient in the absence of a posttranslationally modified form of
a protein already considered to be devoid of activity. Our results
seem to indicate an unknown role for the phosphorylated form of
Rb may exist. Although the pathway controlled by Rb is aberrant
in most human tumors, the Rb gene itself is mutated or lost infre-
quently (74). Any activity of the phosphorylated form of Rb im-
portant for maintenance of the transformed phenotype could be
exploited for cancer therapies. HCMV infection of Rb knockdown
cells may prove a useful tool in identifying functions of phosphor-
ylated Rb, increasing our understanding of this critical tumor sup-
pressor and potentially identifying targets for novel cancer thera-
peutics.
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