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Abstract

Natural variation within species reveals aspects of genome evolution and function. The fission 

yeast Schizosaccharomyces pombe is an important model for eukaryotic biology, but researchers 

typically use one standard laboratory strain. To extend the utility of this model, we surveyed the 

genomic and phenotypic variation in 161 natural isolates. We sequenced the genomes of all 

strains, revealing moderate genetic diversity (π = 3 ×10−3) and weak global population structure. 

We estimate that dispersal of S. pombe began within human antiquity (~340 BCE), and ancestors 

of these strains reached the Americas at ~1623 CE. We quantified 74 traits, revealing substantial 

heritable phenotypic diversity. We conducted 223 genome-wide association studies, with 89 traits 

showing at least one association. The most significant variant for each trait explained 22% of 

variance on average, with indels having higher effects than SNPs. This analysis presents a rich 

resource to examine genotype-phenotype relationships in a tractable model.

Introduction

While the standard laboratory strain of S. pombe has been extensively studied, genetic 

variation and phenotypic diversity have been analyzed only in preliminary ways1-3. 

Remarkably little is known about the evolutionary history or ecology of this model 

organism. It was first described in East African millet beer in 1893, and the standard 

laboratory strain was isolated from French wine in 19244. Natural isolates have also been 

collected from vineyards in Sicily, Cachaça (sugarcane spirit) in Brazil, and found to 

contribute to the microbial ecology of Kombucha (fermented tea)1,5,6. The diverse origins of 

these natural isolates (Fig. 1a; Supplementary Table 1) suggest that this yeast is now widely 

distributed.

To further describe S. pombe, we analyzed the genetic and phenotypic variation in natural 

isolates. Because the natural environment is not known, we collected all isolates available 

from the major stock centres and those given to us by microbial ecologists (Supplementary 

Table 1). These 161 strains had been collected over the last 100 years, in over 20 countries 

across the globe, primarily from cultivated fruit or various fermentations. Notably, the 

strains with known origin had been associated with human activities, providing little 

information about the natural environment of the species.
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Results and Discussion

Variation and population structure

We sequenced the genome of all strains to at least 18-fold coverage, with a median 76-fold 

coverage. To facilitate detection of genetic variants, we mapped reads to the reference 

genome7. Mapping was comprehensive and accurate owing to the small, non-repetitive 

genome, allowing us to query 93% of the genome with high confidence (11.8 Mb of 12.6 

Mb). We identified 172,935 high-quality single-nucleotide polymorphisms (SNPs), 14,508 

small insertion and deletions (indels), and 1,048 long terminal repeat (LTR) insertions 

(Table 1).

Initial analysis revealed 25 clusters of near-identical strains that differed by <150 SNPs 

(Supplementary Fig. 1a). As most clusters were isolated from a single location, they 

probably derive from isolated, mitotically reproducing populations or from repeat 

depositions of the same strain to stock centers. By excluding such ‘clonal’ strains, we 

identified a set of 57 strains that each differ by ≥1,900 SNPs, which includes 99.6% of the 

SNPs present in all strains. The average pairwise diversity (π) within these 57 strains was 

3.0 ×10−3 (3 SNPs/kb), slightly lower than the diversity within the budding yeast 

Saccharomyces cerevisiae (π = 5.7 ×10−3)8,9. Flow cytometry indicated that all but one 

(JB1207/NBRC10570) of these strains were haploid. Also, 34 of 39 strains were 

homothallic (i.e. contained both mating types), and all 57 strains were prototrophic (i.e. able 

to grow on same minimal medium as reference strain).

To describe the relatedness among these 57 strains, we analyzed SNPs in the nuclear 

genome. Some strains carry large inversions and translocations2,10, which bias estimates of 

population structure when large regions of chromosomes are inherited without 

recombination11. Therefore, we selected a set of 752 SNPs that are close to linkage 

equilibrium (pairwise r2 <0.5) and are distributed relatively evenly across the genome 

(Supplementary Fig. 1b), which better suits population genetic models that assume no 

linkage between variants. Principal component analysis of these SNPs showed weak 

clustering of strains by geography (Fig. 1b). Moreover, a pattern of genetic isolation by 

distance was evident, with genetic and physical distance being weakly, but significantly 

correlated (Supplementary Fig. 1c). This result suggests that there is some global population 

structure, which has been obscured by recent dispersal and intermixing of some strains. To 

examine whether this genetic isolation has resulted in any reproductive isolation, we 

measured spore viability between 43 crosses that spanned the range of genetic distances, 

avoiding crosses that involved known structural variants2. We found a significant correlation 

between genetic distance and spore viability (Pearson r = 0.52, P = 6.5 × 10−4, 

Supplementary Fig. 1d). This result suggests that these strains have accumulated sufficient 

genetic differences for reproductive barriers to emerge. Chromosomal rearrangements will 

also contribute to reproductive isolation10,12.

The budding yeast S. cerevisiae shows strong clustering of strains, determined both by 

geography and cultural uses8,13. To assess the situation for S. pombe, we applied 

unsupervised genetic clustering methods, Admixture14 and fineSTRUCTURE15, which are 

oblivious to the geographic origin of the strains, to uncover any genetically differentiated 
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populations. Both clustering methods identified between two and five populations that were 

consistent with the principal component analysis (Supplementary Figure 2a-c). These results 

and further phylogenetic analysis showed that these groups were interbreeding populations, 

rather than clonally-isolated lineages (Supplementary Figure 2d). The FST values 

(proportion of between population genetic variance) for the five-population clustering 

ranged between 0.22 and 0.59 (mean 0.40) for different pairwise comparisons, indicating 

considerable genetic differences between these five connected clusters.

Dating the global dispersal of S. pombe

While S. pombe now appears globally distributed, we have no ecological or historic context 

to this dispersal, except that most strains were isolated from brewed beverages. The 

available strains were collected between 1912 and 2002, which allowed us to estimate the 

age of every node in the phylogenetic tree from the mitochondrial genomes, including the 

root (most recent common ancestor of all strains) (Fig. 2a). Modelling of the evolutionary 

rate showed that our data had predictive power (Fig. 2b), and we estimate the ancestor of all 

strains to have lived ~2,300 years ago (~340 BCE, Fig. 2c). A similar timeline could be 

deduced from the nuclear genome (Supplementary Note). This estimate points to an 

evolutionarily recent worldwide dispersal, perhaps associated with the spreading of 

technologies for brewing or other fermentations16. In comparison, it has been estimated that 

domesticated strains of S. cerevisiae dispersed 8-10,000 years ago, consistent with a 

Neolithic expansion17. Furthermore, our analysis provides a mean estimate of 1623 CE for 

the arrival of S. pombe in the Americas (95% confidence interval 1422-1752 CE), coincident 

with European colonialism of this continent, which began in 1492 CE. Notably, isolates 

from the Americas also showed the highest genetic similarity (Supplementary Note, Fig. 

1b). Together, these findings suggest a recent European origin for S. pombe in the Americas.

Genetic diversity and genome function

Genetic variation data also contain signals of selection, which can be used to describe 

genome function. For example, both background selection and adaptive evolution reduce 

diversity most strongly in genetic elements that contribute to cell function. A consistent 

reduction in diversity is therefore a signature of functional elements, as reflected in the 

biased distribution of SNPs and indels (Table 1). Variation was significantly higher in the 

terminal 100 kb of all chromosomes and in centromeric regions (Mann-Whitney tests, 

P=1.5×10−21 and 3.2×10−7, respectively) (Fig. 3a). These regions are unusual in that they 

contain no essential genes, have an excess of pseudogenes (19% vs 0.2% in genome), an 

excess of LTR insertions, and show low gene expression during vegetative growth, 

stationary phase and meiotic differentiation (Supplementary Fig. 3).

To systematically explore the relationship between genetic diversity and genome function, 

we calculated Watterson’s θ (which measures nucleotide diversity) for the following 

annotation classes (Fig. 3b): protein-coding exons, introns, canonical RNAs (rRNAs, 

tRNAs, snoRNAs, snRNAs), long non-coding RNAs (lncRNAs), UTRs (untranslated 

regions of protein-coding transcripts), and the 15% of the genome not annotated as any of 

the above. Within exons, we calculated θ for one-fold degenerate sites (where all changes to 

DNA sequence lead to changes in protein sequence) and four-fold degenerate sites (4FD, 
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where all changes to DNA sequence result in same protein sequence). While polymorphisms 

in 4FD sites are not truly neutral, they are subject to much weaker selection18. As expected, 

protein-coding exons were the least diverse regions of the genome (Fig. 3b). Additionally, 

5’- and 3’-UTRs and introns were all significantly less diverse than 4FD sites, suggesting 

substantial evolutionary selection at post-transcriptional levels of gene regulation. Analysis 

of SNP and indel median minor allele frequencies within windows showed consistent results 

(Supplementary Fig. 4a,b). While lncRNAs appeared to be subject to little or no purifying 

selection overall, further analyses revealed that the 20% most highly expressed lncRNAs 

were subject to detectable purifying selection (Supplementary Fig. 4c-e). These findings 

indicate that purifying selection is dominated by protein-coding transcripts, including their 

UTRs. As a consequence, we would expect fewer genetic variants to remain in gene-dense 

regions. Consistently, θ was strongly negatively correlated with protein-coding exon density, 

with outliers mainly derived from telomeric regions that lack essential genes (Fig. 3c).

Variation in transposon insertions and gene content

Transposons create another source of genomic variation, which may contain signatures of 

evolutionary processes. S. pombe has only one family of mobile elements, the Tf-type LTR 

retrotransposons19. The reference genome contains only 13 full-length Tf elements, but also 

several hundred solo LTR fragments that indicate the sites of previous insertions. These 

elements are transcribed at low levels20, so may be actively propagating. To examine this 

possibility, we searched for novel insertions of Tf-elements in the non-clonal strains and 

determined which reference LTRs were present in the other 56 non-clonal strains. We 

located 1048 LTR insertions, of which 78% were not present in the reference. Consistent 

with previous studies showing that Tf-element insertions are targeted to RNA polymerase II 

(Pol II) promoters21,22, we observed a sharp peak of insertions upstream of transcription 

start sites (Supplementary Fig. 5), and few insertions in exons (Table 1). The majority of the 

insertions (593 loci, 57%) were present only in a single strain, suggesting recent transposon 

integration and loss.

Transposon integration has been proposed to occur during cellular stress23,24. To examine 

this model, we analysed Tf-element insertions within intergenic regions containing one 

promoter and one terminator, as these insertions allow us to determine which promoter had 

been targeted by the insertion. Analysis of this set of 998 insertion sites upstream of 354 

genes showed that insertions were more abundant upstream of genes with high Pol II 

occupancy, suggesting that gene expression level is a main determinant for Tf-element 

insertion. Insertions were also enriched upstream of intronless genes, which tend to be 

rapidly regulated25, and of sty1-activated stress-response genes26 (Supplementary Table 2). 

These observations corroborate the experimental finding that stress-response genes are 

targeted by Tf-insertions22, and support the model that transposon integration occurs during 

stress, but also preferentially occurs in highly expressed genes.

To gauge how much our collection differed in gene content, we used de novo assemblies of 

the 57 non-redundant strains to identify genes that were present in at least one strain, but not 

present in the well-annotated reference strain. We created protein-coding gene predictions 

for each strain from the assembly and attempted to locate similar genes in the reference 
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strain. The strains were highly similar in their gene content; for example, 95% of the 

predicted peptides from the divergent strain JB758 could be aligned to a reference protein 

with >95% identity. Curation produced only 17 putative novel proteins, including nine with 

strong supporting evidence (Supplementary Table 3). The majority of these novel proteins 

were most similar to genes from Ascomycete fungi, including 12 for which we could identify 

orthologs in related Schizosaccharomyces species by blastp (e-value < 10−20), suggesting 

ancient ancestry and subsequent gene loss in the reference strain. A notable exception was a 

protein most similar to the OsmC family from the plant pathogenic enterobacterium 

Brenneria salicis, with highly-conserved OsmC sequences being present in 29 of the 57 

strains. This finding may reflect horizontal gene transfer, raising the possibility of an 

ecological association between S. pombe and plants.

Distribution of recombination

Meiotic recombination is a source of diversity that influences natural selection and also 

reflects population history. Recombination events are initiated via double-stranded breaks 

(DSBs) that occur preferentially at hotspots in the S. pombe genome27,28. To examine the 

distribution of recombination, we estimated the historic recombination rate by constructing 

genetic maps with distances in Linkage Disequilibrium Units (LDU)29. The rate estimate 

was zero for genomic regions spanned by 87% of the SNPs, and was log-normally 

distributed within the 13% of sites showing recombination (Supplementary Fig. 6a). Six 

regions with very high historic recombination rates were evident (rates >99.99th percentile; 

Fig. 3a). These hotspots showed a weak relationship with regions of high DSB activity 

(Spearman rank ρ=0.25, P=5.2×10−16), but only 52% of the most recombinogenic SNPs 

were in DSB hotspots (Supplementary Note). As in other species, recombination positively 

correlated with genetic diversity (Spearman ρ=0.43, P=3.2×10−57) and was primarily 

located away from genes (Supplementary Fig. 6b,c). For example, exons cover 57% of the 

genome, but only 26% of the 1000 highest recombination sites were in exons. The result of 

the low recombination regions is that on average linkage disequilibrium (r2) declines to 50% 

within 21 kb (Supplementary Fig. 6d). Hence S. pombe shows long haplotypes compared to 

eukaryotes of similar genome size and gene density; for example, linkage disequilibrium in 

the budding yeasts Saccharomyces cerevisiae and Saccharomyces paradoxus decline to 50% 

within 3-11 kb and 9 kb, respectively8,9.

Phenotypic variation and genome-wide association studies

Model organisms have been utilized extensively to describe the complex genetics of 

quantitative traits30,31, a task which is far more difficult in less tractable species such as 

humans. It was clear that our collection contained quantitative trait variation, both from 

previous studies1,2 and from our observation that some strains showed differences in cell 

shape and size (Supplementary Fig. 7). To extend this data, we measured 74 quantitative 

traits using five methods selected to sample a large variety of different phenotypes: 1) 

manual and 2) automated measurements of cell shape and size, 3) multiple growth 

parameters in minimal and rich liquid media, 4) colony sizes on solid media under 42 

different nutrient, drug and environmental conditions, and 5) mass-spectrometry 

measurements of intracellular amino-acid concentrations. Combined with previous data2, we 
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analyzed 9,383 measurements for 223 phenotypes (an average of 164 values per strain) (Fig. 

4a; Supplementary Table 4).

To assess the feasibility of using these data for genome-wide association studies (GWAS), 

we estimated the heritability of each of these phenotypes using the LDAK software32, which 

considers additive genetic contributions without accounting for genetic interactions. These 

narrow-sense heritability estimates were significantly greater than zero for 130 of the 223 

phenotypes, including phenotypes gathered using all methods (Supplementary Fig. 8a; 

Supplementary Table 5). Amino-acid concentrations were amongst the most heritable 

phenotypes, indicating a high metabolic diversity with little contribution from genetic 

interactions (which are not measured by narrow-sense heritability). Analysis of biological 

and technical repeat trait measurements also showed that the availability of repeats 

substantially increased the power of GWAS by reducing the non-genetic component of 

variance (Supplementary Fig. 8b).

GWAS would also be challenging if quantitative traits were clustered along with the 

population structure of the strains, as they are in budding yeast33. To examine this 

possibility, we tested each trait for significant differences in values between the 5 

populations defined by Admixture. Only 19 of the quantitative 223 traits were significantly 

differentiated after Bonferroni correction, showing that traits are usually not stratified by 

populations (Supplementary Fig. 9a).

Since our traits were highly heritable and infrequently stratified by populations, we applied 

GWAS to search for genetic variants associated with each of 223 quantitative traits. We 

used a mixed model34, utilizing all SNP and indel variants with minor allele counts ≥5 

(108,105 SNPs and 8,543 indels). Mixed model linear regression accounts for unequal 

relatedness between individuals. Using trait-specific thresholds with a 5% family-wise error 

rate per trait, we discovered 1,419 variants that were significantly associated with at least 

one phenotype (1239 SNPs and 180 indels; Fig. 4b, Supplementary Table 6). Genomic 

inflation factors (median of observed test statistic divided by expected median) indicated 

that the mixed model was accounting for unequal strain relatedness well (Supplementary 

Fig. 9a,b). As an additional critical test of these associations, we divided the 57 non-clonal 

strains into three sub-populations (with 12, 26 and 17 members, defined by Admixture14), 

and examined each of these 1,419 variants for significant association using linear regression. 

Despite the small sample sizes, 67 of these variants were nominally associated with the trait 

and replicated in at one more sub-populations (P <0.05; Fig. 4b, Supplementary Note).

Overall, we found that 1% of SNPs and 2% of indels were significantly associated with one 

or more traits (χ2 test P = 3.0 × 10−15). Associated indels also explained higher proportions 

of trait variance (Supplementary Fig. 9c), consistent with indels being more destructive 

variants. Many of the indels used in the GWAS were in untranslated regions of coding 

transcripts (UTRs, Supplementary Fig. 9d), which we showed are subject to selective 

constraint, suggesting that indels contribute to phenotypic change by altering gene 

regulation.
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For 89 of the 223 traits examined, at least one variant passed the significance threshold. We 

considered the most significant variants as the most likely candidates for causal variants. 

These 89 variants (72 SNPs, 18 indels) showed no bias for any genomic regions 

(Supplementary Fig. 9d) and explained 12-60% of trait variance, consistent with the 

expectation that the small sample size will have power to detect only variants of large effect. 

As for any GWAS, while estimates are globally unbiased, the largest estimates are likely to 

reflect a combination of genetic and stochastic effects and so tend to over-estimate the true 

genetic variance explained, a bias known as the winner’s curse. In this study, the stochastic 

component of traits was well controlled by repeat measurements (Supplementary Fig. 8b), 

which will mitigate such bias.

Because of the extensive linkage disequilibrium (LD) in this collection, many variants will 

be significant because they are in LD to a causal variant. To locate further variants that are 

independently associated with traits, we re-applied the mixed model for each of these 89 

traits, conditioning on the most significant variant. This approach uncovered 18 further 

variants (10 SNPs, 8 indels, Supplementary Table 6). These conditional hits explain 12-50% 

of the remaining trait variance.

The distribution of passing variants included six hotspots that harboured multiple variants 

associated with several different phenotypes (Fig. 4b). The most prominent of these hotspots 

contained 89 variants associated with six traits (Supplementary Fig. 10a), including the most 

significant three variants (all SNPs, all with P = 7×10−11, all of which have pairwise r2 =1). 

These polymorphisms are associated with growth in MgCl2, and fall in the intergenic region 

between nsk1 (encoding a microtubule-binding protein) and sod2 (encoding a predicted 

manganese superoxide dismutase).

To experimentally validate this association, we crossed two strains that showed clear 

differences for this trait and contained the alternative haplotypes. We grew the pool of F1 

progeny in the presence and absence of MgCl2. Sequencing of this pool showed a bias to the 

expected allele, supporting a role for this variant in these two genetic backgrounds 

(Supplementary Fig. 10b,c). These results provide experimental support for a causal role for 

this variant or the tightly linked SNPs. As a first step towards identifying the gene(s) 

affected by these SNPs, we compared the growth of the standard laboratory strain to strains 

with either nsk1 or sod2 deleted. Both deletion strains were sensitive to MgCl2 

(Supplementary Fig. 10d), consistent with the haplotype affecting a bidirectional promoter 

between nsk1 and sod2.

In conclusion, this study contributes to the understanding of S. pombe in several areas. Our 

analysis is limited by the available strains collected from human-associated samples that 

share a relatively recent common ancestor. However, we show that GWAS are feasible with 

this strain collection, and uncover a large number of potential causal variants. The 

effectiveness of GWAS, despite the low number of strains, was probably enabled by the 

relatively small genome and the quantitative phenotyping under tightly controlled 

conditions, which is obviously not possible with humans. We expect that the rich natural 

genetic and phenotypic variation presented here will provide a valuable resource to 

Jeffares et al. Page 8

Nat Genet. Author manuscript; available in PMC 2015 November 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



understand the complexities and subtleties of genetic architecture and genome function in 

this model species.

Online Methods

Sequencing and quality control

All strains are described in Supplementary Table 1. Strains were sequenced with either 54 or 

100 nt paired-end Illumina reads. To verify that strain identity was correct at various stages 

in the project we genotyped 30 SNPs (that would distinguish all the 57 non-clonal strains 

with at least two allelic differences) from the 161 extracts used for sequencing, repeat 

extracts of the 57 non-clonal strains, extracts from stocks obtained directly from stock 

centres extracts made from cultures picked from the ROTOR phenotyping plate. Only two 

of the 232 sets of genotypes were not as expected, and neither of these were members of the 

57 non-clonal strains. All of the ROTOR plate extracts were as expected.

Read mapping, SNP and indel calling

Reads were mapped to the Schizosaccharomyces pombe 972 h− reference genome (May 

2011 Version)7 with Stampy (v1.0.17)18,37. After detection of possible indel sites 

alignments were realigned with GATK IndelRealigner.

SNPs were called with the GATK UnifiedGenotyper and filtered using custom parameters 

(available on request). Indels were identified using the Genome Analysis Toolkit (GATK) 

HaplotypeCaller38 and Cortex39 both filtered using custom parameters. Cortex and 

HaplotypeCaller call sets were by merging any two indels from each set that were positioned 

within 3 nucleotides of each other, within a 30% length range and differing by a maximum 

of 1 minor allele count.

SNP and indel validation

To estimate false discovery rate and sensitivity of SNP calling, we sequenced ~20 paired 

end shotgun clones from each of four strains with increasing genetic distance from the 

reference with an ABI capillary machine. Reads were then mapped to the reference genome 

using BWA mem40. We then manually examined 85 windows of the genome using the IGV 

tool41. This included 47,619 nt of mappable regions, and 182 known SNPs. We found that 

all of these were valid, while 17 were discovered in alignments that were not called by our 

SNP calling pipeline (8.5% false negative rate).

To estimate the false discovery rate of indel calling, we manually inspected Illumina read 

alignments at 100 indels called in the same four strains, choosing indels that were dispersed 

across all chromosomes. Only 4 of these calls were false positives for an indel occurring at 

the site (4% false discovery rate for calling an indel). A total of 7 indels contained at least 

one strain with an incorrect allele call.

Locating Tf retrotransposons

We used RetroSeq42 to locate insertions in the 57 strains that were not present in the 

reference strain. As LTR insertions are highly targeted in S. pombe22, we used soft-clipped, 
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unaligned parts of a sequence reads covering the insertions sites to distinguish between 

independent insertions at closely situated genomic sites, collating 1474 predicted insertions 

into 820 insertion events (Supplementary Table 8). We assed the target site duplication 

(TSD) sizes from from the soft-clipped reads. We used PCR to verify 90 of the RetroSeq 

predictions. 56 of these produced a product in both reference and alternate strain and 80% 

(45/56) of these confirmed the insertion with high confidence, while 93% (52/56) confirmed 

the insertion with at least medium confidence (Supplementary Table 9).

To determine which reference LTR elements were present in each wild strain, we used delly 

(Version 0.0.6)43 to locate deletions in the same position as a reference LTR sequence. 

Genes targeted by LTR insertions only considered LTR insertions between genes arranged 

in tandem (i.e. neighboring genes in the same orientation). Gene features were analysed by 

the GeneListAnalyser (http://128.40.79.33/cgi-bin/GLA/GLA_input).

Diversity analysis

Diversity estimates were calculated using Variscan44. For 10kb window analysis we 

excluded windows with less than 1000nt of reliably called sites. To compare annotations of 

the genome, we used regions that were annotated exclusively as exon/intron/ncRNA, etc. 

Median minor allele frequency was calculated from all passing SNPs or indels, in the 100 

(126 kb long) windows of the genome for SNPs, and in 50 (252 kb) windows for indels.

Recombination rate, hotspots and linkage disequilibrium maps

We used LDMAP45 to construct LDU maps from the SNPs segregating in 46 unrelated 

strains that looked to be a homogenous population from principal components analysis, 

excluding SNPs with MAF <0.05. We calculated the DSB rate (per microarray probe) from 

the data of Cromie et al.27, as the median signal for all probes in a 7-probe window, using 

both repeats of the 5h time point (14 probes in all), divided by the median signal for probes 

in the 7-probe window for the 0h time point. For both recombination rate and the DSB rate, 

we then calculated the mean signal over non-overlapping 1 kb windows of the genome. 

Pairwise D′ and r2 were calculated between all pairs of SNPs with a minor allele frequency 

>0.05 up to 250 kb distance, using LDMAP (for D′)45 and PLINK (r2)46. Mean values were 

calculated from ≥500,000 pairwise comparisons for each 1 kb window.

Population structure

For analysis tools that assume variants are independent, we used 752 SNPs that were 

unlinked (pairwise r2 <0.5) (‘unlinked SNPs’). We used vcftools47 to estimate the Weir and 

Cockerham weighted FST, using all SNPs, for all pairwise combinations of populations. 

Admixture (Version 1.22)14 was run with k=1 to k=20. ChromoPainter and 

fineSTRUCTURE15 were run using only the non-clonal 57 strains, using all SNPs, utilizing 

the recombination rate estimate. When using ChromoPainter, we first ran 10 Expectation-

Maximisation (E-M) iterations to infer the “global mutation” and “switch rate” parameters, 

then averaged the inferred values for each across chromosomes, weighting by the number of 

SNPs, and performed a final ChromoPainter run using these weight-averaged values. 

Isolation by distance was calculated using the using geoDist from SoDA packages in R. See 

Supplementary Note for more details.
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Dating strain divergence with mitochondrial data

This analysis used only the 84 strains with recorded sampling dates, which contained 204 

SNPs. The Schizosaccharomyces cryophilus mitochondrial genome (Genbank accession 

ACQJ00000000.2, Supercontig_3.27), was used as the outgroup, aligned to the S. pombe 

strains using Muscle48.

We used PartitionFinder49 to choose the optimal partitioning scheme (K= 5) and nucleotide 

substitution model. Phylogenetic analyses were performed with BEAST 1.7.435 on both the 5 

schemes obtained with PartitionFinder and the whole molecule. In the first case, substitution 

and clock models were unlinked while tree topology was assumed to be the same between 

the 5 schemes. Log-normal relaxed clocks were compared to strict clocks through the 

evaluation of Bayes factors. To do so, marginal likelihood was computed using both path 

(PS) and stepping-stone (SS) sampling method50. To minimize demographic assumptions, 

we adopted a Bayesian skyline plot approach to integrate over different coalescent histories. 

Rate variation among sites was modeled with a discrete gamma distribution with 4 rate 

categories. Posterior distributions of parameters, including divergence times and substitution 

rates, were estimated by Markov chain Monte Carlo (MCMC) sampling in BEAST. For each 

analysis, we ran four independent a posteriori combined chains in which samples were 

drawn every 2500 MCMC steps from a total of 25,000,000 steps, after a discarded burn-in 

of 2,500,000 steps. Convergence to the stationary distribution was assessed by inspection of 

posterior samples.

TMRCA estimate with nuclear DNA

To obtain TMRCA estimates for the nuclear genome, we produced independent runs of 

ACG51 for the full mitochondrial genome and for 160 regions of the nuclear genome, each 

20 kb in size. So that background selection between the mitochondrial and nuclear genome 

fractions would be approximately similar, we selected nuclear regions to have an exon 

density of 50-60%, similar to that of the mitochondria. To ease computational burden and 

aid convergence of the chains, we randomly chose 15 of the samples for inclusion. For each 

region an ACG run of 5×107 steps was conducted using a Metropolis-coupled MCMC 

scheme with 8 chains. The first 25% of steps were discarded as burn-in. We estimated 

posterior distributions of the parameters of the substitution matrix assuming the TN93 

model52, the ancestral recombination graph (ARG), recombination rate, substitution rate, 

and locations of recombination breakpoints from the data. Flat (uniform) priors were 

assumed for all parameters except the recombination rate, for which we employed an 

exponential prior with mean 100.0 in units of recombinations per unit of branch length. 

Convergence of chains was assessed by visual examination of the likelihood of the data 

conditional on the ARG.

De novo assembly

De novo assemblies were performed using SGA version 0.9.3553. Error correction used 41-

mer frequencies to identify and correct sequencing errors. For the contig-assembly step, the 

minimum overlap length was set to 65bp for the strains with 100 nt reads. For strains with 

54 nt reads, a minimum overlap of 45 bp was required instead. Evidence from a minimum of 

five read pairs was required to build contigs into a scaffold.
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Locating novel genes

To identify protein-coding genes that were present in a wild strain(s) but not in the 

reference, we produced gene predictions from each de novo assembly with Augustus54 using 

default parameters. We then compared each predicted protein to the S. pombe reference 

using BLAST+55 blastp, tblastn and blastn. Predictions ≥ 100 amino acids that scored < 

80% identity from all of blast searches were chosen as potential novel genes (800 predicted 

peptides). We used Markov clustering56 to group these peptides into 32 clusters of similar 

peptides and 5 singletons. We then aligned each cluster with Clustal Omega57, produced a 

consensus using Emboss cons, and used this consensus as a query for blastp searches against 

the S. pombe reference protein data set, and the NCBI nr protein data set. We excluded 

potential novel genes whose best nr blast hit was from S. pombe, or from the phage Φ×174 

(likely contamination). We retained the 17 potential novel genes where the ratio of (nr blastp 

bit score)/(S. pombe bit score) was >1. To examine the conservation of the 17 potential 

novel genes in other Schizosaccharomyces yeasts, we used each predicted protein (from 

each S. pombe strain) from the 17 putative most promising novel genes to query the 

predicted proteins of S. cryophilus, S. japonicus and S. octosporus using blastp, accepting 

blast hits with an e-value < 10−20 in one or more species.

Phenotyping

A summary of all phenotype measurements is provided in Supplementary Table 4, and the 

specific approaches are described below.

Amino acid quantification

Phenotypes with prefix “aaconc” in Supplementary Tables 4-5—Triplicate 

cultures (1.6 ml) of each strain were cultured for 8 hours, cells extracted with 80°C boiling 

ethanol, extracts were cleared from insoluble material by centrifugation and the supernatant 

collected for LC-MS/MS analysis. Samples were analysed on a LC (Agilent 1290 Infinity) -

MS/MS (Agilent 6460) system. Amino acids were separated by hydrophilic interaction 

chromatography by gradient elution using an ACQUITY UPLC BEH amide column.

Amino acid concentrations were determined by external calibration. Dilution was corrected 

by probabilistic quotient normalization58. Repeats: The average of the amino acid values 

from the triplicates was used for further analysis. For quality control, all values with a CV 

greater than two times the overall CV (median) were eliminated. For the 19 amino acids, 

median coefficients of variation were between 0.07 and 0.21 (mean of 0.13).

Growth and stresses on solid media

Phenotypes with prefix “smgrowth” in Supplementary Tables 4-5—Strains were 

arrayed by a RoToR robot (Singer Instruments) onto solid YES and EMM2 media at 1536-

spot density, with each strain represented by 4 spots. Edges of plates and various 

interspersed positions were inoculated with the standard strain, as were strains with known 

sensitivity (atf1Δ and sty1Δ) or resistance (pka1Δ).

Plates were incubated at 32°C and high-resolution images of the plates were acquired using 

a UVP Multi-DocIt transillumination system. Two biological replicates were performed. 
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Quantification of colony sizes was then performed using the custom Workspace package 

with the Spotsizer custom workflow (manuscript in prep.). Colonies with microbial 

contaminations and misidentified colonies were discarded. Median strain colony size was 

then calculated for each plate and replicate. Conditions or plates showing poor 

reproducibility were removed from further analysis. Strain colony size data per condition 

were normalized to the growth on YES, and then to the growth of the 972 h− reference strain 

under the given condition. Repeats: Two or more replicate plates were analysed for 25 of the 

43 conditions, and one plate for all others. Plate values were the median colony size from 

the four colonies per strains. The median between-plate Pearson correlation was 0.95.

Cell growth parameters/kinetics in liquid media

Phenotypes with prefix “lmgrowth” in Supplementary Tables 4-5—All 57 non-

clonal strains were cultured in a Biolector micro-fermenter (m2p labs) in 1.5 ml of YES/

EMM2 media (Formedium) using m2p labs flowerplates for 24 hours at 32°C, measuring 

light scattering every 10 minutes. Each strain was repeated in at least in duplicate. For each 

replicate of optical density data points we used the R grofit package59 to determine all 

growth parameters. Repeats: Two biological repeats Biolector cultures were grown per 

strain. Correlations between biological repeats were typically >0.9, and all above 0.884. All 

coefficients of variation (within a strain) were above 0.075 (median for all traits = 0.034).

Manual cell morphology characterization

Phenotypes with prefix “shape1” in Supplementary Tables 4-5—Strains were 

grown on YES plates at 32°C and allowed to form small colonies. Cells around the edge of 

at least 5 colonies were examined using a Zeiss Axioskop microscope using both a X20 LD 

ACROPLAN 0.4 and a X50 CF plan 0.55 objective and the cell phenotype described. Using 

X50 CF plan 0.55 objective with 2.5× Optivar, a representative colony was photographed 

using Sony NEX 5N camera. For liquid media, strains were grown mid log and examined 

using a Zeiss Axioskop 40 with a X63 Plan APOCHROMAT 1.4 oil immersion objective. 

Cell length and width was measured for a minimum of 30 septated cells using ImageJ. 

FACS analysis was carried out as described60. The percentage of cells with 1C, 2C, 2-4C 

and >4C was estimated using FlowJo, http://www.flowjo.com. Repeats: Length and width 

were the median of at least 34 cells (median of 53), with the median coefficients of variation 

of 0.07 in both cases.

Automated cell morphology

Phenotypes with prefix “shape2” in Supplementary Tables 4-5—Cells were 

grown to mid log phase in YES medium and imaged using the OperaLX (PerkinElmer, 

USA) high-throughput microscope at 60×. Images were then automatically pre-processed, 

segmented and analysed to give 54 independent measurements of phenotypic features for all 

strains.

The occurrence of stereotypical S. pombe cell shape phenotypes (wild-type, long, stubby, 

curved, branched, round, skittle and kinked;) was assessed for each strain using SVM 

classifiers. This method is described fully in Graml et al.61 where cells were imaged using 
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405 nm and 488 nm exposure channels with 10 independent repeats. Here, only the 405 nm 

channel and 6 repeats were needed.

The symmetrized Kullback–Leibler divergence between each strain and the reference was 

used as an additional quantitative trait (the ‘shape2.KL.Predicted.*’ in Supplementary Table 

4), along with the length, width, and the ratio of width of both sides of the cell (i.e. ‘cell 

asymmetry’). Repeats: Up to 6 populations of cells per strain. Since measurements were 

generally non-Gaussian, variation within populations was assessed using the median of 

absolute deviation (MAD) divided by the median. MAD values ranged from 0.04 (length) to 

1.42 (ks.predicted.long), average 0.87.

Heritability and Genome-wide association studies

We used LDAK32 to estimate heritability of all traits. We report values based on quantile 

normalized phenotypes (see below) but we also repeated estimates using raw values. 

Heritability estimated with raw values were strongly correlated normally transformed values 

(r = 0.69, P = < 2.2×10−16).

We performed mixed model association analysis using FastLMM34, version 2.07. The 

mixed model adds to the standard linear regression model a polygenic term, designed to 

“soak up” the effects attributable to relatedness and population structure62. We first 

normalized each phenotype by replacing observed values with the corresponding quantile 

from a standard normal distribution. We excluded variants with less than 5 calls for the 

minor allele (MAF < 3.1%), and variants that had >5% of missing calls. We estimated a 

trait-specific P-value threshold for each trait by permuting trait values between individuals 

1000 times, recording the lowest P-value from Fast-LMM analysis and using the 5% 

quantile (50th lowest value) as the threshold. Passing variants therefore have a 5% family-

wise error rate. We also performed conditional analysis; for each of the 89 traits with at least 

one variance significant from the primary mixed model GWA, we repeated the analysis, 

including as a covariate the genotypes from the most significant variant.

Genomic inflation factors (GIFs) were calculated as (GIFs) were calculated as: GIF = 

median (χ2
observed(P))/(median χ2

expected(P)), and adjusted GIFs as: GIF = median 

(χ2
observed(P))/(median χ2

permuted(P)). Where χ2
observed(P) are the chi-squared statistics 

corresponding to the observed P-values and χ2
expected(P) are those expected assuming P-

values are distributed uniformly within [0,1]. Permuted P-values were contained by 

permuting trait values, once for each of the 223 traits used for the GWAS. The median 

permuted GIF from all traits was 0.454.

To validate the results from the association analyses, we split the 57 non-clonal strains into 3 

datasets (3 populations defined by Admixture, on the 752 independent SNPs). Each dataset 

was therefore a homogeneous group of relatively unrelated members. The three datasets had 

12, 26 and 17 members but 2 out of the 57 strains were excluded because they were not 

members of any of the 3 populations. The association analysis was based on a linear 

regression of every trait on each of the 1,567 markers that passed the GWAS threshold from 

the initial analysis using the pooled data and the mixed model. We then meta-analysed only 

those that were replicated (showed nominal statistical evidence of association in at least 2 
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out of the 3 k datasets). The P-values from the linear regression from each dataset for the 

same trait and marker was combined using Fisher’s combined probability test:

The meta P-value was obtained for 6 degrees of freedom (2k).

A summary of all the validated signals using linear regression together with their meta P-

values and the P-values from the pooled data using the mixed model are presented in 

Supplementary Table 6.

Statistics

All statistics were produced with R63.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. An overview of the strain collection
a, Geographic origins of all 161 strains analyzed. Colored circles indicate the original 

sources of strains used in this study, with circle sizes indicating the number of strains 

obtained from each site (as in scale of black circles, top left). Strains for which only an 

approximate source is known (e.g. Africa) lack the black border. b, principal components 

projection of ‘drift distance’ between strains determined using the 752 unlinked SNPs (see 

Methods). The color scheme is as in (a). Leupold’s 972 reference strain is indicated with an 

open black square; strains that are members of the non-redundant group of 57 strains have a 

Jeffares et al. Page 19

Nat Genet. Author manuscript; available in PMC 2015 November 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



black border; strains known to contain large structural inversions2 are indicated with an 

orange cross.
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Figure 2. Recent dispersal of S. pombe
a, Calibration of tree nodes using dated tips. With a collection of sequences sampled over 

various times (blue dots) until the present day (P), we can jointly estimate the phylogenetic 

tree topology (in black), the rate of evolution and the age of any node in the tree, including 

the root, the most recent common ancestor of all strains (R, green dot). b, Root to tip 

distances (mutations/site × 10−3) correlate with collection date (P <10−16), showing the data 

has reasonable predictive power. Distances were estimated using BEAST35 from 

mitochondrial data of the 81 strains where collection dates were available, statistical details 

are provided in Methods. The grey line shows the linear model. c, Historic context of 

dispersal. The posterior probability distribution for time to most recent common ancestor 

(TMRCA) of the 81 collection-dated strains estimated using BEAST. The mean estimate was 
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340 BCE (95% confidence interval: 1875 BCE-1088 CE). Approximate historical periods 

are shown for context: ECP, European Colonial Period (~1500-1940 CE), HAN, Han 

Dynasty in China (206 BCE-220 CE), GRE, Classical Greece (400 BCE-500 BCE), EGY, 

First Dynasty of ancient Egypt (2890 BCE-3100 BCE), NEOLITHIC, Neolithic Era (4,500 

BCE-10,000 BCE).
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Figure 3. Relationships between genetic diversity and genome function
a, Main features of diversity in the genome, with chromosome scale in Mb on x-axis, and 

mitochondrial genome on right edge. Top panel, diversity (Watterson’s θ) calculated using 

SNPs (scale: θ×10−2). Middle panel, recombination rate (scale: LDU/Mb ×10−3 above x-axis 

and log(1+LDU/Mb) below x-axis). The six major recombination hotspots are indicated with 

red dots. Bottom panel, sites of Tf-family LTR insertions (scale: number of strains 

containing each insertion, with insertions present in all strains shown in light blue) in the 

group of 57 strains. b, Diversity described by genome annotation. Distribution of 
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Watterson’s θ values for each 100th of genome, using only annotated sites annotated as: 

exons (EXO), 5’- and 3’-UTRs (5UT, 3UT), introns (INT), long non-coding RNAs (RNA), 

un-annotated regions (NIL), LTRs of Tf2-family transposons (LTR), one-fold (1FD) and 

four-fold (4FD) degenerate sites of exons. Protein-coding categories have red borders. The 

horizontal red lines indicate the median and interquartile range for 4FD sites, annotation 

classes significantly lower than this neutral proxy shaded grey. One-sided paired Mann-

Whitney test P-values vs the FFD site neutral proxy were; exons, UTRs and one-fold 

degenerate sites all P <2×10−16, introns P = 1×10−6, lncRNAs, un-annotated regions and 

LTRs P >0.05. c, Diversity is negatively correlated with exon density. Diversity (θ) and 

proportion of each window annotated to protein-coding exons determined for 10 kb genomic 

windows. The Spearman rank correlation and significance are shown on top. Filled red 

circles: centromeric regions; filled black circles: telomeric regions (terminal 100 kb).
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Figure 4. Phenotypes and genome-wide associations
a, Phenotypic variation of all 57 non-clonal strains, with strains in rows and phenotypes in 

columns. Phenotype values are normalized, according to the scale at right, missing data are 

colored grey. The colored panel above each row indicates the category of phenotype 

measurement. Categories are amino-acid concentrations (AA, red), growth on liquid media 

from this study (LIQ/M1, green), growth on liquid media (LIQ/M2, black)2, manual 

(SHAPE/M, blue) and automated (SHAPE/A, cyan) shape phenotypes, growth on solid 

media (SOL/M, magenta). Phenotypes are hierarchically clustered using phenotype values, 
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and strains are clustered according to their genetic relatedness using tree at right inferred by 

fineSTRUCTURE. Strain names are colored according to their geographic origin, as in Fig. 

1a. All phenotypes were measured for at least two biological replicates, values shown are 

generally medians from biological and technical repeats (see Methods). b, Top panel shows 

variants that were associated with one or more traits using the mixed model GWAS. 

Variants are shown as crosses (SNPs) or triangles (indels), colored by phenotype category 

(as above). The horizontal scale shows the physical distance in Mb. The middle panel 

shows, for variants significant in our primary GWAS, the meta-P-values from linear 

regression within populations. The lower panel shows the total number of passing variants in 

each 10,000 nt window of genome. Six hotspots (≥30 variants/10 kb) are indicated with 

green vertical bars. The orange bar shows the location of a hotspot discovered in an 

independent eQTL study36. P-values thresholds for the mixed model are derived from 

permutations of traits (Methods).
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Table 1

Genetic variation discovered in S. pombe strains. Variant counts that are enriched (above what is expected for 

percentage of genome) are in bold text, with the most enriched annotation shown in bold. The number of bases 

and percentage of nucleotides annotated refers to the reference genome.

Annotation Bases % Genome* SNPs Indels LTRs

Genome 12,591,251 100 172,935 14,508 1,048

Exon 7,204,824 57.2 78,567 882 41

 synonymous/frame conserving - - 46,624 882 -

 non-synonymous/frame shift - - 31,441 453 -

 pseudogenes 38,896 0.3 254 19 0

 stop gained/lost - - 230 - -

 start gained/lost - - 18 - -

5′ or 3′ UTR 3,270,717 26 48,839 6,947 298

No annotation 1,851,692 14.7 35,306 4,464 598

Non-canonical ncRNA 1,722,785 13.7 27,866 2,851 223

Intron 213,282 1.7 3,709 570 4

Transposon LTR 76,038 0.6 806 66 -

Canonical ncRNA 60,235 0.5 291 26 4
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