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ABSTRACT

Geothermal and hypersaline environments are rich in virus-like particles, among which spindle-shaped morphotypes dominate.
Currently, viruses with spindle- or lemon-shaped virions are exclusive to Archaea and belong to two distinct viral families. The
larger of the two families, the Fuselloviridae, comprises tail-less, spindle-shaped viruses, which infect hosts from phylogeneti-
cally distant archaeal lineages. Sulfolobus spindle-shaped virus 1 (SSV1) is the best known member of the family and was one of
the first hyperthermophilic archaeal viruses to be isolated. SSV1 is an attractive model for understanding virus-host interactions
in Archaea; however, the constituents and architecture of SSV1 particles remain only partially characterized. Here, we have con-
ducted an extensive biochemical characterization of highly purified SSV1 virions and identified four virus-encoded structural
proteins, VP1 to VP4, as well as one DNA-binding protein of cellular origin. The virion proteins VP1, VP3, and VP4 undergo
posttranslational modification by glycosylation, seemingly at multiple sites. VP1 is also proteolytically processed. In addition to
the viral DNA-binding protein VP2, we show that viral particles contain the Sulfolobus solfataricus chromatin protein Sso7d.
Finally, we provide evidence indicating that SSV1 virions contain glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, re-
solving a long-standing debate on the presence of lipids within SSV1 virions. A comparison of the contents of lipids isolated
from the virus and its host cell suggests that GDGTs are acquired by the virus in a selective manner from the host cytoplasmic
membrane, likely during progeny egress.

IMPORTANCE

Although spindle-shaped viruses represent one of the most prominent viral groups in Archaea, structural data on their virion
constituents and architecture still are scarce. The comprehensive biochemical characterization of the hyperthermophilic virus
SSV1 presented here brings novel and significant insights into the organization and architecture of spindle-shaped virions. The
obtained data permit the comparison between spindle-shaped viruses residing in widely different ecological niches, improving
our understanding of the adaptation of viruses with unusual morphotypes to extreme environmental conditions.

Viruses infecting extremophilic archaea have evolved to with-
stand very high temperatures, low or high pH, or near-satu-

rating salt concentrations (1–5). Remarkably, most of these vi-
ruses do not seem to be evolutionarily related to viruses of bacteria
or eukaryotes and display a considerable diversity of unique virion
morphotypes (3, 4). Indeed, 11 novel viral families have been es-
tablished by the International Committee for the Taxonomy of
Viruses (ICTV) for the classification of archaeal viruses, empha-
sizing the uniqueness of rod-shaped, spindle-shaped, droplet-
shaped, or even bottle-shaped particles that have never been ob-
served among viruses infecting bacteria or eukaryotes (3).
Functional studies proved to be highly challenging due to the lack
of similarity between the protein sequences and structures of ar-
chaeal viruses and those from other viruses and cellular organisms
(6–10). Among the morphotypes that are exclusively associated
with archaea, spindle-shaped viruses are particularly widespread
(11) and have been isolated from highly different environments,
including deep-sea hydrothermal vents (12–14), hypersaline en-
vironments (15–18), anoxic freshwaters (19), cold Antarctic lakes
(20), terrestrial hot springs (21–23), and acidic mines (24).

Recently, we refined the evolutionary relationships among
spindle-shaped viruses by assessing the morphological and
genomic diversity of all available isolates infecting hosts belonging

to phylogenetically distant archaeal lineages, including Thermo-
coccales, Methanococcales, Desulfurococcales, and Sulfolobales (11).
The analysis has shown that spindle-shaped viruses can be broadly
segregated into two evolutionarily distinct lineages. The first
group includes members of the Bicaudaviridae family and several
currently unclassified viruses. Viruses of this group have large
spindle-shaped virions with one or two long tails and contain
circular double-stranded DNA (dsDNA) genomes of �70 kb (11,
25). In the case of Acidianus two-tailed virus (ATV), the type spe-
cies of the Bicaudaviridae family, the two tails develop following
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release into the environment and completely independently from
the host cell (26, 27). Unlike ATV, the unclassified Sulfolobus
tengchongensis spindle-shaped viruses 1 and 2 have never been
observed to undergo this kind of transformation and contain only
one tail (28, 29). Nevertheless, both viruses share a number of
genes with ATV, including those encoding unique four-helix bun-
dle major capsid proteins (30, 31).

The second group includes smaller, tail-less spindle-shaped vi-
ruses, which have been tentatively classified into seven genera
within the family Fuselloviridae (11). Sulfolobus spindle-shaped
virus 1 (SSV1) is one of the most extensively studied members of
this group and is also among the first archaeal viruses to be iso-
lated (32). SSV1 is a temperate virus, and its circular, positively
supercoiled dsDNA genome of 15.4 kb can site specifically inte-
grate into the host genome with the aid of a virus-encoded inte-
grase (33–37). SSV1 has been used as a model to establish the
genetic system in hyperthermophilic archaea (38, 39). As a result,
the research on SSV1 has focused mainly on the mechanism of
viral genome integration into the host chromosome (34, 36, 40)
and transcriptional regulation (41, 42). In contrast, only a few
studies focused on the organization of SSV1 virions; it has been
shown that the SSV1 virion consists of three capsid protein spe-
cies: two paralogous proteins, VP1 and VP3, and the DNA-bind-
ing protein VP2 (32, 43). In addition, the virions were reported to
contain a host-derived DNA-binding protein; however, its iden-
tity has not been determined (43). Small amounts of viral proteins
C792 and D244 also have been reported based on mass spectrom-
etry analysis of viral preparations (7, 44), but the presence of the
two proteins in highly purified virions remains to be confirmed.
Finally, although SSV1 and fuselloviruses in general are consid-
ered to exit the host cell by budding through the cytoplasmic
membrane, the actual presence of lipids in SSV1 virions is a matter
of debate and has never been rigorously demonstrated (1, 32, 45).
Lipids initially detected in SSV1 preparations could be derived
from contaminant membrane vesicles which could copurify with
the virions (32). Recent attempts to reconstruct the SSV1 virion
structure based on cryoelectron microscopy were encumbered by
the heterogeneity of the viral particles and provided rather limited
insight into the organization of capsid proteins in the virion,
whereas the presence of a lipid-containing envelope could not be
determined (46).

Although spindle-shaped particles are dominant in hypersa-
line environments (16, 17), only one such hyperhalophilic ar-
chaeal virus, His1, has been isolated to date (15). Recent biochem-
ical and structural studies have shown that His1 virions are
composed of one major (VP21) and a few minor capsid protein
species (47, 48). Interestingly, a subset of VP21 apparently is mod-
ified by lipid moieties, although the lipid bilayer could not be
detected by either biochemical or structural approaches (47, 48).
Furthermore, treatment of His1 virions with various compounds
induced the transformation of spindle-shaped particles into tube-
like structures which were devoid of the genomic DNA (47, 49). It
has been suggested that such reorganization is biologically rele-
vant and reflects structural changes accompanying virus entry
into the host (47). Although SSV1 and His1 infect widely different
hosts, thermoacidophilic crenarchaea and hyperhalophilic eur-
yarchaea, respectively, the two viruses display a very similar par-
ticle shape, and their major capsid proteins share �47% sequence
identity, suggesting that they have evolved from a common ances-
tor (11, 48).

To investigate the evolutionary relationships among spindle-
shaped viruses residing in highly different environments, we set
out to perform a rigorous biochemical characterization of SSV1
particles. We show that SSV1 virions consist of five structural
protein species, among which one, a DNA-binding protein, is en-
coded by the host. The virus-encoded proteins undergo posttrans-
lational modifications, including proteolytic cleavage and glyco-
sylation. Finally, we put to rest the debate on the presence versus
absence of lipids in SSV1 virions by showing that highly purified
SSV1 virions contain tetraether lipids selectively recruited from
the host cytoplasmic membrane.

MATERIALS AND METHODS
Viruses, strains, and growth conditions. Sulfolobus shibatae strain B12
(50) and Sulfolobus solfataricus strain P2 (51) were used as hosts for SSV1
(32). All cultures were grown aerobically (120 rpm; Innova 44 Eppendorf)
at 78°C. The Sulfolobus growth medium was prepared as described previ-
ously (52).

His1 (15) and its host, Haloarcula hispanica strain ATCC 33960, were
grown in modified growth medium (MGM) at 37°C as previously de-
scribed (reference 48 and references therein).

Virus production and purification. To induce SSV1, cultures of lyso-
genized S. shibatae B12 at an optical density at 600 nm (OD600) of 0.5 were
treated with UV as previously described (32). Twenty-four hours after
irradiation, cells and debris were removed by two steps of centrifugation
(4,000 rpm, 30 min, 4°C and then 8,000 rpm, 30 min, 4°C; Jouan BR4i
rotor AB 50.10A). The cell-free supernatant was mixed with S. solfataricus
P2 cells and added to the soft layer of plates prepared as described in
Schleper et al. (40), except that Gelzan CM Gelrite (Sigma-Aldrich) was
replaced with Phytagel (Sigma-Aldrich). After 72 h at 75°C, the top layers
of confluent plates were collected, and 2 ml of medium was added per
plate. The suspension was incubated with aeration (120 rpm; Innova 44
Eppendorf) at 78°C for 1 h. Cells and debris were removed by two rounds
of centrifugation (8,000 rpm, 30 min, 4°C [Jouan BR4i rotor AB 50.10A],
followed by 12,000 rpm, 30 min, 4°C [Avanti J-26XP rotor JLA 16.250]).
Virus stocks were stored at 4°C.

Virus particles were precipitated from the stocks by the addition of
ammonium sulfate (Sigma-Aldrich) to 50% (wt/vol) saturation at 4°C as
described previously (32). The precipitate (12,000 rpm, 30 min, 4°C;
Avanti J-26XP rotor JLA 16.250) was resuspended in SSV1-buffer [20 mM
KH2PO4, 1 M NaCl, 2.14 mM MgCl2, 0.43 mM Ca(NO3)2, �0.001% trace
elements of Sulfolobales medium, pH 6] (52). In order to remove traces of
ammonium sulfate, the virus preparation was dialyzed (Spectra/Por 1;
Spectrum Labs) twice against the SSV1 buffer at 4°C.

The virus concentrate was purified in a linear 5 to 20% sucrose gradi-
ent (in SSV1 buffer) by rate-zonal centrifugation (24,000 rpm, 20 min,
15°C; Sorvall rotor AH629), and the light-scattering zone was collected.
The virus was further concentrated and purified by equilibrium centrifu-
gation (21,000 rpm, 20 h, 15°C; Sorvall rotor AH629) in a CsCl gradient in
SSV1 buffer (mean density, 1.30 g/ml). The light-scattering band was
collected and diluted 3-fold in SSV1 buffer, followed by concentration by
differential centrifugation (21,000 rpm, 20 h, 15°C; Sorvall rotor AH629).
The pellet was resuspended in a minimal volume of the SSV1 buffer. The
resultant preparation is referred to as the 2� purified sample. The quality
of the purification procedure was verified after each step by protein gel
analysis (see below), measurement of absorbance at 260 nm, recovery of
infectivity (plaque assay), and transmission electron microscopy (TEM;
described below).

Production and purification of His1 virions were performed as previ-
ously described (48).

Control of SSV1 aggregation. SSV1 preparations after ammonium
sulfate precipitation were dialyzed against the SSV1 buffer containing 0.1,
0.25, 0.5, 1, or 2 M NaCl. SSV1 virions purified in the CsCl density gradi-
ent were incubated for 30 min at room temperature in the presence of 1%
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(vol/vol) ethanol in SSV1 buffer containing 1 M NaCl. The samples were
negatively stained and processed for TEM. Virions were ascribed to three
different categories: (i) single particles, (ii) rosette-like virion aggregates
containing between 2 and 5 particles, and (iii) aggregates with more than
5 particles. The proportion of virions in each of the three categories under
the different conditions was determined by TEM. At least 1,000 viral par-
ticles from three independent biological replicates were analyzed per con-
dition, and standard deviations were calculated. The infectivity of each
sample also was verified by plaque assay as previously described (40).

Protein analyses. Proteins were analyzed using modified tricine-so-
dium dodecyl sulfate polyacrylamide gel electrophoresis (tricine-SDS-
PAGE) with 4% and 14% (wt/vol) acrylamide concentrations in the stack-
ing and separation gels, respectively (53). After electrophoresis, gels were
stained with Coomassie blue (detection limit of �7 ng) or SYPRO Ruby
(detection limit of 0.25 to 1 ng) (Life Technologies). Glycosylation of
SSV1 proteins was assessed using a Pro-Q Emerald 300 glycoprotein gel
stain kit according to the manufacturer’s instructions (Life Technologies).

N-terminal sequencing of virion proteins was performed at the Pro-
tein Chemistry Core Facility of the Institute of Biotechnology, University
of Helsinki, and mass spectrometry (MS) of peptides released by in-gel
trypsin digestion was done at Meilahti Clinical and Basic Proteomics Core
Facility, University of Helsinki, as described previously (54).

Transmembrane domains and secondary structure elements in viral
proteins were predicted using TMHMM (55) and Jpred3 (56), respec-
tively.

The relative quantification of the amount of proteins in each SDS-
PAGE gel band was done using ImageJ software (National Institutes of
Health). The determined value then was divided by the number of virus
particles estimated from the viral DNA absorbance at 260 nm as described
below.

Lipid analyses. S. solfataricus cell pellet and 2� purified SSV1 prepa-
ration were freeze-dried, and the biomass was directly acid hydrolyzed by
refluxing with 5% HCl in methanol for 3 h by following Pitcher et al. (57)
to release glycerol dibiphytanyl glycerol tetraether (GDGTs) lipids. A
known amount (10 ng) of a C46 GDGT standard (58) was added to the
acid-hydrolyzed fraction, and GDGT lipids were analyzed by high-perfor-
mance liquid chromatography/atmospheric pressure chemical ioniza-
tion-mass spectrometry according to Schouten et al. (59). The mass spec-
trometer was operated in single ion mode (SIM) to monitor GDGTs with
0 to 8 cyclopentane moieties and the C46 GDGT standard. Relative abun-
dances of GDGTs were determined by integrating peak areas of the SIM
signal. The signal of the C46 GDGT standard was corrected for the differ-
ence in ionization efficiency using a 1:1 mixture of the standard and pu-
rified GDGT-0.

To establish the head groups of the GDGTs, S. solfataricus cells were
extracted by a modified Bligh-Dyer method and analyzed for intact polar
lipids as described by Pitcher et al. (57).

Quantification of viral particles. The number of infectious particles
was determined by plaque assay as described above. Alternatively, SSV1
particles were enumerated by determining the number of genome copies
in the preparation. To this end, viral DNA was extracted from the purified
virion preparation using the standard phenol-chloroform method, and
the number of the genome copies was estimated by measuring the absor-
bance at 260 nm and considering that the molecular size of the SSV1
genome (15,465 bp; NC_001338) is 9,554,261.87 g/mol.

Electron microscopy. For conventional negative-stain TEM, samples
were prepared as described previously (60). Briefly, 10 �l of sample was
adsorbed on grids for 1 min, air dried, and stained with 3% uranyl acetate,
pH 4.5 (EuroMedex), for 1 min. Samples were imaged using an FEI Tecnai
Biotwin 120 transmission electron microscope operating at 100 kV at the
Ultrapole of the Institut Pasteur, Paris, or JEOL JEM-1400 transmission
electron microscope operating at 80 kV at the Electron Microscopy Unit
of the Institute of Biotechnology, University of Helsinki.

RESULTS
Aggregation of SSV1 particles is modulated by ionic and hydro-
phobic interactions. Virions of SSV1 and other fuselloviruses
tend to interact with each other by the terminal fibers located at
one of the two pointed ends of the viral particles, forming polyva-
lent aggregates (22, 32, 61). Based on the aggregation state, SSV1
virions can be grouped into one of three categories: (i) individual
virions, (ii) rosette-like aggregates containing between 2 and 5
particles, and (iii) aggregates with more than 5 viral particles (Fig.
1A). Since large virion aggregates aggravate virion purification
and prevent accurate virion enumeration, we attempted to reduce
virion aggregation by varying the ionic strength conditions. In-
creasing the salt concentration in the SSV1 buffer led to the disso-
ciation of aggregates containing more than 5 particles in a concen-
tration-dependent manner, with a concomitant increase in the
proportion of single virions (Fig. 1B), implicating ionic interac-
tions in virion aggregation. However, the portion of rosette-like
viral assemblages composed of up to 5 particles remained constant
(19 � 1.5% on average), even at the highest NaCl concentration
tested (Fig. 1B). It is noteworthy that SSV1 remained stable and
retained infectivity for up to 3 months in a wide range of salt
concentrations (0.1 to 2 M NaCl), highlighting the robustness of
the viral particles. Considering the highly pronounced hydropho-
bicity of the protein implicated in the formation of terminal fibers
(see below), we tested whether the smaller aggregates could be
dissociated by mild treatment with organic solvents. Indeed, in the
presence of 1% (vol/vol) ethanol, the proportion of single parti-
cles increased to �88%, whereas the remaining virion aggregates
mainly consisted of 2 particles and no aggregates with 5 particles
were observed under TEM. Such treatment reduced the infectivity
by �50%, while ethanol concentrations above 10% (vol/vol) re-
sulted in complete dissociation of the SSV1 virions (data not
shown).

Production of highly purified virions. In order to ensure high
purity of the viral preparation for unambiguous determination of
the SSV1 virion constituents, we developed and optimized a mul-
tistep purification protocol (see Materials and Methods). S. shiba-
tae lysogens sporadically release SSV1 virions. However, even fol-
lowing UV irradiation, which increased SSV1 production by one
order of magnitude (from ca. 105 to 106 PFU/ml), the virus titer
was insufficient for robust biochemical virion characterization.
To overcome this hurdle, virions were precipitated with ammo-
nium sulfate from the virus stocks obtained by collecting the soft
layer of confluent Phytagel plates. The virus preparation subse-
quently was purified using rate-zonal centrifugation in a linear
sucrose gradient to produce 1� purified SSV1. However, the re-
sultant virus preparation contained a substantial amount of im-
purities, as judged by SDS-PAGE analysis (data not shown), ne-
cessitating an additional step of purification. The latter included
equilibrium centrifugation in a CsCl gradient and concentration
by differential centrifugation, resulting in the production of the
2� purified SSV1 preparation (Fig. 1C). The purification was per-
formed under conditions minimizing the aggregation of virions (1
M NaCl). Virion recovery was monitored throughout the purifi-
cation procedure, and the final 2� preparation corresponded to
�31% recovery of infectious particles with a specific infectivity of
�2 � 108 PFU/ml/unit of absorbance at 260 nm (Fig. 1C). The
buoyant density of the purified SSV1 virions in CsCl was esti-
mated to be 1.29 g/ml, which is somewhat higher than that previ-
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ously reported for SSV1 (1.24 g/ml [32]) but similar to the buoy-
ant density of membrane-containing pleolipoviruses (1.3 g/ml
[62]).

Structural proteins of SSV1. The availability of a highly puri-
fied preparation allowed us to assess the biochemical composition
of the SSV1 viral particles. Hyperhalophilic spindle-shaped virus
His1 was analyzed in parallel as a control and for comparison. 2�
Purified SSV1 and His1 virions were examined by tricine-SDS-
PAGE. Following Coomassie blue staining, the migration profiles
of SSV1 and His1 preparations appeared similar and displayed
several major protein bands of low molecular mass (in the range of
7 to 17 kDa) and a minor high-molecular, mass protein band (Fig.
2A); the migration of His1 proteins was similar to that previously
reported (48). Unexpectedly, as has also been reported for His1
virus (48), the protein concentration of the purified SSV1 samples
could not be determined using the Bradford method (63); it ap-
pears that the virions of SSV1 and His1 do not display sufficient
reactivity with the Coomassie blue reagent, although the corre-
sponding proteins in the tricine-SDS-PAGE gels could be de-
tected.

The identity of SSV1 proteins was determined by a combina-
tion of N-terminal sequencing and MS techniques. Consistent
with previous analysis (43), in the lower-molecular-mass bands
we identified the proteins VP1, VP2, and VP3. Proteins VP1 and
VP3 are paralogous, highly hydrophobic proteins (each contains
two predicted �-helical transmembrane domains [TMDs]) (Fig.
3C). N-terminal sequencing showed that, unlike VP3, VP1 is pro-

teolytically processed, resulting in the removal of 65 N-terminal
amino acids (Fig. 3B and C), which also has been shown previ-
ously (43). The high-molecular-mass band was identified as a
product of open reading frame (ORF) C792 (Fig. 3A). Adhering to
the nomenclature used for SSV1 structural proteins (43), we de-
note the product of ORF C792 as VP4. The presence of VP4 in
SSV1 virions was reported previously (44). However, since the
SDS-PAGE analysis of the virion preparation was not presented,
the possibility of contamination could not be ruled out. Like VP1
and VP3, VP4 is highly hydrophobic; sequence analysis showed
that VP4 contains three confidently predicted (probability of
higher than 0.9) �-helical TMDs, but high-hydrophobicity re-
gions also are distributed throughout the protein length (Fig. 3C).
Notably, the region flanked by TMD1 and TMD2 is predicted to
be 	-strand rich and is likely to adopt a 	-propeller or 	-barrel
topology.

SSV1 virions were found to contain a considerable amount of
one host-encoded protein, Sso7d (Fig. 3A and B). Sso7d is a small,
basic protein, which belongs to the extensively studied Sul7d fam-
ily of 7-kDa DNA-binding proteins and represents one of the ma-
jor chromatin proteins of Sulfolobus solfataricus (64, 65). Notably,
SDS-PAGE analysis of fractions collected from the CsCl gradient
showed that Sso7 is exclusively detected in the fraction containing
SSV1 virions. In addition, a previous study (43) has reported the
presence of an unidentified host-encoded DNA-binding protein
in SSV1 virions. Consequently, we assign Sso7d as a virion com-
ponent. Staining of the protein gel with SYPRO Ruby, which is
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FIG 1 Purification of SSV1. (A) Transmission electron micrograph of negatively stained SSV1 sample. Single particles as well as different aggregates are shown.
(B) Depending on the concentration of NaCl in the SSV1 buffer, different stages of aggregation were observed: single particles (white columns), rosette-like
structures containing between 2 and 5 particles (gray columns), and aggregates with more than 5 particles (black columns). The number of viruses in each
category was determined from negatively stained electron micrographs obtained from three independent experiments. At least 1,000 particles were counted per
condition, and error bars represent standard deviations. (C) Analysis of samples taken after each step of the 2� purification procedure. Absorbance at 260 nm,
virus titer, recovery of infectivity, and specific infectivity are indicated.
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eight times more sensitive than Coomassie brilliant blue stain
(66), did not reveal any additional protein bands (Fig. 2B),
strongly suggesting that the incorporation of Sso7d into SSV1 par-
ticles is specific and biologically relevant rather than accidental.

VP1, VP3, and VP4 are glycosylated. Molecular masses of
SSV1 structural proteins deduced from the gel (Fig. 3A) did not
coincide with those calculated from the sequence (Fig. 3B). VP1,
VP2, and VP3 migrated in gels as �11-, �13-, and �16-kDa pro-
teins, which is considerably slower than expected based on their
calculated molecular masses (i.e., 7.7, 8.6, and 9.8 kDa, respec-
tively) (Fig. 3A and B). Similarly, VP4, with a predicted mass of 85
kDa, migrated as a 100-kDa protein (Fig. 3A). The discrepancy in
migration patterns could not be explained by the potential forma-
tion of higher-order oligomers. Thus, the possibility of posttrans-
lational modifications was considered. Since virion proteins of
several archaeal viruses are known to undergo glycosylation (67–
69), we tested whether this modification can be detected in the
case of SSV1 virions by staining the proteins with a glycoprotein-
specific stain. Indeed, VP1, VP3, and VP4 were found to be glyco-
sylated (Fig. 2C). Unlike many crenarchaeal viruses (6, 8, 70, 71),
SSV1 does not encode an identifiable glycosyltransferase; thus, the
glycosylation of viral proteins is likely to be performed by cellular
enzymes. Protein glycosylation has been studied in several mem-
bers of Sulfolobales (72), including S. solfataricus (73), which was
used in this study for SSV1 production. It has been found that
glycosylation in Sulfolobus occurs on the asparagine residue
within the consensus motif N-X-S/T (where X is any amino acid
except proline). All three SSV1 proteins which we found to be
glycosylated (Fig. 2C) contain multiple N-X-S/T motifs: VP1 and
VP3 each contain 2 such motifs located in the linker region be-
tween the TMDs, whereas VP4 possesses 20 motifs which could

undergo glycosylation (Fig. 3C). The extent of glycosylation as
well as detailed characterization of the glycans attached to the
SSV1 proteins will be the focus of future studies.

SSV1 acquires lipids from the host cytoplasmic membrane.
Membranes of organisms from the order Sulfolobales predomi-
nantly consist of sn-2,3-dibiphytanyl diglycerol tetraether (also
known as glycerol dibiphytanyl glycerol tetraether [GDGT]) lip-
ids, in which the two glycerol moieties are connected by two C40
isoprenoid chains, enabling the formation of monolayer mem-
branes (74, 75). GDGTs differ by the number of cyclopentane
moieties within the isoprenoid chains, which can vary from 0 to 8
(i.e., GDGT-0 through GDGT-8).

Preliminary thin-layer chromatography analysis of the mate-
rial extracted from SSV1 virions and host S. solfataricus cells by
chloroform-methanol treatment strongly suggested the presence
of phospholipids, although in the case of SSV1 the amount de-
tected using iodine vapor was rather low (data not shown). To
determine the exact nature of SSV1 lipids and to compare it to the
lipid content of the host, we analyzed GDGTs by liquid chroma-
tography coupled with mass spectrometry on 2� purified SSV1
virions as well as S. solfataricus cells (see Materials and Methods).
The analysis revealed that S. solfataricus membrane contains seven
GDGT species (Fig. 4A) which are present in different amounts.
Under conditions tested, GDGT-4 constituted more than half of
the cellular membrane lipids (Fig. 4B). Furthermore, the lipid
head groups were found to contain 2 to 3 sugar moieties. This is
consistent with the previous analysis which showed that glycolip-
ids of Sulfolobus contain di- and trisaccharides composed of glu-
cose, galactose, or mannose moieties (76, 77). Analysis of the viral
particles showed that all 7 GDGT species identified in S. solfatari-
cus membrane also are present in small amounts in SSV1 virions.

FIG 2 Structural proteins of SSV1. (A) Protein profiles of 2� purified SSV1 virions compared to 2� purified His1 virions in a tricine-SDS-polyacrylamide gel
stained with Coomassie blue. Molecular mass markers (M) are shown. The amounts of SSV1 and His1 samples loaded are comparable based on absorbance
measurements at 260 nm. (B and C) 2� purified SSV1 and His1 virions analyzed in a tricine-SDS-PAGE gel stained with SYPRO Ruby protein stain (detecting
all proteins) (B) and with Pro-Q Emerald 300 glycoprotein detecting reagent (detecting glycosylated proteins) (C). Candy-Cane glycoprotein molecular mass
standard (labeled CC) contains a mixture of nonglycosylated and glycosylated proteins. Half of the amount loaded for panel A was added to the gel shown in
panels B and C.
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Interestingly, however, the ratios of different lipids in the viral
particles were different from those for the host cytoplasmic mem-
brane. SSV1 virions were strongly enriched in GDGT-0, which
represented �68% of all viral lipids (Fig. 4B). The proportions of
other lipids in the virions roughly followed those in the cellular
membrane, i.e., the second most abundant lipid was GDGT-4,
followed by GDGT-3 and GDGT-5. Notably, lipid analysis carried
out on different SSV1 preparations showed that whereas the pro-
portion of GDGT-0 remained constant in different experiments,
the ratios of GDGT-3, GDGT-4, and GDGT-5 were more variable.
Unfortunately, the low abundance of lipids in viral particles pre-
cluded the detailed analysis of their head groups.

Quantification of the SSV1 virion components. To gain a bet-
ter understanding of SSV1 virion organization, we performed a
relative quantitation of lipids and proteins. Due to various rea-

sons, not all virions released from the cell are infectious (i.e.,
plaque forming); the ratio between noninfectious and infectious
particles can vary greatly between different viruses (78). Thus, we
have established the correspondence between the number of in-
fectious SSV1 particles determined by the plaque assay and the
number of genome copies estimated from the purified viral DNA
absorbance at 260 nm. The particle-to-PFU ratio was estimated to
be around 5, which is consistent with the values (5 to 10 particles/
PFU) determined previously by quantitative TEM (40). Since
there are more particles than PFU (i.e., the ratio is more than 1),
for subsequent calculations, we used the number of particles esti-
mated from the number of genome copies rather than PFU.
Quantitation of virion components (see Materials and Methods)
showed that each virion contains �6 fg of lipids and �14 fg of
proteins, i.e., the two components are present in a 1:2.4 ratio.
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Given that the estimated total number of SSV1 particles might be
slightly skewed due to potential artifacts (e.g., the presence of
empty virions, etc.), these values should be considered with cau-
tion.

DISCUSSION

Large-scale production and high-level purification procedures are
a prerequisite for comprehensive biochemical and structural char-
acterization of any virus. Here, we have optimized a purification
protocol for the hyperthermophilic spindle-shaped virus SSV1,
which allowed its biochemical characterization. Environmental
distribution of spindle-shaped viruses is particularly broad (11).
Interestingly, although the natural habitats of SSV1 are character-
ized by very low pH and high temperatures, we found that SSV1
virions also are stable in high-salinity conditions; prolonged incu-
bation in the presence of 2 M NaCl had no effect on virion stability
or infectivity. This indicates that the design of spindle-shaped vi-

rions is inherently robust, which might explain the success of this
virus group in colonizing very diverse ecological niches where
their archaeal hosts are found (11, 48).

Our analyses have shown that the SSV1 virion consists of four
virus-encoded (VP1-4) and one host-derived (Sso7d) protein
(Fig. 3). Paralogous proteins VP1 and VP3 have homologs in all
spindle-shaped viruses characterized thus far (11), including hy-
perhalophilic virus His1 (48), and represent a signature protein in
this group of viruses. Protein VP4 has been suggested previously
to be involved in the formation of terminal fibers based on corre-
lation between the fiber morphology and the presence of vp4-like
genes in different members of the Fuselloviridae (22). Here, we
have demonstrated that VP4 is indeed a part of the virion, con-
firming a previous report by Menon et al. (44). Electron micros-
copy analysis indicates that terminal fibers are implicated in virion
aggregation (Fig. 1A). Two groups of virion aggregates can be
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defined: (i) aggregates composed of up to five virions and (ii)
those containing more than five viral particles. The latter assem-
blages seem to be dependent on ionic interactions, whereas the
former ones are not (Fig. 1B). Instead, the smaller rosette-like
aggregates apparently are held together by hydrophobic interac-
tions, presumably involving VP4, and can be dispersed by mild
treatment with organic solvents. The high hydrophobicity of VP4
(Fig. 3C) is in line with this conclusion.

VP2 has been shown previously to be tightly bound to dsDNA,
suggesting a role in organizing the SSV1 genome (43). Unexpect-
edly, VP2 is conserved in only four (SSV1, SSV6, ASV1, and
SMF1) out of 10 fuselloviruses for which complete genome se-
quences are available. Moreover, in-frame deletion of the VP2-
encoding gene had no observable effect on virion assembly or
infectivity, indicating that the gene is dispensable under labora-
tory growth conditions (79). Interestingly, unlike other SSV1 VPs,
VP2 is not specific to fuselloviruses but also is encoded by unre-
lated proviruses of the euryarchaeon Archaeoglobus veneficus
SNP6 (80), Sulfolobus turreted icosahedral virus 2 (81), and bac-
terial viruses of the recently established family Sphaerolipoviridae
(82). Such patchy phyletic distribution of vp2-like genes in fusello-
viruses, its conservation in other archaeal and bacterial viruses,
and the dispensability of VP2 for SSV1 infectivity indicate that the
vp2 gene has been acquired relatively late in the history of fusello-
viruses from a different group of viruses.

Identification of the host-encoded DNA-binding protein
Sso7d in SSV1 virions suggests that Sso7d plays an important role
in the organization and condensation of the viral genome prior to
packaging. Sso7d, a member of the Sul7d family, is one of the
major chromatin proteins responsible for chromosome organiza-
tion in Sulfolobus (65). This small basic protein is known to bind
dsDNA nonspecifically and induces negative supercoiling (83) as
well as compaction of relaxed or positively supercoiled DNA in
vitro (64). SSV1 DNA is highly positively supercoiled in SSV1
virions (33). This positive supercoiling might result from the ac-
tivity of Sulfolobus reverse gyrase, an enzyme that introduces pos-
itive supercoiling in vitro in topologically closed DNA (33). Alter-
natively, positive supercoiling might be induced by stoichiometric
binding of a DNA-binding protein, followed by the relaxation of
compensatory negative superturns by cellular DNA topoisomer-
ases. In the latter hypothesis, this DNA binding protein cannot be
SSo7d, since this protein induces negative supercoiling in vitro
(83). Thus, SSV1 DNA might be positively supercoiled first by
reverse gyrase and later is condensed during the packaging process
by interaction between Sso7d and positively supercoiled viral
DNA. However, the effects of VP2 on DNA supercoiling as well as
condensation of SSV1 DNA by VP2 and Sso7d remain to be in-
vestigated.

Notably, previous analysis also has suggested that viral parti-
cles contain protein D244 (44), which, however, is not essential for
virion assembly and infectivity (79). The X-ray structure of the
D244 orthologue from the Sulfolobus spindle-shaped virus Ragged
Hills revealed that the protein is a member of the PD-(D/E)XK
nuclease superfamily (84), arguing against the possibility that
D244 plays a structural role in virion formation. We could not
detect D244 in our virus preparation, although its presence in
amounts that were below our detection limit cannot be ruled out.

Protein glycosylation is one of the most common posttransla-
tional modifications in archaeal viruses, particularly in viruses in-
fecting hyperthermophilic hosts (67–69), and it could play an im-

portant role in virion stability and/or interaction with the host
cell. Accordingly, many hyperthermophilic archaeal viruses en-
code their own glycosyltransferases (6, 8, 70, 71), with some vi-
ruses containing as many as five different glycosyltransferase
genes per genome (8). However, this is not the case for SSV1 or
any other known fusellovirus. Nevertheless, three of the SSV1 vi-
rion proteins, VP1, VP3, and VP4, are glycosylated (Fig. 2C). To
the best of our knowledge, the glycosylation of virion proteins has
never been observed for any spindle-shaped virus. Somewhat par-
adoxically, hyperhalophilic spindle-shaped virus His1 encodes a
putative glycosyltransferase but does not seem to glycosylate its
virion proteins, at least not under laboratory conditions (48) (Fig.
2C). In the absence of dedicated virus-encoded glycosyltrans-
ferases, the glycosylation of SSV1 VPs is likely to be performed by
the host enzymes. Consistent with this, multiple consensus glyco-
sylation motifs (N-X-S/T) (72, 73) are present in all three SSV1
glycoproteins; VP4 contains a particularly high number of such
motifs (Fig. 3C). A recent study of protein glycosylation in S. sol-
fataricus has shown that some cell surface proteins can be heavily
glycosylated (73). For example, protein SSO1273 contains 20 N-
X-S/T motifs, and all of them were found to be modified with a
glycan, which has a mass of 1,298.4 Da (73). The slower migration
of VP4 in tricine-SDS-PAGE gel (as 100 kDa instead of the calcu-
lated 85 kDa) would be consistent with glycosylation on most of
the theoretical glycosylation sites. The detailed characterization of
the glycan structures and the extent of the SSV1 VP glycosylation,
as well as the biological significance of this modification, will be an
exciting area of future research.

The presence of lipids in SSV1 virions has been a matter of
debate for many years (1, 32, 45). Indeed, even recent low-resolu-
tion (�32-Å) reconstructions of SSV1 virion structure provided
no insight concerning this issue (46). Here, we resolve this long-
lasting dispute by providing evidence for the presence of lipids in
highly purified SSV1 virions. Furthermore, for the first time, we
determined the molecular composition of the lipid content and
show that SSV1 virions contain seven different species of GDGT
lipids (Fig. 4). This result is consistent with the early electron
microscopic observations of SSV1 budding through the cell mem-
brane (32). Notably, the ratio of different lipid species in the viri-
ons was different from that found in the cytoplasmic membrane of
the host cells, suggesting a selective incorporation of lipids into the
virion. Similarly, lipid composition of Sulfolobus turreted icosahe-
dral virus, which has an internal membrane, and lipid content of
membrane vesicles produced by S. solfataricus were found to differ
considerably from that of the cellular membrane (68, 85). Inter-
estingly, the hyperhalophilic spindle-shaped virus His1 does not
appear to contain free lipids; instead, its major capsid protein,
homologous to VP1/VP3 of SSV1, was concluded to be covalently
modified by a lipid moiety (48), suggesting that distinct spindle-
shaped viruses use different mechanisms for lipid acquisition
from the host.

The biochemical characterization of SSV1 virions presented
here provides a foundation for future investigations of different
aspects of biology and structure of hyperthermophilic spindle-
shaped viruses. Of special interest is the role of lipids during the
entry and exit stages of fusellovirus infection; the comparison of
these strategies with those employed by eukaryotic membrane-
containing viruses might provide particularly important insights
into the evolution of mechanisms mediating membrane fusion
and virus budding.
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