JVI

Journals.ASM.org

Preferential Budding of Vesicular Stomatitis Virus from the
Basolateral Surface of Polarized Epithelial Cells Is Not Solely Directed

by Matrix Protein or Glycoprotein
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Vesicular stomatitis virus has been shown to bud basolaterally, and the matrix protein, but not glycoprotein, was proposed to
mediate this asymmetry. Using polarized T84 monolayers, we demonstrate that no single viral protein is sufficient for polarized
budding. Particles are released from the apical and basolateral surfaces and are indistinguishable, indicating that there is no api-
cal assembly defect. We propose that aspects of host cell polarity create a more efficient budding process at the basolateral

surface.

Many viruses have distinct entry and budding sites in polar-
ized epithelial cells (1-3). Vesicular stomatitis virus (VSV) is
the prototypic nonsegmented negative-strand RNA virus and
buds preferentially from the basolateral surface of polarized epi-
thelial cells. This budding preference correlates with the basolat-
eral localization of its glycoprotein (G) (4). However, mislocaliza-
tion of G did not change this phenotype, and thus it was proposed
that the matrix protein (M) dictates preferential VSV budding (5).
In this study, we demonstrate that neither G nor M alone can
account for this bias.

Recombinant VSV (rVSV) was tested for infection and bud-
ding preference from the polarized human epithelial T84 cell line.
T84 monolayers were infected after polarization on collagen-
coated Transwell supports, with polarity demonstrated by a trans-
epithelial resistance (TER) of >1,000 () and confirmed by proper
localization of the apical tight-junction marker Zo-1 (6), Golgi
compartment marker GP130 (7, 8), and the nucleus (7) (Fig. 1A).
rVSV infected the basolateral surface 62 = 14 (n = 4) times more
efficiently than the apical surface. Postinfection, rVSV was found
to bud preferentially from the basolateral surface (Fig. 1B). Infec-
tious virus appeared initially in the basolateral compartment but
was later detected in the apical chamber, with cells maintaining a
tight monolayer. Both infection and budding preferences are sim-
ilar to previous observations with MDCK cells (9). Monolayer
integrity was monitored by TER and small-molecule diffusion us-
ing medium with or without phenol red in complementary cul-
ture compartments. Cells maintained high TER and limited
small-molecule diffusion through 12 h postinfection (hpi). Sub-
sequently, TER gradually dropped, reaching 150 (2 at 22 hpi and
loss of TER at 24 hpi, when phenol red diffusion was observed
(data not shown). Immunocytochemistry analysis with previously
characterized antibodies was used to identify the subcellular local-
ization of VSV proteins (10, 11) (Fig. 1C). The nucleocapsid pro-
tein (N), phosphoprotein (P), and large polymerase protein (L)
have been reported to localize to inclusion bodies throughout the
cytoplasm (12). Likewise, we observed N and P in a nonpolarized
distribution (Fig. 1C), demonstrating that replication and tran-
scription were not polarized. Similarly, M was found to be cyto-
solic and membrane bound throughout the apical and basolateral
compartments, indicating its nonpolarized distribution. This ob-
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servation contrasts with previous findings in which M was baso-
laterally localized in MDCK cells (13). While this localization may
not be universally true, it demonstrates that polarized M localiza-
tion is dispensable for polarized budding. In contrast, G was pre-
dominantly basolateral (Fig. 1C), as previously shown (4, 14).
Since G was the only polarized VSV protein, we tested whether
its absence might alter VSV budding. We used an rVSV with the G
coding sequence deleted and enhanced green fluorescent protein
(eGFP) in the first position (rVSV eGFP AG). This virus was
grown in BSR T7/5 cells with G supplied by transfection (Fig. 2A).
To assay budding in T84 monolayers, newly synthesized rVSV
eGFP AG virions from the apical and basolateral chambers were
radiolabeled (Fig. 2B) and analyzed via low-bis SDS-PAGE and
autoradiography (Fig. 2C) with the N protein band quantified by
ImageQuant TL v7 (GE Healthcare, Piscataway, NJ). This assay
revealed that rVSV and rVSV eGFP AG preferentially bud baso-
laterally. To determine if this bias was due to the relative basolat-
eral and apical surface areas, these were measured with ultrathin-
section transmission electron microscopy (TEM) of cells (15) and
Image] (U.S. National Institutes of Health, Bethesda, MD; http:
//rsb.info.nih.gov/ij/). The basolateral-to-apical area ratio was
3.1 £0.2 (n = 31) and cannot account for the differential budding
seen with both viruses (Fig. 2C). We confirmed that G deletion
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FIG 1 Polarity of budding of VSV from polarized T84 cells and localization of VSV proteins. (A) T84 polarization was verified by immunocytochemistry analysis,
followed by confocal fluorescence microscopy, for the markers indicated. (B) Growth curves of rVSV in polarized T84 monolayers. Cells were infected at a
multiplicity of infection of 3, and virus titers were measured at the postinfection times specified. (C) Localization of VSV proteins in polarized T84 cells.
Monolayers were infected with rVSV eGFP (24) or rVSV P-eGFP (25), and confocal microscopy for the proteins indicated was performed at 8 hpi. Representative
cross sections and three-dimensional reconstructions are shown. The scale bars represent 10 pm.

does not alter the localization of other viral proteins (Fig. 2D).
These data demonstrate that G does not dictate the preferential
site of virus production (5).

We tested whether preferential budding was due to an inability
of VSV to assemble and bud from the apical surface. Titration of
supernatant from the apical surface revealed infectious virions
(Fig. 1B). Particles released from both surfaces were indistinguish-
able by negative-stain TEM (Fig. 3A). To examine budding at the
plasma membrane, we limited particle release by using a clone
harboring mutations in the M late domains (rVSV M LD ™), i.e,,
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PPPY and PSAP mutated to AAPA and AAAA, respectively (16,
17). Ultrathin-section TEM of cells infected with rVSV M LD~
revealed bullet-shaped virions on both surfaces (Fig. 3A).

We next examined the composition of particles from both cell
surfaces. Although glycosylation has been shown not to determine
the segregation of G (18), it is possible that G glycosylation differs
in virions released from the two surfaces. Peptide-N-glycosidase F
(PNGase) treatment of particles from the apical and basolateral
compartments showed similar glycosylations (Fig. 3B). Using N as
a measure of particles, the average amounts of G and M per par-
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FIG 2 Test of the requirement of G for directional budding. (A) Schematic for growth of rVSV and rVSV eGFP AG with G supplied in trans. (B) Time line of
infection, radiolabeling, and collection. (C) Concentrated virus from 12 hpi was analyzed by SDS-PAGE. Note that 1/20 of the rVSV, relative to rVSV eGFP AG,
from basolateral (Bl) budding was loaded for clarity. The basolateral lane of r'VSV eGFP AG contains a cellular band (*) with mobility similar to that of G that also
appears after mock infection. Both rVSV and rVSV eGFP AG had significantly more N in the basolateral chamber (Student’s ¢ test P values of <0.01 and <0.05,
respectively; n = 5). Ap, apical. (D) T84 cells were infected with rVSV eGFP AG and analyzed by confocal microscopy for the proteins indicated. Cross sections
and three-dimensional renderings are shown. The lack of G was verified by immunocytochemistry analysis, and consequent defective virus production was

confirmed by titration (data not shown). The scale bars represent 10 pm.

ticle were not found to differ significantly (Fig. 3C) and the rela-
tive numbers of basolateral and apical particles per PFU were not
significantly different (2.3-fold * 1.1-fold; P > 0.05 [Student’s ¢
test]; n = 5).

The factors that trigger VSV assembly and budding are not
known. Virions can be produced without G, demonstrating that G
is dispensable for assembly (19). However, sequences in G in-
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crease budding efficiency (20, 21), and viral ribonucleoprotein
(VRNP) localization to G microdomains has been proposed to
initiate assembly (22). In addition, the trigger for condensation of
the open VRNP into the nucleocapsid-M protein complex is un-
known. We show that budding is polarized in the presence or
absence of G and that the localization of other VSV proteins can-
not account for this phenotype. Additionally, we demonstrate
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FIG 3 Characterization of virions budded from the apical and basolateral
surfaces. (A) Virions from the supernatants of the apical and basolateral com-
partments of infected T84 cell monolayers at 10 to 12 hpi were imaged by
negative-stain TEM. The scale bar represents 100 nm. Monolayers of cells
infected with rVSV M LD~ were imaged by ultrathin-section TEM, and the
apical and basolateral surfaces are shown. The scale bar represents 500 nm. (B)
The rVSV from T84 monolayers was analyzed as described in the legend to Fig.
2, except that the pelleted virus was treated with PNGase prior to SDS-PAGE
analysis. (C) The G/N and M/N ratios were calculated from non-PNGase-
treated virus, and those of apical and basolateral viruses were compared. The
differences were not significant by a paired Student ¢ test (P > 0.2; n = 5; the
standard error of the mean is indicated).

functional VSV assembly at the apical surface, which does not
generate defective particles. We hypothesize that the preferential
budding is due to an increase in the efficiency of initiation or
completion of assembly at the basolateral surface. A cellular pro-
tein(s) required for efficient condensation could be localized
basolaterally, or a structural feature, such as tension, of the
basolateral region could be more permissive to assembly. The
requirements for clathrin-mediated endocytosis differ at the api-
cal and basolateral surfaces in polarized epithelial cells because of
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tension differences (23). It is possible that generation of the high
membrane curvature in VSV particles requires a low-tension en-
vironment.
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