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ABSTRACT

Numerous experimental studies have demonstrated that CD8� T cells contribute to immunity against influenza by limiting viral
replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes
targeted by CD8� T cells. Here we use a novel computational approach to test for selection in CD8� T-cell epitopes. We define all
epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8� T-cell responses and
then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging
since roughly 1918. We find a significant enrichment of substitutions that alter human CD8� T-cell epitopes in NP of human
versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that
epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic
tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP,
sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inher-
ent functional constraint. Overall, our work demonstrates that there is clear selection from CD8� T cells in human influenza
virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is oth-
erwise obscured by strong functional constraint.

IMPORTANCE

There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8� T cells
provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is
sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in
animal models and are associated with decreased symptoms in humans, no studies have proven with statistical significance that
influenza virus evolves under positive selection to escape T cells. Here we use comparisons of human and swine influenza viruses
to rigorously demonstrate that human influenza virus evolves under pressure to fix mutations in the nucleoprotein that promote
escape from T cells. We further show that viruses with these mutations have a selective advantage since they are preferentially
located on the “trunk” of the phylogenetic tree. Overall, our results show that CD8� T cells targeting nucleoprotein play an im-
portant role in shaping influenza virus evolution.

Both arms of the adaptive immune system help control influ-
enza virus replication: antibodies neutralize virus (1) and di-

rect the clearance of infected cells (2), while CD8� T cells kill
infected cells that display viral peptides on their major histocom-
patibility complex (MHC) class I molecules (3, 4). While antibod-
ies against the viral surface protein hemagglutinin (HA) provide
the most potent protection when they are well matched to the
virus strain (5–7), T cells offer broader protection against diverse
strains since they tend to recognize epitopes in more conserved
internal viral proteins such as nucleoprotein (NP) and matrix pro-
tein (M1) (3, 4, 8, 9).

Studies in both mice (10–14) and humans (9, 15, 16) have
shown that preexisting influenza virus-specific CD8� T cells re-
duce the severity of disease and enhance virus clearance. For in-
stance, preexisting virus-specific CD8� T cells were correlated
with decreased symptoms in humans infected during the 2009
H1N1 pandemic (15). Similarly, T cells specific for NP were asso-
ciated with a decreased incidence of symptomatic infection over a
multiyear study of a large human cohort (9), and CD8 T-cell re-

sponses were correlated with recovery from severe H7N9 infection
(16). Therefore, experimental and epidemiological work demon-
strates that CD8� T cells contribute to immunity against influ-
enza.

Because humans are repeatedly infected with influenza over
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their lifetimes, one might expect viruses to be under evolutionary
pressure to accumulate substitutions in epitopes targeted by im-
mune memory. Indeed, there are numerous examples of the fixa-
tion of antibody escape mutations in HA (17, 18), consistent with
the notion that this protein evolves under strong selection from
antibodies. Several studies have also described influenza virus mu-
tations that escape recognition by CD8� T cells (19). In a mouse
study, viral mutations arose that conferred T-cell escape in RAG-
1-deficient mice expressing an influenza virus NP-specific T-cell
receptor (TCR) (20). Rimmelzwaan and coworkers identified the
fixation of mutations in NP of human H3N2 virus that mediated
escape from CD8� T cells by altering the epitope recognized by the
T-cell receptor (21–23) or by abrogating binding of the epitope to
MHC class I molecules (24). Valkenburg et al. described the emer-
gence of CD8� T-cell escape mutations in a persistently influenza-
infected infant (25). These elegant studies demonstrate that influ-
enza virus accumulates substitutions that escape CD8� T cells as
well as antibody-mediated immunity.

However, these studies do not prove that positive selection for
CD8� T-cell escape is an important driving force in the evolution
of influenza virus, since many sites in the virus genome will fix
substitutions given enough time (26–28). To rigorously establish
the presence of positive selection, the field of molecular evolution
has developed statistical tests to discern whether a subset of sites is
evolving faster than expected. Most of these tests compute non-
synonymous and synonymous distances (referred to as dN and dS,
respectively) and then test for sites with statistical evidence that
the accumulation of nonsynonymous substitutions exceeds that
of synonymous substitutions (dN/dS ratio of �1) (29, 30). These
tests consistently find overwhelming evidence for positive selec-
tion in the antigenic sites of influenza virus hemagglutinin (31–
33) but little evidence for positive selection in CD8� T-cell
epitopes (33). One study reported that CD8� T-cell epitopes in
NP have a higher dN/dS ratio than do other sites (34); however,
that study made a pairwise comparison of two sequences only and
included no tests for statistical significance. Below, we describe the
use of several state-of-the-art tests to verify that CD8� T-cell
epitopes have neither an elevated frequency of sites with a dN/dS
ratio of �1 nor an elevated rate of nonsynonymous substitutions.
Therefore, by standard criteria, CD8� T-cell epitopes are not un-
der positive selection.

The results of these statistical tests for positive selection seem at
odds with the extensive body of experimental work described
above. We hypothesized that the discrepancy arises because
known CD8� T-cell epitopes are under strong functional con-
straint (34–37). If epitopes are highly constrained, then even
strong positive selection might fail to elevate the rate of nonsyn-
onymous substitutions in epitopes above that at less constrained
nonepitope sites. To address this possibility, we developed new
statistical tests that take advantage of the fact that some lineages of
human influenza virus are paralleled by lineages of swine influ-
enza virus that are not under selection from human CD8� T cells.
Using these tests, we show that CD8� T-cell epitopes in NP evolve
significantly faster in human influenza virus than in swine influ-
enza virus. Furthermore, we show that substitutions in these
epitopes are enriched on the trunk of the phylogenetic tree, indi-
cating that viruses that acquire them have a selective advantage
that promotes their evolutionary spread. Overall, our work pro-
vides clear statistical evidence that complements prior experimen-
tal studies showing that CD8� T-cell epitopes are under selection

in human influenza virus (22) and suggests that the failure of
conventional tests to identify this selection is due to high levels of
functional constraint in epitopes.

MATERIALS AND METHODS
Inference of phylogenetic trees and mutation counts. M1 and NP pro-
tein-coding sequences were downloaded from the Influenza Virus Re-
source (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) (38).

For human influenza virus, we assembled sequence sets by taking se-
quences for H1N1 (1918 to 1957), H2N2 (1957 to 1968), and H3N2 (1968
to 2013); if there were fewer than three sequences per year, we retained
them all, and when there were more than three for a year, we randomly
selected three to retain. For swine influenza virus, we similarly assembled
sequence sets containing up to 3 sequences per subtype per year for
H1N1 (1918 to 2013), H1N2 (1999 to 2013), and H3N2 (1998 to 2013).
For swine influenza virus, the first available sequence is from 1933. We
excluded sequences that were previously classified as being misanno-
tated (39) or that were strong outliers based on molecular clock
analysis using RAxML (40) and Path-O-Gen (http://tree.bio.ed.ac.uk
/software/pathogen/). The sequence sets are in Tables S1 to S4 in the
supplemental material.

There are gaps in sequence availability in earlier years (most promi-
nently, there are no sequences from between 1918 and the early 1930s).
Therefore, we have a reduced power to identify substitutions in these early
years. However, since our comparisons are between human and swine
influenza viruses, and since both lineages have similarly sparse sequences
in these early years, these gaps seem unlikely to systematically bias our
study, although they may reduce its power.

We translated the sequences and inferred separate human and swine
influenza virus phylogenies for each protein using Bayesian Evolutionary
Analysis by Sampling Trees (BEAST) (41) with a strict molecular clock, a
Jones-Taylor-Thornton (JTT) (42) model of substitution, and a constant
population size demographic model. Figure 1 shows the maximum clade
credibility trees rendered with FigTree (http://tree.bio.ed.ac.uk/software
/figtree/). The trunk of each tree (dark lines in Fig. 1) was defined by
tracing from the most recent sequence back to the oldest sequence. We
used a stochastic mapping technique (43–45) implemented via the
“MarkovJumps” feature in BEAST to estimate the posterior mean number
of substitutions at each site for each phylogenetic tree and along the trunk
of each tree. The times to the most recent common ancestor referred to in
the Fig. 1 legend were estimated by a BEAST analysis of the joint swine and
human influenza virus lineages. The dates of fixation of the CD8� T-cell
escape substitutions characterized by Rimmelzwaan and colleagues (21–
24) refer to estimates obtained previously (see Fig. 2 supplement 2 in
reference 37). Table S9 in the supplemental material lists all substitutions
that are present along the trunk of at least 90% of the trees sampled from
the posterior for each viral protein and lineage along the with posterior
mean estimate of the date at which the substitution was fixed on the trunk.

Identification of CD8� T-cell epitope sites. We downloaded all
epitopes with an experimentally identified CD8� T-cell response (source
organism Influenza A virus and host Homo sapiens) from the Immune
Epitope Database (http://www.iedb.org/) (46). We identified unique
epitopes, as described in Results, using a previously described software
package (https://github.com/jbloom/epitopefinder/) (47) and then deter-
mined the number of unique epitopes (Er) to which each site r contributes
(Fig. 2). The epitopes and the counts of epitopes per site are in Tables S5 to
S8 in the supplemental material.

Conventional dN/dS tests for positive selection. We used Data
Monkey (http://www.datamonkey.org/) (48) to perform two types of
dN/dS analysis, the hierarchical Bayes method FUBAR (fast uncon-
strained Bayesian approximation) (30) and the maximum likelihood
method FEL (fixed-effects likelihood) (29). The maximum clade credibil-
ity tree from BEAST was used as the input phylogeny for FUBAR and FEL,
and a REV (general reversible model) codon substitution model was spec-
ified for FEL. For both methods, we calculated the percentage of sites for
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which the estimated dN/dS ratio was �1 and the percentage of sites for
which there was strong statistical support for this ratio being �1 (poste-
rior probability of �0.95 for FUBAR; P value of �0.05 for FEL).

Statistics for substitutions at each site in human and swine influenza
virus lineages. The posterior mean estimate of the number of nonsynony-
mous substitutions, Sr, at each site r was extracted from the BEAST trees.
These estimates were used to compute the average substitution rates
across all epitope sites (sites that fell into at least one epitope) and across
all nonepitope sites, both for the entire tree and for the trunk alone. We
also defined a statistic, F, which represents the average number of epitopes
changed per substitution. This statistic is defined as

F �
�
r
Er � Sr

�
r
Sr

where Er is the number of unique epitopes to which site r contributes.
We performed statistical tests of whether we could reject the null hy-

pothesis that there was no difference in the F statistics for human versus
swine and for the trunk versus the tree. To do this, we calculated the ratios
of these statistics for human versus swine or trunk versus tree and then
created a null distribution by repeatedly recalculating the statistics after

randomizing the epitope counts, Er, among sites. The P values represent
the fraction of time that the randomized statistic is greater than the actual
statistic in 104 randomizations.

Availability of data and computer codes. Data and computer codes are
available at https://github.com/hmmachko/TcellEpitopeComparisons.

RESULTS
Parallel human and swine influenza virus lineages reveal selec-
tion by CD8� T cells. Our goal is to determine whether epitopes
targeted by human CD8� T cells are under selection in influenza
viruses that circulate in human hosts. The two most highly ex-
pressed influenza virus proteins are NP and M1 (49), and epitopes
in these proteins are major targets of CD8� T cells (3, 4, 8, 9). The
NP and M1 proteins in contemporary human H3N2 influenza
viruses have circulated in humans since at least 1918 (50, 51). For
both genes, this unbroken lineage consists of H1N1 viruses from
1918 to 1957, H2N2 viruses from 1957 to 1968, and H3N2 viruses
from 1968 to the present. The red lines in Fig. 1 show phylogenetic
trees of NP and M1 from this human influenza virus lineage.

This human influenza virus lineage is closely paralleled by a
swine influenza virus lineage descended from the common ances-
tor of the virus that caused concurrent pandemics in humans and
swine in 1918 (50, 52). NP and M1 of this lineage have circulated
exclusively in swine since 1918 (50, 52). The blue lines in Fig. 1
show phylogenetic trees of NP and M1 from this swine influenza
virus lineage. The phylogenetic trees show that both human and
swine influenza viruses undergo substantial genetic evolution in
NP and M1; however, this fact alone does not reveal what forces
drive this evolution. Influenza virus genetic evolution can be
driven by positive selection, but it can also be driven by stochastic
forces such as genetic hitchhiking or drift (26–28).

The parallel lineages of human and swine influenza viruses

10.0 years

M1

NP

FIG 1 Phylogenetic trees for human and swine influenza virus M1 and NP. Shown are maximum clade credibility trees for NP and M1. The swine influenza virus
lineage is in blue, and the human influenza virus lineage is in red. The dark blue and red lines represent the trunk. The dotted black lines indicate that human and
swine influenza virus lineages share a recent common ancestor (estimated times to the most recent common ancestor are 13 and 6 years for M1 and NP,
respectively).

M1 NP

FIG 2 Distribution of CD8 T-cell epitopes in M1 and NP. The numbers of
unique experimentally identified CD8� T-cell epitopes to which each site con-
tributes for M1 and NP are shown.
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enable us to perform an internally controlled analysis of whether
CD8� T cells represent an important selective force in driving
influenza virus evolution, since human CD8� T cells target
epitopes in human but not swine influenza viruses. There are two
reasons why we can be confident that swine influenza virus is not
under selection from human CD8� T cells. First, the MHC class I
molecules that restrict CD8� T-cell epitopes are highly variable
among species; therefore, epitopes displayed to human CD8� T
cells will differ from those displayed to swine CD8� T cells (53, 54)
(note that our approach does not require the human and swine
epitopes to be completely nonoverlapping; it simply assumes that
the MHC alleles are sufficiently diverged so that not all epitopes
targeted by humans are also targeted by swine). Second, swine
influenza virus is under weaker selection from immune memory
than is human influenza virus because pigs are infected only once
or a few times during their short lives (55–59). Therefore, swine
influenza virus is probably under less pressure from CD8� T cells
in general, and whatever pressure does exist will generally focus on
different epitopes than those targeted by human T cells.

Experimentally identified human CD8� T-cell epitopes. We
aimed to identify CD8� T-cell epitopes targeted by individuals in
the human population. There are two plausible ways to do this: by
computationally predicting peptides that bind to MHC class I or
by collating epitopes that have been experimentally identified as
eliciting responses from CD8� T cells isolated from humans. We
chose to use experimentally identified epitopes since computa-
tional predictions are imperfect (60), and only a fraction of pep-
tides that bind MHC class I molecules are targets of cytolytic
CD8� T cells (61, 62). We extracted all influenza virus epitopes
from the Immune Epitope Database (46) that are between 8 and
12 amino acids in length with an experimentally identified human
CD8� T-cell response. We retained all epitopes that aligned to at
least one strain from our human and swine influenza virus lin-
eages with no more than one amino acid mismatch. We classified
epitopes as redundant if they shared 8 or more amino acids and
were in the same MHC class I group (63) (or supertype [64] if the
group was not specified). We identified 133 unique epitopes in the
seven proteins that did not reassort during the human influenza
pandemic of 1957 or 1968 (NS1, NS2, PB2, PA, M1, M2, and NP).
Of 133 epitopes, 62 were in NP (47%), and 29 were in M1 (22%),
consistent with reports that these two proteins are major targets of
CD8� T cells (9). Figure 2 shows the number of epitopes to which
each site in NP and M1 contributes; individual sites are involved in
anywhere between zero and nine epitopes.

These experimentally identified epitopes probably do not rep-
resent an exhaustive list of all sites targeted by human T cells. In
particular, some epitopes in historical strains may be overlooked
since most studies use recent virus strains. However, since our
analyses are internally controlled (we compare either human to
swine influenza viruses or the trunk of the tree to side branches),
missing some epitopes should not systematically bias our results.

Our approach identifies sites that contribute to epitopes in any
of the influenza virus strains under consideration. Mutations of an
epitope can mediate escape by abrogating peptide binding to
MHC class I or by changing the sequence of the bound peptide
such that it is no longer recognized by memory T cells. Both types
of escape have been experimentally demonstrated for NP of hu-
man H3N2 virus. An example of escape by abrogation of MHC
binding is the R384G mutation that fixed in 1993 (24). Three
examples of escape of T-cell recognition but not MHC binding are

the D421E/I425V mutations that fixed in 1979 (22, 23), the K103R
mutation that fixed in 1980 (21), and the S259L mutation that
fixed in 1990 (21). Additionally, mutations outside an epitope can
affect its processing (65), although we are unaware of documented
examples of extraepitopic escape mutations that have fixed in hu-
man influenza virus. Our analysis cannot distinguish among these
types of escape, since most experiments identify epitopes without
characterizing how prior or subsequent mutations affect their
processing, MHC binding, and recognition by T cells.

We therefore classify sites according to the number of epitopes
to which they contribute in any of our virus strains without at-
tempting to determine whether the epitopes are present across all
the virus strains. This approach is usually valid when mutations
alter T-cell recognition without affecting processing or MHC
binding, since epitopes that escape existing T cells via such muta-
tions will often soon be targeted by new T cells (21). However, our
approach is imperfect for mutations that abrogate binding to
MHC molecules and so eliminate the epitope from all subsequent
strains. However, since the NP and M1 homologs are closely re-
lated (the maximal protein sequence divergence among the se-
quences in Fig. 1 is just 12%), even if a site fixes just a single
mutation that eliminates an epitope, this would represent a sub-
stantial elevation in its rate of evolution over the time frame of
interest. Therefore, classification of sites by the number of
epitopes as in Fig. 2 should identify positions in NP and M1
that will exhibit an increased rate of substitution if there is
T-cell selection.

Conventional dN/dS tests fail to find positive selection in
CD8� T-cell epitopes. One might hypothesize that immune se-
lection from CD8� T cells would lead to a greater proportion of
epitope than nonepitope sites with a dN/dS ratio of �1. We there-
fore used two state-of-the-art methods (a hierarchical Bayes ap-
proach [29] and a maximum likelihood approach [30]) to identify
sites in human and swine influenza viruses with dN/dS ratios
of �1 and partitioned the sites based on whether or not they were
involved in at least one experimentally identified epitope. As
shown in Fig. 3A and B, the proportion of sites with a dN/dS ratio
of �1 was actually lower for epitope than for nonepitope sites in
human influenza virus. Additionally, we calculated the propor-
tion of sites with strong statistical evidence of a dN/dS ratio of �1
(Fig. 3C and D). In no instance is there a greater proportion of
epitope than nonepitope sites with a dN/dS ratio of �1. Our find-
ings are consistent with data from previous work that failed to find
evidence for positively selected sites in NP or M1 (33). Thus, over-
all, state-of-the-art dN/dS tests fail to identify enhanced positive
selection in T-cell epitopes in NP.

Epitope sites do not evolve faster than nonepitope sites, al-
though the rate is higher on the trunk of the human influenza
virus NP lineage. We next estimated the number of nonsynony-
mous substitutions at each site in NP and M1 for both the full
swine and influenza virus trees in Fig. 1 and for the “trunks” of
these trees (dark lines in Fig. 1). The rationale for examining the
trunk separately is that we expect beneficial substitutions to be
enriched on the trunk since they will confer a selective advantage
that favors the propagation of sequences that contain them. Con-
sistent with this idea, studies of human H3N2 influenza virus HA
have found that presumably beneficial substitutions that alter an-
tigenicity are enriched on the trunk versus the entire tree (66, 67).

Figure 4 shows the ratios of the substitution rates at epitope
versus nonepitope sites. In none of the cases (NP or M1, swine or
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human influenza virus, or trunk or tree) is the ratio substantially
greater than 1 when taken over the whole tree, so in no case are the
epitope sites evolving faster than the nonepitope ones. This result
helps explain why the dN/dS tests fail to find evidence for positive
selection in the epitopes: for NP and M1 (unlike for HA), epitope
sites simply do not evolve faster than their nonepitope counter-
parts.

However, further examination of the data in Fig. 4 reveals an
interesting trend. Although there are no instances where epitope
sites are evolving substantially faster than nonepitope ones, the
ratio of epitope to nonepitope substitution rates is higher for NP
of human influenza virus than for NP of swine influenza virus.
This trend is particularly pronounced along the trunk of the tree,

which is exactly where we would expect to see the largest increase
in rates if epitope substitutions confer a selective advantage. To
test if this trend was indicative of statistically significant CD8�

T-cell selection in NP, we undertook a more nuanced analysis, as
described below.

Substitutions alter more NP epitopes in human than in swine
influenza virus, especially on the trunk. The above-described
analyses simply subdivided sites as epitope or nonepitope sites
based on whether they fall into at least one experimentally identi-
fied epitope. However, as shown in Fig. 2, some sites are involved
in far more unique epitopes than others. To account for this, we
defined a new statistic (which we denote F) that gives the average
number of unique epitopes that are altered per substitution. Fig-
ure 5A shows this F statistic for the trunk and entire tree for NP
and M1 of both human and swine influenza viruses. There appears
to be little difference in this F statistic for M1 between the trunk
and the entire tree and between human and swine influenza vi-
ruses. However, for NP, F is greater for human influenza virus
than for swine influenza virus, with the increase being much larger
for the trunk than for the entire tree. This result indicates that the
average substitution alters more NP epitopes in human influenza
virus than in swine influenza virus and that this trend is especially
pronounced on the trunk of the tree, exactly as we would expect
under selection for epitope-altering substitutions.

To test if the trend is statistically significant, we computed the
ratio of F for human influenza virus to that for swine influenza
virus and then calculated a null distribution by repeatedly ran-
domizing the epitopes among sites. For M1, the actual ratio falls
near the center of the null distribution (Fig. 5B), confirming that
there is no enhancement of the rate of fixation of epitope-altering

A B

C D

FIG 3 Conventional dN/dS tests do not detect positive selection in T-cell epitopes. State-of-the-art methods for detecting positive selection fail to find any
enrichment in sites with a dN/dS ratio of �1 at epitopes. (A and B) Percentages of sites estimated to have a dN/dS ratio of �1 by using the hierarchical Bayesian
approach implemented in FUBAR (A) and the maximum likelihood approach implemented in FEL (B). (C) Percentages of sites for which FUBAR reports a
posterior probability of �0.95 that the dN/dS ratio is �1. (D) Percentages of sites for which FEL reports a dN/dS ratio of �1 with a P value of �0.05.

FIG 4 Epitope sites do not evolve faster than nonepitope sites. The ratios of
the average nonsynonymous substitution rate of epitope sites to that of non-
epitope sites are shown. When the substitution rate is computed across the
entire tree, the epitope sites always have a lower substitution rate than the
nonepitope sites. However, along the trunk of the tree for NP from human
influenza virus, the substitution rate in epitopes is slightly higher than the
substitution rate at nonepitopes.
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substitutions in M1 of human influenza virus. However, for NP,
the actual ratio falls near the top the null distribution for both the
trunk and the tree (Fig. 5B). In particular, for the trunk, there is
strong statistical support (P � 0.0002) for rejecting the null hy-
pothesis that epitope-altering substitutions are equally likely to fix
in human and swine influenza viruses. This result indicates that
there is selection for substitutions that alter CD8� T-cell epitopes
in NP of human influenza virus.

To corroborate this statistical finding of an enhanced rate of
epitope-altering substitutions along the trunk of human versus
swine influenza virus, we undertook a further subanalysis of the
small subset of epitopes for which specific T-cell escape mutations
have been identified. The vast majority of epitopes that comprise
the analysis shown in Fig. 5 were identified by relatively high-
throughput studies that characterized peptides eliciting T-cell re-
sponses without identifying escape mutations. However, a series
of meticulous studies by Rimmelzwaan and coworkers (21, 22, 24)
identified sites of specific escape mutations for a small number of
epitopes. Table 1 shows that substitutions are fixed at all of these
sites along the trunk of the human influenza virus tree but that
swine influenza virus has no fixed substitutions at any of these
sites. This finding lends further support to the idea that human T
cells exert positive selection on human but not swine influenza
virus.

We next tested whether selection for epitope-altering substitu-
tions in human influenza virus NP was stronger on the trunk than
on the rest of the tree, as would be expected if such substitutions
confer a selective advantage. We computed the ratio of the F sta-
tistic for the trunk to that for the entire tree and generated null
distributions for this statistic by randomizing the epitopes among
sites (Fig. 6). For M1, the actual ratios are near the center of the
null distributions. However, for NP, the actual ratio is near the top
of the null distribution (P � 0.003) for human influenza virus and
near the bottom for swine influenza virus (P � 0.01). This result
demonstrates that epitope-altering substitutions in NP are signif-
icantly enriched on the trunk of the human influenza virus lin-
eage, suggesting that viruses that fix these mutations are more fit

than other strains. The depletion of epitope-altering substitutions
in the swine lineage can also be given a clear explanation: if the
known CD8� T-cell epitopes in NP are in functionally con-
strained regions of the protein (as has been suggested by a variety
of experimental studies [34–37]), then substitutions in these
epitopes will often be deleterious in swine influenza virus lineages
that experience no human CD8� T-cell selection and so will be
relatively depleted on the trunk. Thus, overall, the results de-
scribed above provide strong statistical evidence of positive selec-
tion in the CD8� T-cell epitopes of human influenza virus NP.

DISCUSSION

We describe the first rigorous statistical evidence that CD8� T-cell
epitopes are under positive selection in human influenza virus.
Our work adds to a growing body of evidence suggesting an im-
portant role for T-cell immunity in shaping influenza virus evo-
lution. Previous studies showed that T cells help protect against
human influenza virus (9, 15) and detailed specific instances of
T-cell escape (21–25). Our work shows that T-cell selection in-
creases the rate at which mutations are fixed in epitopes of NP and
indicates that viruses with these substitutions have a selective ad-
vantage that makes them more likely to fall along the trunk of the
phylogenetic tree.

Our results also explain why conventional dN/dS tests fail to
detect positive selection in CD8� T-cell epitopes. Known human
CD8� T-cell epitopes tend to be under strong functional con-
straint (34–37). It is unclear whether this is because T cells inher-
ently target conserved epitopes, because repeated infections pref-
erentially boost T cells that target conserved epitopes, or because
there is a bias toward experimentally identifying conserved epitopes.
However, in any case, the fact that known epitopes are under
strong constraint means that even fairly strong positive selection
may not enhance the nonsynonymous substitution rate to a level
detectable by conventional dN/dS tests. This contrasts with anti-
body epitopes in HA, where the ability of dN/dS tests to detect
antibody-mediated positive selection is probably augmented by

TABLE 1 Trunk substitutions for the small subset of NP epitopes where
specific escape substitutions have been experimentally validateda

Position
in NP

Experimental evidence
(reference)

No. of trunk substitutions for
human influenza virus
(substitution[s] and yr of
isolation)

103 K103R escapes recognition by
a HLA-B*1503-restricted T
cell (21)

2 (K103R in 1981, R103K in 1997)

259 S259L escapes recognition by
a HLA-B*4002-restricted T
cell (21)

2 (L259S in 1972, S259L in 1990)

384 R384G abrogates MHC
binding in HLA-B*2705
(24)

1 (R384G in 1990)

421 D421E escapes recognition by
an HLA-B*3501-restricted
T cell (22)

1 (D421E in 1977)

425 I425V escapes recognition by
an HLA-B*3501-restricted
T cell (22)

2 (I425V in 1975, V425I in 1999)

a There were no trunk substitutions for swine influenza virus at any of these five sites.

A B

FIG 5 The average substitution changes more NP epitopes in human influ-
enza than swine influenza virus. The F statistic is the average number of
epitopes altered per substitution. (A) The average substitution alters a similar
number of epitopes in M1 proteins of both human and swine influenza viruses
and for both the entire tree and the trunk alone. However, for NP, the average
substitution alters substantially more epitopes in human than in swine influ-
enza virus, particularly along the trunk of the tree. (B) The increased rate of
epitope-altering substitutions in NP along the trunk of human versus swine
influenza virus is statistically significant. The violin plots show the null distri-
bution of the ratio of F for human influenza virus to that for swine influenza
virus, with the median shown by the red lines and the actual value shown by red
circles. The P values (fraction of the null distribution that is greater than or
equal to the actual value) are 0.49 for the M1 trunk, 0.65 for the M1 tree, 0.0002
for the NP trunk, and 0.098 for the NP tree.
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the fact that antigenic sites are disproportionately tolerant of point
mutations (68).

The novel approach that we developed ameliorates this prob-
lem by comparing the evolution of epitopes of human and swine
influenza viruses or the entire phylogenetic tree and only its trunk.
These comparisons should better control for site-to-site variation
in functional constraint, since comparisons are always made be-
tween homologous sites that should be subject to similar func-
tional constraints. Admittedly, there may also be other differences
in functional constraints between human and swine influenza vi-
ruses beyond T cells, but unless these differential constraints are
systematically biased toward occurring at T-cell epitopes, they
should not alter the fundamental validity of our approach. By
making comparisons in this way, we demonstrated clear positive
selection in CD8� T-cell epitopes in NP, both in human versus
swine influenza viruses and in the trunk versus the entire phylo-
genetic tree.

One interesting aspect of our study is that we found positive
selection in NP but not M1. This finding is consistent with a recent
large-scale study that found that NP was the only protein for
which the presence of preexisting memory T cells correlated with
decreased rates of symptomatic infections (9). However, our
study does not preclude an important role of T cells targeting M1,
which contains an immunodominant HLA-A2 epitope spanning
residues 58 to 66 (69, 70). One study argued that T cells targeting
this epitope are ineffectual (70), although this interpretation is
disputed (71, 72). However, experiments have also shown that this
epitope is under strong constraint (34). If an epitope is completely
intolerant of mutations, it will of course be unable to accumulate
substitutions regardless of the strength of selection. It remains
unclear if our failure to detect positive selection in M1 reflects a
lack of effective immunity targeting this protein or strong con-
straints that simply prevent the fixation of escape mutations.

It is well established that antibodies are strong drivers of re-
peated selective sweeps in the evolution of human influenza virus
(66, 73). The fact that we can detect positive selection by CD8� T
cells even in the presence of these antibody-driven selective sweeps
demonstrates the importance of T-cell immunity in driving viral

evolution. The existence of such selection is consistent with mod-
eling studies showing that T-cell immunity that reduces the infec-
tious period can strongly favor viral escape (74).

There is considerable interest in developing vaccines that elicit
stronger T-cell immunity to better protect against diverse influ-
enza virus strains (3). Our demonstration of the evolutionary im-
portance of T-cell selection suggests that this interest is well
founded. In addition, our results suggest that attempts to forecast
the seasonal evolution of influenza (75, 76) could benefit from
examining changes in T-cell as well as antibody epitopes.
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