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Canine parvovirus (CPV) infection induces reorganization of nuclear structures. Our studies indicated that late-stage infection
induces accumulation of nuclear pore complexes (NPCs) and lamin B1 concomitantly with a decrease of lamin A/C levels on the
apical side of the nucleus. Newly formed CPV capsids are located in close proximity to NPCs on the apical side. These results
suggest that parvoviruses cause apical enrichment of NPCs and reorganization of nuclear lamina, presumably to facilitate the

late-stage infection.

he nuclear lamina is a protein-rich structural scaffold, the

main components of which are the dynamic type V interme-
diate filament proteins called lamins. Lamin proteins comprise
two subtypes, type A (lamin A, A10, C, and C2) and type B (B1, B2,
and B3). The former are alternative splice products of the LMNA
gene, and the latter are encoded by LMNBI (B1) and LMNB2 (B2
and germ line-specific B3) genes (1). In structure, the lamins of
both subtypes contain a central a-helical rod with globular head
(N) and tail (C) domains. In vitro, the lamins dimerize in a parallel
fashion followed by filament assembly (2, 3). The lamina is con-
nected to the cytoskeleton via the nuclear envelope (NE)-span-
ning linker of nucleoskeleton and cytoskeleton (LINC) complex
(4). Lamina also interacts with nuclear pore complexes (NPCs)
consisting of ~30 nucleoporins (Nups) and regulating bidirec-
tional transport of molecules over the NE (5). Together, the NPCs
and lamina define a dynamic barrier that mediates signals in re-
sponse to cellular stress conditions such as virus infections and
limits release of viral progeny after nuclear assembly (6-9). To
overcome this barrier, viruses are known to alter the architecture
of all aforementioned subnuclear structures, which in turn con-
tribute to the function of the nucleus (10). Nuclear egress of par-
vovirus (PV) capsids has been suggested to occur by active export
via the NPC pathway prior to cell lysis (11-13). However, the
influence of parvovirus egress on the organization of NPCs and
nuclear lamina is unknown. Here, we examined the distribution
and organization of NPCs as well as A and B type lamins in canine
parvovirus (CPV)-infected cells in late infection in comparison
with those in noninfected S- and G-phase (G,/G,) cells.

The NPCs are dynamic structures capable of assembly, disas-
sembly, and redistribution during the cell cycle (14, 15). The nu-
cleus has a spatially polarized architecture (16); however, the NPC
distributions between the apical and basal sides of the nucleus
have not been comparatively determined. Here, we examined the
spatial distributions of NPCs at the apical and basal sides of nuclei
in CPV-infected (multiplicity of infection [MOI] of 1 at 24 h
postinfection [p.i.]) and mock-infected S- or G,/G,-phase Nor-
den laboratory feline kidney (NLFK) cells. The NPCs were immu-
nostained with a nucleoporin 153 (Nupl53) antibody (Ab)
(ab24700; Abcam, Cambridge, United Kingdom) also recognizing
Nup62. A proliferating cell nuclear antigen (PCNA) Ab (ab18197;
Abcam, Cambridge, United Kingdom) was used as a marker for
cell cycle phases and the presence of parvoviral replication bodies
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(17, 18) (Fig. 1A). In confocal microscopy, z stacks consisting of
an average of 30 z planes spaced by 0.15 wm were collected with
the z axis corresponding to the apical-basal axis of the cell nucleus.
Nuclei were scanned over a range of 4 to 6 pm. The middle z plane
was applied to define the positions of the basal and apical surfaces.
Confocal microscopy of infected cells showed unequal distribu-
tions of NPCs on the apical and the basal sides of NE. First, the
number of NPCs at the apical side was ~31% higher than that at
the basal side (Fig. 1B). In G,/G, cells, the distribution of NPCs
was also asymmetric, with ~20% more NPCs at the apical than the
basal side. In the S phase, NPCs were more equally distributed,
with only ~10% more NPCs localized to the apical side. Second,
the overall NPC densities on both the apical and basal sides were
significantly decreased in infection (Fig. 1C). In the infected cells,
the apical NPC density (number * standard deviation [SD], 3.6 =
0.51 NPC/pm?, n = 22) was lower than in the S-phase cells (4.0 =
0.42 NPC/pm?, n = 21, Student's t test P < 0.05) or the G-phase
control cells (4.12 + 0.48 NPC/pm?, n = 22, P < 0.01) (Fig. 1A
and C). An even more prominent decrease was seen at the basal
side of infected-cell nuclei, where the NPC density (2.51 = 0.65
NPC/pm?, n = 22) was ~25% lower than in the mock-infected
G-phase (G,/G,) cells and ~30% lower than in the S-phase cells
(3.36 = 0.88 NPC/pum? [ = 21, P < 0.01] and 3.57 = 0.31 NPC/
um? [n = 22, P < 0.01], respectively) (Fig. 1A and C). Our results
showed that infection was accompanied by a profound modifica-
tion of the NPC network, including a significant reduction in the
density of NPCs at the basal side, resembling the overall NPC
distribution in G,/G, cells. Earlier studies showed that cell cycle-
dependent increases in the amount of NPCs and the nuclear vol-
ume occur simultaneously but do so with different regulation
mechanisms (15, 19). The frequency of NPC biogenesis fluctuates
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FIG 1 Infection- and cell cycle-dependent distribution of nuclear pore complexes. (A) Confocal microscopy images of the infected cells (Inf) at 24 h p.i. and the
mock-infected cells in S and G,/G, phases. NPCs and PCNA were visualized with Nup153 (left and middle panels) and PCNA (right panel) antibodies. (B) The
amount of NPCs calculated from the apical and basal sides of NE. (C) Average density of NPCs in apical and basal side of NE. The average values of the results
of triplicate experiments = SDs are shown. (D) Western blot analysis of Nup153 and Nup62 proteins harvested from the infected and mock-infected cells and
their structural integrity. Nups were detected with Nup153-specific antibody and Mab414 antibody recognizing FG-repeated Nup62 and Nup153 in feline cells.
Statistical significance in comparison to the mock-infected cells is shown (Student’s ¢ test P values: *, P < 0.05; **, P < 0.01). Bars, 10 wm. Error bars represent

the 95% confidence interval.

during cell cycle progression, being highest in the S and G, phases
(19-21). CPV infection is accompanied by cell cycle arrest in the S
phase (22-24). Notably, in contrast with the high density of NPCs
seen in S-phase cells, we observed significantly decreased density
in infected cells. To exclude the possibility that the decrease in
NPC density was due to infection-induced degradation, the struc-
tural integrity of Nup153 in the infected cells at 24 h p.i. was
analyzed by Western blotting (4.2 X 10 cells per well). The anal-
ysis of FG-repeated Nup153 and Nup62 (Nup153 Ab, monoclonal
antibody 414 [Mab414], and ab24609; Abcam) in infected and
mock-infected cells showed no major differences in abundance or
integrity (Fig. 1D). For comparison, actinomycin D (Act D)-
treated (0.5 to 1 wg/ml, 24 h) apoptotic cells showed cleavage of
Nup153 (data not shown). However, in the infected cells, two
additional bands with lower electrophoretic mobility were seen.
The change may have reflected a posttranslational modification of
Nup153, such as increased phosphorylation. With many viruses,
Nup153 undergoes structural modification to support viral repli-
cation and spread. As an example, viruses use phosphorylation of
Nups to alter the nucleocytoplasmic transport of the host (25).
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Furthermore, phosphorylation of Nups can occur in response to
DNA damage, commonly detected in parvovirus infections (26,
27), and can indicate an infection-induced functional change of
Nup153 (28, 29). Our analyses do not exclude the possibility of
Nup153 becoming detached from the NPCs in infection. How-
ever, the amount of homogenously distributed Nup153 in the
cytoplasm seemed to remain unaltered as judged by confocal mi-
croscopy (Fig. 1A). Taken together, these results demonstrated
that CPV infection is accompanied by accumulation of NPCs at
the apical side of the nucleus along with a decrease in their overall
density concomitantly with structural modification of Nup153.
NPCs are anchored into the nuclear lamina (30, 31). B-type
lamins concentrate in pore-rich regions, whereas A-type lamins
are found in pore-free islands (32). Accordingly, changes in the
distribution of NPCs correlate with nuclear lamina reorganization
(19, 33). As CPV infection was accompanied by significant
changes in the distribution of NPCs, we next analyzed the distri-
butions of lamins at the apical and basal sides of the nucleus.
Immunofluorescence analysis was carried out with antibodies rec-
ognizing lamins A/C and B1 (NCL-LAM-A/C [monoclonal; Leica

jviasm.org 11707


http://jvi.asm.org

Méntyla et al.

A

YZ ‘ \

Mock-infected Infected

B 70

u Apical A/IC m Apical B1
= Basal AIC = Basal B1

60
2
Z 50
2
£ 40
)
@ 30
g
Z 20
10
0
Mock-infected Infected
cC
2 19
s 14
2 1.2
2 = Mock-
£ infected
'E 0,8
S 06 Infected
5 04
)
0,2
0
Lam A/C Lam B1

FIG 2 Distributions of lamin A/C and lamin B1. (A) Confocal yx and yz cross
sections taken through the nucleus show localization of lamin A/C (Lam A/C)
(green) and lamin B1 (Lam B1) (red) Abs in mock-infected (left) and infected
(right) cells. Arrowheads show lamin Bl-enriched areas. (B) Average intensi-
ties of lamin A/C and B in apical and basal sides of NE. (C) Surface intensity
ratio between the apical and basal sides for both lamins individually per Image]
analysis. Error bars represent the 95% confidence intervals. Bars, 10 pm.

Biosystems, Newcastle, United Kingdom] and ab16048 [poly-
clonal; Abcam, Cambridge, United Kingdom]). In virus-infected
cells, similarly to NPCs, lamin B1 was enriched in clusters along
the apical side of the NE (Fig. 2A), whereas in mock-infected cells,
lamin Bl was distributed more equally between the two sides.
These data suggested that infection affected the composition of
the lamina or the lamin epitope. To study the distributions of
lamins A/C and B1 in more detail, we first compared their inten-
sities at the apical and basal sides (n = 24) (Fig. 2B) and then
determined the surface intensity ratios (apical intensity divided by
basal intensity) for both lamins (n = 24) (Fig. 2C). At the apical
side of mock-infected cells, the intensity of lamin AC was ~16%
higher than that of lamin B1. In infection, the intensity of lamin
A/C at the apical side was significantly (P < 0.05) decreased and
was ~6% lower than that of lamin B1 (Fig. 2B). At the basal side,
the average intensities of both lamins were significantly (P < 0.05)
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FIG 3 Structural integrity of lamins. (A and B) Western blot analysis of struc-
tural integrity of lamins A/C and Bl in infected, mock-infected cells (A) and
actinomycin D (1 to 5 pg/ml)-treated cells (B). Asterisks indicate disintegra-
tion products of lamins. (C) Confocal microscopy sections of infected cells
showing distributions of lamin A/C and lamin Bl and accumulation of viral
capsids at the nuclear periphery at 24 h p.i. Bar, 5 pm.

decreased in infection in comparison with those in mock-infected
cells. Determination of surface intensity ratios showed that, in
general, lamin intensities were higher at the apical side than at the
basal side (Fig. 2C) as reported earlier (16). In infection, the sur-
face intensity ratio of lamin B1 was slightly increased whereas that
of lamin A/C was similar to that in the mock-infected cells (Fig.
2C). These results showed that infection was accompanied by a
decrease in the abundance of lamin A/C in the lamina concomi-
tantly with enrichment of lamin Bl at the apical side. We then
analyzed whether the infection-induced changes in distributions
of lamins were due to their degradation. Western blot analysis
(4.2 X 10* cells per well) indicated that lamins A/C and Bl
(ab8984 and ab16048; Abcam, Cambridge, United Kingdom) re-
mained intact in infection (Fig. 3A) but disintegrated in Act D-in-
duced (1 and 5 pg/ml, 24 h) apoptotic cells (Fig. 3B). This agrees
with earlier data showing that parvoviral nuclear egress does not
induce degradation of lamins (34). Importantly, the expression
levels of lamin A/C and B1 in the infected and mock-infected cells
were comparable (Fig. 3A). In parallel, confocal imaging showed
no marked discontinuity in lamin A/C or B1 staining in the in-
fected cells; i.e., the lamin A/C and lamin B1 layers remained con-
tinuous even when viral capsids accumulated in the nuclear pe-
riphery at late-stage infection (Fig. 3C). Finally, the apical
distributions of lamin B1, Nup153, and newly formed CPV cap-
sids in infection were compared using deconvoluted confocal yz
cross sections and analyzed with the program Image]. The apical
distribution of lamin Bl was found to be similar to those of
Nup153 (Fig. 4A, B, and C) and virus capsids (Fig. 4D, E, and F).
Importantly, virus capsids were concentrated beneath apical
NPCs (Fig. 4G, H, and I). In summary, our results indicated that,
in CPV infection, lamin B1 was enriched in the apical side con-
comitantly with an overall decrease of lamin A/C levels. Instead of
inducing degradation, parvovirus infection might influence the
organizational and/or functional status of nuclear lamins.

To conclude, we observed that, in late-stage parvovirus infec-
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FIG 4 Intranuclear localization of lamin B1, NPCs, and viral capsids. Confocal microscopy-derived apical maximum-intensity projections are visualized with
yz cross sections showing intranuclear distribution of NPCs (red) and lamin B1 (green) (A and B), virus capsids (red) and lamin B1 (green) (D and F), and virus
capsids (red) and NPCs (green) (G and H). Capsids, NPC, and lamin B1 were visualized with capsid protein, Nup153, and lamin Bl antibodies. (C, F, and I)
Normalized correlative intensity profiles from yz cross-section closeups are shown. Results of fluorescence line profile analysis of the intensity of capsids (red),
NPCs (red/green), and lamin B1 (green) in a single optical section through the center of each nucleus are shown beside each image. Analysis was performed with

ImageJ and the Plot RGB Profile plugin. A.U., arbitrary units. Bars, 10 pm.

tion, significant relocation of NPCs and reorganization of nuclear
lamina occurred at the apical side of the nucleus. These changes
were associated with the location of viral capsids in close proxim-
ity to apical NPCs. These results suggest that reorganization of the
nuclear envelope might be important for viral egress. This report
extends knowledge on parvovirus nuclear egress and the accom-
panying virus-induced changes in organization of the NPCs and
the nuclear lamina.
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