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Abstract

This review explores challenges and opportunities in developmental physiology outlined by a 

symposium at the 2014 American Physiological Society Intersociety Meeting: Comparative 

Approaches to Grand Challenges in Physiology. Across animal taxa, adverse embryonic/fetal 

environmental conditions can alter morphological and physiological phenotypes in juveniles or 

adults, and capacities for developmental plasticity are common phenomena. Human neonates with 

body sizes at the extremes of perinatal growth are at an increased risk of adult disease, particularly 

hypertension and cardiovascular disease. There are many rewarding areas of current and future 

research in comparative developmental physiology. We present key mechanisms, models, and 

experimental designs that can be used across taxa to investigate patterns in, and implications of, 

the development of animal phenotypes. Intraspecific variation in the timing of developmental 

events can be increased through developmental plasticity (heterokairy), and could provide the raw 

material for selection to produce heterochrony — an evolutionary change in the timing of 

developmental events. Epigenetics and critical windows research recognizes that in ovo or fetal 

development represent a vulnerable period in the life history of an animal, when the developing 

organism may be unable to actively mitigate environmental perturbations. ‘Critical windows’ are 

periods of susceptibility or vulnerability to environmental or maternal challenges, periods when 

recovery from challenge is possible, and periods when the phenotype or epigenome has been 

altered. Developmental plasticity may allow survival in an altered environment, but it also has 

possible long-term consequences for the animal. “Catch-up growth” in humans after the critical 

perinatal window has closed elicits adult obesity and exacerbates a programmed hypertensive 
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phenotype (one of many examples of “fetal programing”). Grand challenges for developmental 

physiology include integrating variation in developmental timing within and across generations, 

applying multiple stressor dosages and stressor exposure at different developmental timepoints, 

assessment of epigenetic and parental influences, developing new animal models and techniques, 

and assessing and implementing these designs and models in human health and development.
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1. Introduction

Comparative developmental physiology will be at the forefront of 21st century biological 

research, as it has long been recognized that maternal and environmental fluctuations shape 

the phenotype of developing organisms. In mammals, variation in maternal health and diet 

can influence the size and fitness of the fetus and newborn (Symonds et al., 2007; Vickers et 

al., 2008; Yu et al., 2013), and the eggs of egg-laying vertebrates and invertebrates are 

susceptible to different abiotic environmental conditions, including temperature, water 

availability, salinity, and respiratory gas levels (Dzialowski et al., 2002; Burggren and 

Reyna, 2011; Eme et al., 2015). Comparative developmental physiologists recognize that the 

maternal and developmental environment, as well as fluctuations in the timing of variations 

in environmental abiotic characteristics, can have permanent and possibly transgenerational 

effects on phenotype (Barker, 2004; West-Eberhard, 2005; Ho and Burggren, 2010; 

Forsman, 2014). Developmental phenotypic plasticity may allow for the physiology, 

morphology or biochemistry of the organism to adjust to fluctuations in maternal or 

environmental influences, but much less is understood about what length of time is 

necessary for a given environmental perturbation to have an effect, how long the effect 

persists, or whether the effect is passed on to subsequent generations.

The field of developmental integrative physiology includes the study of invertebrates, 

vertebrates, model and emerging-model organisms, as well as humans. Classic experimental 

designs for examining effects of environmental changes on organismal phenotype include 

comparing control groups to groups chronically incubated in altered environments, shifting 

treatment groups between control and altered conditions, and acute studies of control and 

altered treatment groups in the control or altered environmental condition. These types of 

study, in which an organism is exposed to one or two environmental ‘extremes’ (e.g. in 

temperature or oxygen), can answer questions regarding the tolerance of organisms. 

Exposure of developing organisms to extreme environmental conditions, and the shift from 

descriptive to mechanistic studies, has undoubtedly improved our understanding of 

developmental processes. However, the classic experimental designs used for examining the 

interaction between environment and phenotype cannot comprehensively answer questions 

regarding the timing, variation, onset, magnitude, or permanence of developmental 

phenotypic plasticity. Hence, developmental physiologists must not only continue to form 

new experimental questions, concepts and hypotheses, but must also examine innovative 

experimental approaches and designs to answer the questions they pose. Collectively, these 
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approaches will ensure that comparative developmental physiology continues to provide an 

important interdisciplinary link between development, physiology and evolution (Somero, 

2000; Burggren and Warburton, 2005; Warburton et al., 2006; Spicer and Rundle, 2007).

The importance of comparative and integrative developmental physiological research across 

taxa was discussed during a symposium at the 2014 American Physiological Society 

Intersociety Meeting titled Challenges from the Very Beginning: Developmental Physiology, 

Epigenetics, and Critical Windows. This review is a culmination of that discussion and 

includes highlights from the developmental physiological research presented during the 

symposium. Our symposium presented work on invertebrates, vertebrate emerging-model 

and model organisms, and discussion of experimental designs to answer fundamental 

questions in developmental physiology. The potential evolutionary importance of variation 

in the timing of developmental events (heterochrony) and of intraspecific developmental 

plasticity in event timing (heterokairy) are illustrated primarily using examples from 

freshwater and marine invertebrates. The concepts of developmental phenotypic plasticity 

and critical windows, and the experimental approaches used to assess them, are discussed 

with examples from both vertebrate and invertebrate models. The ever-growing recognition 

of the important link between intrauterine and neonatal conditions and adult onset 

cardiovascular disease in humans is demonstrated using the example of leptin 

administration. Finally, the significance of epigenetics in developmental physiology, and 

how its presence must be accounted for, is considered across a range of animal models. 

Thus, the aim of the symposium, and of this resultant review, is to highlight current, 

groundbreaking research while also generating discussion about the current challenges and 

opportunities that exist in the dynamic and growing field of developmental integrative 

physiology.

2. Evolutionary importance of variation in the timing of developmental 

events

2.1. Introduction

There is a growing view within biology that evolutionary theory needs to give greater 

prominence to processes such as developmental bias, niche construction and epigenetics 

(West-Eberhard, 2003; Arthur, 2004; Pigliucci and Müller, 2010; Laland et al., 2014; Noble 

et al., 2014). A key strand of this shift in emphasis centers around a reappraisal of the role of 

the environment from one where it only selects among phenotypes generated through 

genetic variation to one where it both selects and generates phenotypic variation (Pfenning 

et al., 2010). Hence, phenotypic and developmental plasticity are now gaining in 

prominence as potential drivers of evolutionary change (DeWitt and Scheiner, 2004; West-

Eberhard, 2005). This section focuses on the potential evolutionary role of one specific form 

of developmental plasticity, environmentally induced variation in the timing of 

developmental events.

2.2. Heterochrony from heterokairy: a potential link between ontogeny and phylogeny?

Heterochrony, defined as altered developmental timing between ancestors and their 

descendants, has been proposed as a major driver of evolutionary change (Gould, 1977; Raff 
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and Wray, 1989). Such timing differences can take the form of evolutionary alterations to 

the rate of development of different structures (Gould, 1977; Alberch et al., 1979; 

Klingenberg, 1998). More recently, however, another strand of heterochrony research has 

focused on the relative timing of developmental events through ontogeny–sequence 

heterochrony (Fig. 1) (Smith, 2001; Jeffery et al., 2005; Smirthwaite et al., 2007). This 

approach allows a broad assessment of when variation in event timing occurs during 

ontogeny (Bininda-Emons et al., 2002), and allows the inclusion of physiological traits, 

including the onset and offset of regulatory processes (Adolph, 1968; Spicer and Rundle, 

2003; Spicer, 2006).

The investigation of sequence heterochrony required the development of computational 

approaches for assessing changes in the timing sequences of developmental events within 

phylogenetic contexts (Jeffery et al., 2002; Colbert and Rowe, 2008; Laurin and Germain, 

2011). These techniques demonstrated the widespread occurrence of sequence 

heterochronies in both vertebrate and invertebrate phylogenies (Bininda-Emonds et al., 

2003, 2007; Smirthwaite et al., 2007). These analyses also provide the potential for 

generating hypotheses to explore the mechanistic basis for evolutionary changes in event 

timing (Richardson et al., 2009; Spicer et al., 2011). However, research in this area is still in 

its infancy, and hard evidence for the mechanistic basis to heterochrony is lacking.

An obvious candidate mechanism for heterochrony is for selection to act on intraspecific 

variation in the timing of developmental events (Spicer et al., 2011), and recent studies have 

shown that considerable standing variation in event timing exists (de Jong et al., 2009; 

Rundle et al., 2011; Tills et al., 2013b,c). Such variation may or may not have a genetic 

basis and could be enhanced through an interaction of the organism with its environment 

(Tills et al., 2011). Spicer and Burggren (2003) named such intraspecific, environmentally-

induced altered timing heterokairy. Their formal definition “…plasticity in the timing of 

onset of physiological regulatory systems or their components” placed heterokairy within a 

physiological context, and examples of physiological heterokairy were reviewed by Spicer 

and Rundle (2007) and Spicer (2006). There is, however, no reason why heterokairy should 

not be thought of within a more general framework, as a specific type of developmental 

plasticity (Fig. 2). Indeed, its inclusion would seem essential within the context of the 

proposed significance of heterochrony in evolution.

2.3. Heterochrony and heterokairy in adaptive contexts

One form of evidence for gauging the potential role of developmental plasticity in evolution 

is to use phylogenetically-controlled analyses to test for correlations between plasticity and 

environmental tolerance among species — the adaptive plasticity hypothesis (Van Buskirk, 

2002). Alternatively, the flexible stem hypothesis predicts that plasticity in ancestral species 

acts as a source for speciation (West-Eberhard, 2003) and can be measured as a correlation 

between variation in phenotypes produced by plasticity in descendant ecotypes (Gomez-

Mestre and Buchholz, 2006; Wund et al., 2008). While these hypotheses have not been 

tested in relation to plasticity in developmental timing, there are examples of links between 

heterochrony and heterokairy (although not named as such) within adaptive contexts. These 

inferences tend to center on exposure of taxa to new environments. In marine animals, for 
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example, historical changes in resource levels may have led to evolutionary change through 

sequence heterochrony. Example heterochronies here include advanced development of the 

left caecum in sea urchins in response to evolutionary increases in maternal provisioning 

(Snoke Smith et al., 2007) and earlier development of the feeding, veliger stage in 

gastropods to facilitate exploitation of increased levels of oceanic productivity (van den 

Biggelar and Hazprunar, 1996; Lindberg and Guralnick, 2003). Strathman et al. (1992) 

looked for parallels between the hypothesized heterochrony in sea urchins and showed 

advanced timing of juvenile structures within the species Paracentrotus lividus following 

exposure to high food rations. Further, Heyland and Hodin (2004) demonstrated that 

advanced timing of juvenile traits in larval sand dollars (Dendraster excentricus) was due to 

an increased supply of thyroid hormone in the algal food source. Evolutionary shifts towards 

a shorter larval period in spadefoot toads (Scaphiopodidae) following their expansion into 

more ephemeral habitats has also been shown to parallel a correlation between larval period 

and limb and snout lengths within species (Gomez-Mestre and Buchholz, 2006). Finally, 

kairomone-induced heterokairy in physiological traits (e.g. mantle muscle flexing, first 

heartbeat, crawling) for two freshwater snails (Radix balthica, Radix auricularia) (Rundle et 

al., 2011) matched sequence heterochronies associated with the same traits in the phylogeny 

from which the snails were derived (12 species from 3 families; Lymnaeidae, Planorbidae, 

and Physidae) (Smirthwaite et al., 2007).

While phylogenetic instances of heterochrony can be used as a basis for testing models for 

the evolutionary role of heterokairy, the study of heterokairy per se could also be used as a 

starting point for investigating the microevolutionary importance of intraspecific variation in 

event timing. Hence, the importance of heterokairy in processes such as genetic 

accommodation, genetic assimilation (Pigliucci et al., 2006; Suzuki and Nijhout, 2006) and 

costs of adaptive plasticity (Auld et al., 2010), including those of physiological traits, could 

make a significant contribution to our understanding of the importance of developmental 

plasticity in evolution. A powerful approach in this regard is where species are exposed to 

novel environments and can persist under the new conditions through plasticity, allowing a 

comparison of ancestral and derived populations (e.g. Scoville and Pfrender, 2010). There 

are currently a large number of ecosystems that are undergoing significant changes to their 

environmental conditions through biotic (e.g. introduced species) or abiotic drivers (e.g. 

increasing air and sea temperatures and occurrences of hypoxia in the sea). Several of the 

examples of physiological heterokairy outlined in Spicer and Rundle (2007) concerned the 

effects of such drivers associated with anthropogenic activities, and suggested species’ 

ability to respond to environmental change may relate to their plasticity in timing of 

developmental events. Again, this strengthens the case for the inclusion of heterokairy 

within a developmental plasticity framework.

2.4. Alternative approaches for investigating developmental event timing

Much of the phylogenetically based work on heterochrony in vertebrates has involved 

anatomical data from embryos sacrificed at different stages of their development (e.g. 

Bininda-Emons et al., 2007). Testing models for the importance of heterokairy is difficult 

for such species, given the limitations of working with preserved specimens or making 

observations from live embryos within opaque eggs. Recent advances in bio-imaging 
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technology, however, allow the simultaneous in vivo observation and videoing of multiple, 

individual embryos, including analytical techniques that can be used to quantify 

physiological responses to stress in species such as R. balthica, Danio rerio and Xenopus 

laevis (Tills et al., 2013a). Video footage at high temporal and spatial resolution enables an 

integrative approach whereby physiological, behavioral and morphological traits and their 

time of onset and offset can be measured. This technology has recently been used in studies 

of event timing in gastropod (R. balthica) embryos from which it was possible to measure 

the timing of events such as the first heartbeat, mantle muscle flexing, crawling and shell 

and radula formation (Tills et al., 2013b). It revealed high levels of intraspecific variation 

(Tills et al., 2013c) that appeared to have a genetic basis (Tills et al., 2011). A parent–

offspring comparison also revealed heritability in the timing of crawling within the egg 

capsule (Tills et al., 2013b) — current work is investigating whether such variation acts as 

the raw material for selection using a developmental plasticity approach. This demonstrates 

that using an event sequence-based approach to select a functional trait shows potential for 

investigating the evolutionary role of heterokairy. The substantial knowledge of the adaptive 

importance of crawling post-hatching in this clade of freshwater snails, including local 

adaptation in this trait (Dalesman et al., 2009, 2015), alongside its importance in 

heterochrony (Smirthwaite et al., 2007) and heterokairy (Rundle et al., 2011) add further to 

the utility of this group of invertebrates for studying event timing.

3. Critical windows in developmental physiology

3.1. What are critical windows?

The concept of phenotypic plasticity is well established, but the recognition that animals 

may show greater levels of phenotypic plasticity during certain periods, or ‘critical 

windows’, of development is a more recent area of physiological study (Burggren and 

Warburton, 2005; Burggren and Reyna, 2011; Burggren and Mueller, 2015). Critical 

windows are recognized in the medical field as time periods during which the developmental 

environment must be appropriate for phenotypic changes to occur that ensure normal 

development of, for example, motor and language skills, higher cognition and other 

neurological activities (Rice and Barone, 2000; Hensch, 2004; Hensch and Bilimoria, 2012). 

In physiology literature, however, critical windows are defined as developmental periods 

when an animal is particularly susceptible to internal or external stressors, resulting in 

changes away from the normal phenotype. For example, exposure to chronic hypoxia or 

hyperoxia throughout embryonic/fetal development or during specific developmental 

windows results in modifications to morphological and respiratory phenotypes in bird, 

mammal, and reptile embryos (Dzialowski et al., 2002; Bavis, 2005; Chan and Burggren, 

2005; Crossley and Altimiras, 2005; Bavis and Mitchell, 2008; Ferner and Mortola, 2009; 

Owerkowicz et al., 2009; Eme et al., 2011a,b, 2013a,b, 2014; Bavis et al., 2013; Marks et 

al., 2013; Tate et al., 2015). Likewise, exposure to chemical stressors such as endocrine 

disruptors, ethanol and retinoids in fish and amphibian ecotoxicology studies often 

demonstrate the negative changes in morphology and physiology following exposure during 

critical windows (Degitz et al., 2000; van Aerle et al., 2002; Ankley and Johnson, 2004; 

Maack and Segner, 2004; Ali et al., 2011). Changes in the phenotype may be transient or 

permanent in nature, having potential consequences during later ontogenetic stages of an 
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animal. It is apparent that the recognition of critical windows as a key principle in 

comparative developmental physiology is burgeoning, and the way in which we approach 

their study is of growing importance.

3.2. Current approaches in critical window research

In their simplest form, critical windows are viewed as one dimensional, and raise questions 

such as “When during development or time is there a critical window?” and, “How long is 

the critical window?” During the normal developmental trajectory of a species, a supposed 

‘normal’ phenotype is produced (Fig. 3A). Along this trajectory, there may be a critical 

window in which developing systems are particularly plastic. Therefore, if an embryo is 

exposed to an environmental stressor before or after this critical window there is no change 

in the phenotype. However, if we apply an environmental stressor during the critical 

window, then we can alter the developing phenotype, which indicates the presence of a 

sensitive period. In some instances, once the stressor is removed an animal may show self-

repair capabilities, so that at some later stage they have returned to the normal phenotype 

(Burggren and Reyna, 2011).

The one-dimensional concept of the critical window is most prevalent, as most studies have 

the straightforward aim to detect if a critical window is present or not. The response of Lake 

whitefish (Coregonus clupeaformis) embryonic metabolism, heart rate and survival to a 

temperature change at particular developmental milestones is one such example of this type 

of critical window study (Eme et al., 2015; Mueller et al., 2015). Lake whitefish were 

incubated in either constant temperatures (2, 5 or 8 °C) throughout embryonic development 

or underwent at permanent temperature shift to one of the other temperatures either at the 

end of gastrulation or the end of organogenesis (see Table 1 in Eme et al., 2015 for complete 

experimental design). Lake whitefish embryos that experienced a temperature shift at the 

end of gastrulation showed a general trend for reduced oxygen consumption rate, heart rate, 

and survival compared to embryos in constant temperatures. In comparison, embryos that 

experienced a temperature shift at the end of organogenesis did not show any change in 

metabolism or heart rate at pre-hatch, which suggests embryos show greater plasticity during 

organogenesis than during the late growth period.

Studies by Crossley and colleagues have sought to understand effects of hypoxia (10% O2) 

on development of the cardiovascular system in reptile embryos, including the American 

alligator (Alligator mississippiensis) and Common snapping turtle (Chelydra serpentina) 

(Crossley and Altimiras, 2005; Eme et al., 2011a,b, 2013a,b, 2014; Marks et al., 2013; Tate 

et al., 2015). These studies have demonstrated that chronic hypoxia throughout the majority 

of embryonic incubation (20% to 90% of incubation) causes cardiac enlargement, chronic 

hypotension, reduced mRNA expression of adrenergic and growth factor receptors, and 

reduced embryo mass. Most recently, it was demonstrated that hypoxia between 50% and 

70% of incubation only in C. serpentina embryos caused cardiac enlargement, while 

exposure to hypoxia before or after this critical window had no detectable effect on heart 

mass (Tate et al., 2015). In addition, a window for hypoxia to cause hypotension was 

identified that was much broader, 20 to 70% of incubation, and embryonic body mass was 

dependent on the duration of time spent in hypoxia without a specific critical window (Tate 
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et al., 2015). The study from Tate et al. (2015) is the first to specifically reference a ‘critical 

window’ in reptile cardiovascular development, and this area of research is a promising 

avenue for isolating important time periods in development during variable embryonic 

oxygen levels.

Indeed, perinatal exposure to hyperoxia and hypoxia in mammals causes changes to 

respiratory control that can persist through early life (see Bavis, 2005 for review). Hyperoxia 

and hypoxia both alter the hypoxic ventilatory response (HVR; the increase in ventilation 

caused by hypoxia); the majority of studies demonstrate that perinatal hyperoxia causes 

blunted adult HVR responses, and humans raised at high altitude (hypoxia) also exhibit a 

blunted HVR (Moore, 2000; Gamboa et al., 2003). Postnatal, but not adult, exposure to 

hyperoxia reduces the size of carotid bodies, demonstrating that the period immediately 

following birth is a critical window for normal development of the chemosensing carotid 

bodies (Dmitrieff et al., 2012). Therefore, for cardiorespiratory control in mammalian 

models, including humans, the perinatal and postnatal periods can represent critical windows 

for phenotypic plasticity in response to altered oxygen levels.

3.3. Interaction between exposure window, stressor dose and phenotypic modification

The studies detailed above demonstrate the usefulness of the one-dimensional critical 

window approach in providing a “first pass” for detecting periods of particular susceptibility 

or plasticity. However, this approach may overlook potentially important aspects of 

phenotypic responses within a critical window that may be revealed with a more detailed 

experimental design. A simple improvement to critical window studies is the use of multiple 

doses of a stressor. The Lake whitefish study used three temperatures, which is a very basic 

multi-dose design (Eme et al., 2015; Mueller et al., 2015). However, many studies that aim 

to detect critical windows do so using just a single dose of a stressor (e.g. Koger et al., 2000; 

van Aerle et al., 2002; Hogan et al., 2008; Hanlon and Parris, 2014), and this may influence 

the detection of a critical window. Moreover, there is potentially a strong reliance on how 

successfully a critical window is detected based on the doses used. For example, a low dose 

of a stressor may produce no phenotypic change, but a slightly higher dose may reveal 

modification, and hence a critical window (Fig. 3B). If an even higher dose is used, the 

critical window may be revealed as being wider than indicated by the lower dose, as the 

stronger dose is able to induce an effect slightly earlier in development and persist slightly 

longer at the end of the critical window. Hence, the use of multiple doses adds an extra 

dimension to how critical windows are examined. This approach contributes to the detection 

and determination of the size of a critical window, but it is limited in how we view 

phenotypic modifications occurring within a critical window.

To truly understand a phenotypic change that may occur within a critical window, we must 

examine its magnitude, not just its presence or absence. Fig. 3C demonstrates a three-

dimensional critical window in which effect size, or phenotypic change, varies based on 

when exposure occurs and the dose of the stressor applied. This three-dimensional approach, 

therefore, analyses critical windows in more detail by examining how the interaction 

between time of exposure and stressor dose alters the magnitude of the phenotypic change, 

not just if a phenotypic change is produced (Burggren and Mueller, 2015). An example of 
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the application of the three-dimensional approach is the effect of salinity during different 

developmental exposure windows on survival of brine shrimp (Artemia franciscana). 

Survival was shown to be highest following exposure to low salinity (10 and 20 ppt) 

compared to high salinity (40 and 50 ppt) early in development, but this difference 

disappeared when animals were exposed later in development (Burggren and Mueller, 

2015). This example illustrates how the magnitude of phenotypic change (in this instance, 

survival) can be examined, and visualized, in terms of the interaction of time of exposure 

and stressor dose. Such an approach can be applied across development or only with a 

period of known susceptibility as a means to examine the nuances of phenotypic 

modification.

3.4. Considerations for critical window experimental designs

The search for critical windows during development often requires a large number of 

treatments, replicates and animals. Each new exposure window or stressor dose necessitates 

the addition of another treatment, and levels of replication need to increase with treatment 

number to maintain statistical power. Thus, the animals and space required for 

comprehensive critical window studies are much greater than traditional chronic exposure 

studies, and are important considerations when designing this type of research. Besides the 

benefits of critical window studies in detecting and understanding developmental phenotypic 

plasticity, the experimental approaches outlined above can be used across a broad range of 

organisms, systems and stressors. However, for any physiological experiment the choice of 

organism is partly based on the attributes that make it ideal for the study (“Krogh Principle”; 

Krogh, 1929). As outlined above in Section 2 for studies of heterochrony and heterokairy, 

species that are relatively easy to obtain, house and care for in large numbers will also lend 

themselves to critical window studies. In terms of the system studied and whether interest is 

predominately in physiology, morphology, biochemistry or a combination of all three, the 

possibilities for critical window studies are numerous. Critical window experiments can be 

designed to target any regulatory or organ system using a vast array of relevant stressors, 

and this places critical window research as a vital contributor to the integrative nature of 

comparative developmental physiology.

Just as endpoints under examination in critical window studies may be at any level of 

organization, they may also be measured immediately following an exposure during a 

critical window or at later stage endpoints, including those post hatching/birth. While 

developmental plasticity may allow the survival of developmental stages under an altered 

environment, it also has possible long-term consequences for an animal (Burggren and 

Reyna, 2011; Kelly et al., 2012). Thus, endpoints may only be assessed in adults, as a means 

of addressing how the developmental environment influences the resultant adult phenotype. 

Furthermore, plasticity may only occur during certain critical windows of development due 

to the costs associated with phenotypic reversal or due to the negative effects on the adult 

(Bateson et al., 2004). Phenotypic changes during critical windows may be reversed, with 

animals capable of self repair (Hill and Janz, 2003). Alternatively, as occurs in the fetal 

origins of human diseases, changes may only appear at later stages and persist long term 

(Barker, 2004; Gluckman and Hanson, 2004), as discussed in more detail in Section 4.
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Future studies examining critical windows will be most successful when they utilize well-

replicated experimental designs consisting of multiple exposure windows and stressor doses, 

as this will ensure the most accurate determination of periods of phenotypic plasticity or 

susceptibility. Using experimental approaches that recognize critical windows are the result 

of the interaction between time in development, stressor dose, and the magnitude of 

phenotypic change will advance our knowledge of developmental critical windows and their 

importance in comparative integrative physiology.

4. Variation in intrauterine and neonatal development

4.1. Variation in perinatal human growth and adult disease

Evolution is more likely to occur in species that are able to adapt to a changing environment, 

and natural variation or plasticity in perinatal development helps to ensure population 

survival. With advanced technology and improved nutrition, human lifespan has been 

extended, and the long-term implications of early growth variance, as well as the timing and 

critical developmental window during which the variance occurs, have become apparent. 

The inverse relationship between body weight through two years of age and adult blood 

pressure in humans has become the prototypic example of the association between growth 

restriction during a critical window of development and subsequent adult disease (Barker et 

al., 1989; Bergvall et al., 2007; Eriksson et al., 2007). Environmental insults are known to 

influence the predisposition of growth-restricted individuals towards hypertension, 

psychological stress and increasing adult weight (Eriksson et al., 2007; Jones et al., 2007; 

Pyhälä et al., 2009). Neonatal growth restriction and adult obesity both exert detrimental 

effects on blood pressure, and growth restricted infants are at risk of central adiposity (Tian 

et al., 2006). Early life growth restriction is likely to be followed by lower adult body 

weight, and this is associated with hypertension and neural sympathetic overactivation 

(Hack et al., 2003, 2014; Boguszewski et al., 2004; Eriksson et al., 2007).

Although a relative paucity of human studies have enrolled both male and female subjects, 

available data are consistent with significant sex differences in developmental origins of 

hypertension (Intapad et al., 2014). Men with former intrauterine growth restriction (IUGR) 

have increased blood pressures and vascular resistance, and these cardiovascular risk factors 

are disproportionally exacerbated by psychological stress compared to normal birthweight 

men or IUGR women (Jones et al., 2008; Miles et al., 2011). Beyond hypertension, early 

placental insufficiency and growth restriction alter the morphology of vulnerable organs, 

including the pancreas and brain, and these morphologic alterations have been associated 

with impaired insulin secretion and adverse psychosocial outcomes (Darlow et al., 2013; 

Rozance et al., 2014). Ultimately, perinatal growth restriction increases not just morbidity, 

but also cardiovascular mortality (Barker et al., 1989).

In an analogous fashion, larger perinatal weight gain increases the likelihood of adult 

obesity and obesity-related morbidities (Tian et al., 2006). Maternal adiposity and excessive 

gestational weight gain increase the risk of a large newborn (neonatal macrosomia), 

resulting in the potential for trans-generational environmental or epigenetic inheritance of 

metabolic syndrome, a major risk factor for coronary heart disease (Pinney and Simmons, 

2012; Yu et al., 2013). The increasing prevalence of childhood obesity has led to calls to 
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mitigate key prenatal and neonatal risk factors (Gillman and Ludwig, 2013). The 

characterization of mechanistic animal models is a critical step towards identification of 

interventions that preserve the balance between insufficient perinatal growth and the risk of 

obesity-related disease.

4.2. Modeling the developmental origins of adult hypertension

While international cohort studies of humans have defined the scope of the problem, animal 

models have been indispensable in the isolation of the developmental windows and 

environmental factors that lead to fetal or perinatal programmed hypertension. The sexual 

dimorphism highlighted has been a consistent theme in additional preclinical growth 

restriction models, including studies in sheep, pigs, and rats (Roghair et al., 2009; Intapad et 

al., 2014). Consistent with human epidemiological data, studies in isogenic mice have 

demonstrated that male mice have a heightened sensitivity to even mild naturally-occurring 

neonatal growth restriction, and early catch-up growth prevents stress-exacerbated 

hypertension, but increases adiposity and diabetes susceptibility (Roghair and Aldape, 2007; 

Hermann et al., 2009). The mouse is a non-precocial species that requires at least 2 weeks of 

postnatal growth to reach a neuro-developmental stage analogous to term infants (Romijn et 

al., 1991). Therefore, studies using 1 day–14 day old postnatal mice can best model third 

trimester IUGR and the neonatal growth restriction seen almost uniformly in premature 

infants (Hack et al., 2003).

Among the potential etiologies for programmed hypertension, there is experimental support 

for primary vascular dysfunction, as well as secondarily increased vascular resistance as a 

consequence of increased sympathetic tone (Intapad et al., 2013; Mizuno et al., 2013). 

Regardless of the etiology, reactive oxygen species and the renin–angiotensin system have 

often been implicated in the propagation of growth restriction-associated vascular 

dysfunction and hypertension (Yzydorczyk et al., 2006; Roghair et al., 2009; Mizuno et al., 

2014). Both antioxidants and renin–angiotensin system antagonists have thus been shown to 

mitigate programmed hypertension in a number of species and model systems (Sherman and 

Langley-Evans, 1998; Roghair et al., 2011). Further studies are needed to define the 

independent roles of nutrient deficiency, hypoxia, renal insufficiency and other potential 

triggers, along with the critical developmental windows, in the inception of these long-term 

alterations.

While investigations into the origins of hypertension proceed, equal attention will need to be 

placed on female subjects. Investigations are more challenging in females given the 

variation in blood pressure seen throughout estrus, as highlighted by the work of Alexander 

and colleagues showing growth restricted female rats are hypertensive before puberty and 

following menopause, but are protected by endogenous ovarian function and exogenous 

estrogen therapy (Ojeda et al., 2007, 2011). In addition to sex-specific hormonal levels, male 

and female neurodevelopment appears to follow different trajectories, with studies in both 

humans and mice supporting a relative delay in neurologic susceptibility of male offspring 

(Hintz et al., 2006; Hermann et al., 2009). Further studies are needed to define and 

potentially exploit the pathways that underlie these critical differences in sex-specific brain 

and cardiovascular development.
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4.3. Identification of pathway-specific interventions: best practices using leptin as a target

As mentioned above in studies that expose mammals to altered oxygen levels, the perinatal 

period can represent a critical period that permanently alters the adult phenotype. Searching 

for a targeted intervention that could prevent hypertension without sacrificing metabolic 

health, focus has turned to the critical windows for administration of the adipocytokine, 

leptin. In adults, leptin is secreted by mature adipocytes to signal the extent of fat stores to 

the hypothalamic regions responsible for appetite regulation. During the critical window of 

late human gestation and neonatal murine development, leptin exerts vital neurotrophic 

effects that help establish adult leptin sensitivity (Erkonen et al., 2011). Because growth 

restricted infants lack adipose reserves and are leptin deficient (Pighetti et al., 2003), 

perinatal supplementation may maintain neurodevelopment and metabolic regulation in the 

absence of the need for obesity-inducing hypercaloric nutrition.

Considering the potential permanent effects of neonatal leptin supplementation on adult 

metabolic and cardiovascular outcomes, the therapeutic indication, dose, and timing of the 

intervention were important considerations (Fig. 4). Both preterm and IUGR term infants 

have significant reductions in circulating leptin levels that may benefit from 

supplementation (Su et al., 2002; Pighetti et al., 2003) but macrosomic infants are already 

hyperleptinemic and thus unlikely to benefit (Vickers et al., 2008) further demonstrating the 

perinatal period is a critical window in human development. This paradigm has been well 

supported by studies in rats and mice showing that neonatal leptin supplementation 

improves the cardiometabolic health of undernourished pups, but increases the risk of diet-

induced obesity and hypertension in non-leptin deficient controls (Trevenzoli et al., 2007; 

Vickers et al., 2008; Erkonen et al., 2011). Likewise, when neonatal leptin is administered to 

appropriately grown mice and rats at supraphysiologic doses (2.5 to 6 mg/kg/d), a metabolic 

state reminiscent of early-onset obesity is promoted, and long-term impairment in leptin-

triggered anorexia is observed (Samuelsson et al., 2013). Finally, the timing of the leptin 

replacement must match the phase of leptin-sensitive neurodevelopment. In humans, this 

includes the third trimester of gestation, but in mice, the relevant critical window of 

susceptibility extends from postnatal days 4–14 (Bouret et al., 2004; Grove et al., 2005). 

Physiologic leptin administration to lactating rats during this neonatal window confers 

protection to the offspring from diet-induced obesity in association with favorable 

alterations in hypothalamic gene expression (Picó et al., 2007; Stocker et al., 2007). 

Likewise, placing pups in large litters to elicit neonatal undernutrition leads to a lean, leptin-

responsive adult phenotype; while placement in small litters to elicit neonatal overnutrition 

predisposes the pups to obesity in association with an impairment in leptin-triggered 

hypothalamic signaling (Remmers et al., 2008; Velkoska et al., 2008; Rodrigues et al., 

2009).

During the appropriate critical period, it has been demonstrated that precise correction of 

growth restriction-induced neonatal leptin deficiency with neonatal leptin supplementation 

(0.08 mg/kg/d) blocks the programming of stress-related hypertension, elicits neurotrophic 

effects on the hypothalamus, and improves both learning and social interaction (Erkonen et 

al., 2011; Meyer et al., 2014). To further clarify the effect of isolated leptin deficiency 

during development, a leptin antagonist was administered to well grown neonatal mice, and 
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adult phenotypes were compared four months after the treatment concluded. Compared to 

saline-treated controls, leptin antagonist-treated mice had reduced brain volumes, locomotor 

hyperactivity and increased cerebral cortex leptin receptor expression (Dexter et al., 2014). 

These results confirmed that neonatal leptin modulation could exert effects in normally 

grown mice. The inverse correlation between leptin sensitivity and neonatal leptin levels 

(increased sensitivity with neonatal deficiency, decreased sensitivity with neonatal excess) is 

consistent with investigations showing obesity-related (supraphysiologic) hyperleptinemia is 

associated with selective resistance to leptin’s metabolic effects (Rahmouni et al., 2005). 

The relative insensitivity of the blood pressure versus the metabolic pathway highlights the 

need to understand better the site-specific regulatory pathways downstream of the leptin 

receptor so that targeted interventions can be developed that might selective attenuate 

leptin’s hypertensive responses, without interfering with the hormone’s appetite suppressant 

effects. Such investigations would ideally incorporate the roles of central angiotensin and 

estrogen receptors in the modulation of programmed adult hypertension (Clegg et al., 2006).

When the fetus or infant is challenged with inadequate or excessive nutrient delivery at a 

critical phase of growth and maturation, trade-offs that sustain metabolic balance may elicit 

long-term cardiovascular manifestations. Perinatal growth restriction significantly increases 

the risk of life-threatening cardiovascular disease (Barker et al., 1989). While there is 

current rationale for overnutrition to minimize the risk of irreversibly stunted brain 

development, more targeted investigations must be developed that incorporate optimized 

nutrient content (Cooke et al., 2006). As a homeostatic regulator, leptin administration at 

physiologic doses during a critical window, the third trimester through the neonatal period, 

may help mitigate the detrimental effects of an adverse perinatal environment.

5. Epigenetic influences in comparative developmental physiology

5.1. Introduction

Interest in epigenetics has expanded enormously in the last decade –in fact, a near 

exponential growth in studies focusing on epigenetic aspects of biology has been evident 

over the several decades since the introduction of the term “epigenetics” by Waddington in 

the 1940s –see Burggren (2014). Of late, epigenetics has been of considerable interest to the 

medical field because of its influence in human health. As just one of many examples, the 

“epigenetics of cancer” has been extensively investigated because of the obvious search for 

causative factors of this disease that are not related to actual genetic mutations, but rather the 

aberrant expression of the normal suite of genes (Barrow and Michels, 2014; Shukla and 

Meeran, 2014). Far less frequent – but equally interesting – are epigenetic studies that 

examine the transfer of phenotype across generations, rather than the modification of 

phenotype during development, maturation and senescence within a generation. In fact, a 

recent meta-analysis suggests that over the last 3 years intragenerational epigenetic studies 

outnumber transgenerational epigenetic studies by nearly 30 to 1 (Burggren and Crews, 

2014). In this section, we focus primarily on transgenerational epigenetic phenomena and 

their implications for comparative physiology.
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5.2. Transgenerational epigenetics and variation in physiological phenotypes

Biologists studying epigenetics have not generally considered the epigenetic inheritance of 

modified physiological processes. Yet, epigenetic effects, through the now well documented 

mechanisms of DNA methylation, histone modification, non-coding RNAs, etc. (Gluckman 

et al., 2007; Ho and Burggren, 2010; Martin-Subero, 2011; Cantone and Fisher, 2013; 

Moore et al., 2013), have many avenues by which to affect physiological processes, 

especially because of underlying molecular, cellular and gross morphological phenotypic 

modifications. Indeed, one could ask “How could physiological phenotype NOT be 

modified if profound phenotypic alterations at lower organizational levels are being 

inherited by epigenetic mechanisms?” However, as Denis Noble has recently observed, 

molecular and cellular modifications do not necessarily translate into physiological changes, 

because there are many layers of potential buffering between a molecular or cellular 

phenotype and an actual modification of physiological performance (Noble, 2015). 

Consider, for example, a modification of the Kmax of a rate-limiting enzyme that negatively 

affects the normal function of the Krebs cycle. Such a phenotype could potentially reduce 

the scope for whole body metabolic rate. Yet, this molecular phenotypic modification could 

be mitigated in a whole host of ways, including increased capillarization of muscle tissue, 

increased blood oxygen carrying capacity, reduced oxygen distance for oxygen diffusion in 

the gas exchange organs, etc. Individually or collectively, these intermediate level 

phenotypic modifications could result in a “normal” whole animal metabolic rate even with 

compromised enzymes. Consequently, epigenetic inheritance of molecular/cellular 

phenotypic modifications should not be assumed to immediately translate into the epigenetic 

inheritance of modified physiological phenotype. However, the transgenerational epigenetic 

induction or transfer of modified physiological phenotypes has been reported in numerous 

instances. Epigenetically inherited physiological phenotypic modifications include hypoxia 

tolerance, stress responses, heavy metal resistance, cardiovascular performance, and growth 

rates, to name but a few. It is beyond the scope of this section to review these changes — 

consequently the reader is referred to recent reviews (Ho and Burggren, 2010, 2012; Crews 

et al., 2012; Jablonka, 2013; Burggren, 2014; Burggren and Crews, 2014). Nonetheless, 

epigenetic inheritance of physiological phenotype is still considerably under-documented 

compared to phenotype modifications at lower organizational levels.

5.3. Forms and dynamics of epigenetic inheritance

In assessing transgenerational epigenetic inheritance of a modified physiological phenotype 

(indeed, of any modified phenotype), it is important to realize that such inheritance can take 

two general forms (Fig. 5). So-called “context-dependent” epigenetic inheritance arises as a 

result of direct exposure of the F0 animal to a stressor (e.g. hypoxia, hypothermia). Modified 

phenotype will persist across multiple generations as long as the stressor persists. This 

contrasts with “germline dependent” inheritance, which occurs as a result of the experiences 

of the germline (i.e., the eggs and sperm and even the stem cells that produce them) 

potentially persisting across generations even in the absence of the original causative 

stressor (Burggren and Crews, 2014). Transgenerational phenomena such as maternal and 

paternal effects are examples of germline dependent inheritance. Physiological examples of 

maternal/paternal phenomena effects have also been documented.
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Irrespective of the form of epigenetic modification, epigenetically inherited traits that cross 

multiple generations (e.g. F1 through Fn) or even across multiple broods within a generation 

(e.g. F1.1, F1.2, F1,3) may show interesting “epigenetic dynamics”. The loss of the modified 

phenotype is not necessarily digital, but may more accurately be portrayed as analog, where 

the modified phenotype might wash out (or even wash in) across multiple generations or 

broods (Burggren, 2015). Subtle effects such as these can complicate the measurement, and 

even detection of, physiological or other phenotypes that are epigenetically inherited across 

multiple generations.

5.4. Epigenetics in comparative and evolutionary physiology

Intragenerational epigenetic studies tracking phenotypic modifications within an organism’s 

lifetime, though squarely within the domain of medical epigenetics, are of interest to 

comparative and evolutionary physiologists. Indeed, these investigations tend to focus on the 

underlying mechanisms to explain phenotypic plasticity and especially developmental 

phenotypic plasticity (West-Eberhard, 2003; de Jong and Leyser, 2012; Kelly et al., 2012; 

Snell-Rood, 2012; Forsman, 2014; Woods, 2014). Such studies almost invariably spill over 

into considerations of fetal programming (Symonds et al., 2007; Nijland et al., 2008; 

Vickers, 2011) and heterokairy (Spicer and Burggren, 2003; Spicer and Rundle, 2007; 

Spicer et al., 2011; Mendez-Sanchez and Burggren, 2014). Transgenerational epigenetic 

studies per se are more inclined to provide insights into the influence of rapid phenotypic 

adjustments — so-called “emergency phenotypes” (G. Claireaux, unpubl.). These 

phenotypes may allow organisms to survive an abrupt, adverse change in environment (e.g. 

temperature, nutrition) that develops over the course of multiple generations. Yet, these 

modified phenotypes (which could have significant energetic and/or physiological cost) can 

be “sunsetted” should the environment return to more favorable conditions. In rapidly 

changing, unpredictable environments, epigenetically inherited physiological traits may 

actually better serve the organism than traits arising by mutation and natural selection 

(Burggren, 2014). In this respect, transgenerational epigenetic mechanisms will increase a 

population’s fitness by allowing reproduction of individuals that survive transient 

environmental stressors over an evolutionary time frame. Finally, just as is evident from 

medical epigenetics, epigenetically inherited physiological phenotypes may in fact be 

maladaptive, in which case the loss of the phenotype in subsequent generations (assuming 

the animal survives to reproduce) would restore previous levels of fitness to the population.

5.5. Best practices for experimental designs in physiological epigenetics

Experimental designs for studies probing epigenetic inheritance of modified physiological 

phenotypes start with a sound choice of animal models. If one is interested in a 

physiological effect in a specific animal, e.g. the marmot, then the experiments are done on 

marmots. However, given that our understanding of physiological epigenetic effects is still 

in its relative infancy and that we are still just beginning to understand the epigenetic 

modification of physiological phenotype, the case is compelling for animal models that 

provide tractable solutions and quick, abundant data that allow exploration of “universal 

truths” in physiological epigenetics. Hence, the same features that make certain species good 

models for other physiological experiments equally apply to epigenetic studies. Models that 

have short generation times, that are inexpensive to maintain and rear, that are highly fecund 
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and, of course, lend themselves to physiological measurements, are highly useful in 

epigenetic studies. Some familiar species now appear in the animal epigenetic literature — 

e.g. the zebrafish (D. rerio), nematode (Caenorhabditis elegans), and fruit fly (Drosophila 

melanogaster). However, some species can be excellent models for epigenetic studies 

because of special or unusual characteristics. Animals that can reproduce clonally by asexual 

reproduction (e.g. the water flea Daphnia) can help eliminate complexities introduced across 

generations by genetic variation in offspring (Andrewartha and Burggren, 2012; Verhoeven 

and Preite, 2013). Animals that can regenerate major portions of their body when bi- or 

dissected (e.g. starfish, flatworms) may also prove to be interesting animal models for 

studying the epigenetic dynamics of transgenerational physiological inheritance. If a mature 

animal consists in part of the original F0 parent and newly regenerated limbs or other body 

parts, what does F1 actually mean in this developmental mosaic?

Experiments in physiological epigenetics may also be enhanced by considering signal-to-

noise ratios (i.e. the size of the epigenetic effect against background variation in 

physiological performance). In this regard, physiological experiments in epigenetics are not 

different from any other physiological studies. However, when looking for subtle 

transgenerational effects, being able to measure a strong signal with both accuracy and 

precision may be especially important. Consider, for example, that an epigenetically 

inherited physiological phenotype that might wax or wane over a couple of generations. 

Under these circumstances, one might erroneously assume that either there is no epigenetic 

effect (when in fact a phenomenon slowly grows over the F1 and F2 generations) or that the 

effect disappears in the F1 generation (when in fact it persists at low levels in subsequent 

generations) (Burggren, 2015).

To conclude, epigenetic influences on physiological processes can range from subtle to 

profound, and within or across generations. While not all physiological studies need to 

specifically address epigenetic issues, investigators are best served by recognizing that 

epigenetic effects can contribute significantly to what might otherwise be attributed to 

variation of indeterminate origin that cannot be controlled for (Burggren, 2014).

6. Conclusion

The influence of the environment on shaping the timing of physiological, morphological 

and/or biochemical phenotypes within a species, both within a generation during 

development as well as across generations, is an area that requires the interdisciplinary 

experimental approaches characteristic of comparative physiology. Variation in phenotypes 

may be obvious for some features, such as an organism’s body size. However, variation in 

variables such as metabolism, enzyme activities, organ function, and timing of 

morphological or physiological development may require variation to be examined within 

and across generations, including the size of critical windows and the variation in timing of 

developmental events.

This review has provided examples of best practices and important areas for future 

developmental physiology research. Video footage of high-throughput (e.g., 96 well plates) 

development for individual embryos of model (D. rerio, X. laevis) and emerging-model 
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organisms (R. balthica) provides an excellent avenue to replicate and examine changes in 

the timing of developmental events in response to physiological stress (e.g., temperature or 

oxygen level changes) (Tills et al., 2013a). These types of data allow for more explicit links 

to be generated between heterochrony and heterokairy that to date are, unfortunately, largely 

treated as separate phenomena in the literature (Spicer and Rundle, 2007).

Most developmental physiology experiments utilize a single stressor dose at a single 

developmental time point, but 3-dimensional experimental designs utilizing multiple 

stressors and developmental time points will allow for the importance of the interaction 

between critical window size, stressor dose, and phenotypic modification to be demonstrated 

(Burggren and Mueller, 2015). These 3-dimensional experimental designs should adhere to 

the “Krogh Principle”; (Krogh, 1929), as appropriate model organisms are those that can be 

housed and cared for in large numbers — such as fish and amphibian embryos, as well as 

aquatic invertebrates.

Mitigating increased susceptibility to human disease during fetal and neonatal development, 

such as cardiovascular disease and hypertension, includes targeted intervention that may 

prevent hypertension without sacrificing metabolic health. Administration or alteration of 

pharmacological agents or hormones, such as leptin, should focus on determining the 

appropriate dosage and critical window for administration (Bouret et al., 2004; Grove et al., 

2005; Erkonen et al., 2011).

Epigenetic literature to date is largely skewed towards intragenerational phenomena, and 

future research would benefit from added emphasis on transgenerational experiments and 

integration between these two phenomena. In addition, molecular or cellular changes 

following environmental changes that arise through developmental phenotypic plasticity or 

epigenetic alterations may not be reflected in whole organismal phenotypic change, so care 

must be taken when arriving at definitive conclusions regarding effects of environmental 

perturbations. Lastly, clonal animals may reduce variation across treatments within an 

experiment (Andrewartha and Burggren, 2012; Verhoeven and Preite, 2013), and animals 

capable of regenerating from portions of their whole bodies (e.g. starfish, flatworms) may be 

animal models that can provide unique insights into transgenerational physiological 

inheritance.

Comparative developmental physiology will continue to provide insight into fundamental 

questions regarding the timing, duration and heritability of developmental periods that are 

critical to normal phenotypic expression.
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Fig. 1. 
Sequence heterochrony. The timing of six developmental events in an ancestral taxon and a 

derived ancestor. Note that event E shows an evolutionary change in its timing, occurring 

earlier in the developmental sequence in the descendant compared with the ancestral species. 

Comparisons of such sequence data can allow the identification of potentially adaptive 

heterochronies.
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Fig. 2. 
The potential link between heterochrony and heterokairy. The timing during development of 

the same event for two individuals from the same genotype in two environments. Genotype 

A shows an early timing but no plasticity of this event. Genotype B shows plasticity in the 

timing of this event. If this plasticity allows Genotype B to colonizes a new habitat 

(Environment 2), the new timing of this event could become fixed through genetic 

assimilation, leading to a loss of plasticity and potentially giving rise to a new genotype — 

Genotype C.
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Fig. 3. 
A) A ‘one-dimensional’ critical window, in which phenotypic modification caused by a 

stressor is dependent upon when during development the stressor exposure occurs. Most 

studies use just one dose of a stressor and a critical window is defined by a detectable 

change in the phenotype following exposure. In some instances, the animal may show self-

repair capabilities following removal of the stressor either immediately or later in the 

development or life history of the animal. B) A ‘two-dimensional’ critical window, in which 

a phenotypic modification is dependent upon time of exposure and stressor dose. This 

diagram demonstrates how the detection of a critical window and determination of its size is 

likely dependent upon the dose of a stressor used. A very low dose may detect no effect, and 

therefore no critical window. Subsequent increases in the stressor dose may detect an effect, 

with the presence of the effect occurring slightly earlier and later in development as higher 

doses are able to induce an effect at the outer bounds of the critical window. C) A ‘three-

Mueller et al. Page 28

Comp Biochem Physiol A Mol Integr Physiol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dimensional’ critical window, in which the magnitude of the phenotypic change is 

dependent upon the time of exposure and the stressor dose. This three-dimensional critical 

window design compares how effect size (e.g., phenotypic change) varies based on when 

exposure occurs and the dose of the stressor applied. In this instance, it is not just if an effect 

is present or absent that defines a critical window, but the extent of phenotypic modification 

within the window, and how it may vary, is also considered.
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Fig. 4. 
In rodents, the neonatal period is a critical window of hypothalamic development and 

adipose deposition. During this time, variations in growth rates and leptin levels interact and 

help establish the susceptibility to adult obesity.
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Fig. 5. 
Phenotypes can be inherited through either genetic or epigenetic means. Epigenetic 

inheritance can be either context-dependent, where the developing animal is directly 

exposed to a stressor or germline-dependent, where the modification results from the 

experiences of the germline. (After Burggren and Crews, 2014).
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