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Abstract

Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure 

rate following radiotherapy. Despite many efforts to develop new dose-volume models for early 

detection of tumor local failure, there was no reported significant improvement in their application 

prospectively. Based on recent studies of biomarker proteins’ role in hypoxia and inflammation in 

predicting tumor response to radiotherapy, we hypothesize that combining physical and biological 

factors with a suitable framework could improve the overall prediction. To test this hypothesis, we 

propose a graphical Bayesian network framework for predicting local failure in lung cancer. The 

proposed approach was tested using two different datasets of locally advanced NSCLC patients 

treated with radiotherapy. The first dataset was collected retrospectively, which is comprised of 

clinical and dosimetric variables only. The second dataset was collected prospectively in which in 

addition to clinical and dosimetric information, blood was drawn from the patients at various time 

points to extract candidate biomarkers as well. Our preliminary results show that the proposed 

method can be used as an efficient method to develop predictive models of local failure in these 

patients and to interpret relationships among the different variables in the models. We also 

demonstrate the potential use of heterogenous physical and biological variables to improve the 

model prediction. With the first dataset, we achieved better performance compared with 

competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly 

higher performance compared to individual physical and biological models, with the biological 

variables making the largest contribution. Our preliminary results highlight the potential of the 

proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.
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1. Introduction

Lung cancer is a leading cause of cancer death in both men and women worldwide 

(American Cancer Society 2008). Of all lung cancer cases, approximately 80% are classified 

as non-small cell lung cancer (NSCLC). About 25% to 40% of NSCLC patients are in 

locally advanced stage III upon diagnosis (Choy et al 2005). For these patients with 
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advanced and inoperable stage, a combination of chemotherapy and radiotherapy is used as 

the main treatment instead of surgical resection (American Cancer Society 2008). Local 

failure is a major issue in the treatment of patients with locally advanced NSCLC following 

radiotherapy (Armstrong et al 1995). Despite many efforts to improve treatment outcomes, 

however, a low two-year local control rate as low as 27% in these patients urgently requires 

innovative diagnostic and prognostic models to improve stratification of patients into 

different risk groups of patients who may need less than the standard dose, thus less toxicity, 

or of patients who may need a more intensive therapy, yet possibly more toxicity, to achieve 

local control (Abramyuk et al 2009).

In our previous works (Mu et al 2008, El Naqa et al 2010), we have used various approaches 

to extract relevant dose-volume metrics and evaluated linear and nonlinear models to predict 

tumor local control. In this work, we propose a novel Bayesian network framework for 

modeling local failure for patients with locally advanced NSCLC. A Bayesian network can 

be a useful tool to create individualized predictive models due to several attractive 

characteristics: (1) it provides ability to approximate complex multivariable probability 

distributions of heterogeneous variables as interpretable local probability distributions; (2) it 

can incorporate prior clinical and biological knowledge; (3) it enables easy visualization and 

interpretation of interactions among variables of interest for clinical use; and (4) it can be 

also used as a classifier based on a learned network structure. These characteristics have led 

to various studies increasingly using this technology in the oncology field. Recently, 

Jayasurya et al (2010) proposed a Bayesian network model for survival prediction in lung 

cancer patients. They also showed that the Bayesian network can be efficiently used when 

handling missing data compared with other learning techniques. Velikova et al (2009) 

designed a multi-view mammographic analysis system using a Bayesian network framework 

to detect breast cancer at patient level and demonstrated the potential of the system for 

selecting the most suspicious cases. Chen et al (2006) proposed an effective Bayesian 

structure learning method based on the mutual information and K2 algorithm to reconstruct 

reliable gene networks. van Gerven et al (2008) demonstrated the development of a 

prognostic model for carcinoid patients using dynamic Bayesian networks. Armañanzas et al 

(2008) used a hierarchical Bayesian structure learning method to detect gene interactions. 

Smith et al (2009) developed a prognostic model for prostate cancer with intensity 

modulated radiation therapy (IMRT) plans and calculated a quality-adjusted life expectancy 

for each plan using Bayesian networks.

The aim of this study is to develop an efficient method for Bayesian structure learning that 

can be used to predict local failure in lung cancer post-radiotherapy treatment. Our proposed 

method was tested with two different datasets. We show that the proposed method 

outperforms classical Bayesian-based classifiers and that incorporating physical and 

biological factors into the Bayesian network can further improve the predictive power. It is 

our expectation that the proposed model will provide physicians with an interpretable tool 

for better prediction of early recurrence in lung cancer and lead to more individualized 

radiotherapy prescriptions.

The remainder of this paper is organized as follows. In the following section, we briefly 

review the concept of Bayesian network analysis. In section 3, we describe the datasets used 
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in this study and our proposed method for Bayesian network structure learning. The 

experimental results including comparisons with other Bayesian-based algorithms are 

presented in section 4. We finalize our work with discussion and conclusions in sections 5 

and 6.

2. Bayesian network

A Bayesian network is a probabilistic graphical model that encodes a joint probability 

distribution among variables of interest (Sarkar and Boyer 1993, Heckerman and Breese 

1996, Friedman et al 1997, Lucas 2005). A Bayesian network forms a directed-acyclic graph 

(DAG) by a set of nodes (representing the variables) and a set of directed edges 

(representing relationships among the variables). Given n variables, X = {X1, X2, ···, Xn}, the 

joint probability distribution can be decomposed into a product form of conditional 

probability distributions:

(1)

where P a(Xi) indicates the set of parents of Xi in the Bayesian network.

Learning a Bayesian network structure is a task to find a DAG that best represents the 

dataset. This process consists of two main components: a scoring function and a search 

strategy (Chen et al 2006). The scoring function is used to evaluate how well the Bayesian 

structure represents the dataset. Given a scoring function, the goal is to identify the highest-

scoring Bayesian network structure among all possible network structures, which amounts to 

a search problem. In Bayesian structure learning, however, a challenging problem is that the 

search space increases super-exponentially as the number of nodes increases, usually 

resulting in an NP-hard problem. Therefore, since an exhaustive search is not practicable, 

heuristic search strategies, including hill climbing and K2 are alternatively utilized. The K2 

algorithm employs a greedy search strategy, which dramatically reduces the computational 

complexity in learning the Bayesian network structure by using a prior ordering of all the 

nodes (Cooper and Herskovits 1992). Therefore, following a K2 strategy, the key to 

successful Bayesian structure learning lies in choosing a correct node ordering.

3. Materials and methods

In this study, we tested the proposed Bayesian structure learning method with two different 

datasets collected at Mallinckrodt Institute of Radiology. The description of the datasets is 

followed by our proposed approach.

3.1. Local control

The clinical endpoint chosen for the study was local control. Following our institutional 

guidelines, patients were considered to have local control of disease if they had an initial 

radiographic response on CT images to treatment and a stable mass at each follow-up visit. 

Otherwise, patients were considered to have local failure if clinical, radiographic, or biopsy 

evidence of progression was observed. A minimum follow-up of six months was used.
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3.2. Dataset A

This dataset consists of 56 NSCLC patients who received 3D conformal radiation therapy 

with a median prescription dose of 70 Gy (60–84 Gy) as part of their treatment and had a 

median follow-up of 32 months. Nine patients received sequential chemotherapy and 14 

received concurrent chemotherapy. The patients were treated between March 1991 and 

December 2001 and were included in the study if they had complete treatment planning and 

follow-up records, at least six months of follow-up, and a discrete primary tumor exclusive 

of nodal regions. The original treatment plans were homogeneous with dose calculated to 

water, therefore, Monte Carlo simulations were used to correct the dose distributions for 

tissue heterogeneity (Lindsay et al 2007). With observations throughout a median follow-up 

period of 16 months for the endpoint of local control, the patients were divided into a local 

failure group (n = 22) and a control group (n = 34). In our previous work (El Naqa et al 

2010), we used logistic regression with resampling methods to extract top five predictive 

models of tumor local control, each of which consisted of two variables, with the highest 

frequency on bootstrap analysis.

Coalescing these models resulted in the following five variables: the volume receiving at 

least 60 Gy (V60), the volume receiving at least 75 Gy (V75), PreTxChemo (indicating 

whether or not a patient received a chemotherapy before radiotherapy), gross tumor volume 

(GTV), and age. We used these five variables to test the proposed Bayesian structure 

learning method, whose values were extracted using our in-house software (DREES: dose-

response explorer system) (El Naqa et al 2006b).

3.3. Dataset B

This dataset was collected prospectively and was approved by the Human Research 

Protection Office at our institute. The patients were not surgical candidates and had a 

discrete primary tumor (stage IIIb). In the study protocol, blood sera were drawn at pre-

treatment and mid-treatment of radiotherapy NSCLC patients in addition to collecting 

clinical and dosimetric variables as in Dataset A. A total of 18 patients were evaluable for 

the current study. Three patients received sequential chemotherapy and 15 received 

concurrent chemotherapy. This dataset allows for unique integration of physical and 

biological variables. After post-evaluation throughout a median follow-up period of 16 

months, the patients were divided into a local failure group (n = 8) and a control group (n = 

10). With this dataset, the goal is to investigate and analyze interactions among 

heterogeneous physical and biological variables and to evaluate the complementary role of 

these variables in improving the prediction of tumor local control in NSCLC patients post-

radiotherapy treatment.

This dataset included four selected biomarker proteins besides the physical variables 

described above. The biomarkers were selected because of their potential role in tumor 

response in lung cancer as described in literatures below. The four chosen biomarker 

proteins are as follows: transforming growth factor β (TGF-β), interleukin-6 (IL-6), 

angiotensin converting enzyme (ACE), and osteopontin (OPN). As mentioned earlier, these 

blood-based candidate proteins were selected based on previous reports linking their serum 

expression to tumor response post-radiotherapy treatment. Serum levels of ACE have been 
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associated with poor prognosis in NSCLC, which is believed to be involved in the induction 

of apoptosis by TNF-α pathway (Varela and Saez 1993). In a recent study, OPN in serum 

has been shown to be a good correlate of tumor hypoxia and a significant prognostic factor 

of relapse risk (Le et al 2006). In addition, Rübe et al (2008) have reported that circulating 

cytokines (IL-6 and TGF-β1) in patients receiving radiotherapy for advanced NSCLC 

showed higher correlation with tumor response rather than lung inflammation contrary to 

what was previously reported. We measured expressions of these proteins using enzyme-

linked immunosorbent assay (ELISA). As physical variables, two variables (V75 and GTV) 

were chosen from the top model in our previous study (refer to Section 3.2). In addition, 

tumor regression volume on 4D-CT images between pre-treatment and mid-treatment was 

measured using an active contour tracking algorithm (El Naqa et al 2008). Figure 1 shows 

two snapshots of pre-treatment tumor contour and mid-treatment contour estimated by the 

tracking algorithm using end-of-exhalation 4D-CT data.

3.4. Preprocessing

In general, for Bayesian structure learning and evaluation of Bayesian classifiers, variables 

are discretized into two or three bins. For the determination of discretization boundaries, 

researchers have used the mean and standard deviation or the equal width. In both cases, 

however, it is difficult to find the optimal boundaries. Recently, Kuschner et al (2010) 

proposed an efficient binning method based on mutual information using a three-bin 

strategy, where bin boundaries are determined such that the mutual information of each 

variable given the treatment response class is maximized. As a result, each variable is 

discretized into three bins: high, medium, and low. For example, in discretizing the 

expression of a protein, the medium bin provides little or no discrimination between tumor 

recurrence and tumor control while the high and low bins show a large difference between 

the two groups. We applied the same approach for discretization to our datasets except for 

the class variable that is binary.

Mutual information is a measure of the mutual dependence of two random variables (for 

example, a class label (tumor recurrence or control) and a protein’s abundance). For two 

discrete random variables X and Y, the mutual information between them is defined 

mathematically as

(2)

where x and y represent all the possible values in X and Y, respectively, and P (x, y) 

represents the joint probability on the values x and y (Kuschner et al 2010).

3.5. Markov Chain Monte Carlo (MCMC) algorithm

To efficiently search the space of Bayesian network structures, a Markov Chain Monte 

Carlo (MCMC) method based on the Metropolis-Hastings algorithm was applied using the 

Bayes Net Toolbox (BNT) for Matlab, which rapidly converges to a locally optimal 

structure (Murphy 2007). We accumulated the Bayesian structure information of each 
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MCMC run as follows. Let eij be the arc from variable Xi to variable Xj. Then, we define aijk 

as

(3)

The number of occurrences of an arc eij over m runs of MCMC is

(4)

Therefore, a matrix M that contains the number of occurrences for all edges can be 

expressed as

(5)

3.6. Maximum spanning tree

After several runs of MCMC algorithm, a weighted directed graph represented by the matrix 

M was populated. We applied a directed maximum spanning tree algorithm based on Chu-

Liu/Edmonds’s algorithm to the weighted directed graph (Chu and Liu 1965, Edmonds 

1967). As a result, a directed graph was obtained, from which we gained a node ordering 

that can be used as an input to the K2 algorithm. Specifically, from a weighted directed 

graph G = (V, E) where V is the set of nodes and E is the set of possible edges between pairs 

of nodes, and there is a weight w(u, v) for each edge (u, v) ∈ E, a directed maximum 

spanning tree is found such that the total weight of an acyclic subset T ⊆ E that connects all 

the nodes

(6)

is maximized. Figure 2 illustrates an example of the use of a directed maximum spanning 

tree algorithm.

3.7. K2 algorithm

As mentioned earlier, exhaustive search over the space of the DAGs is computationally 

impractical. Therefore, greedy searches such as K2 are typically used. The K2 algorithm is 

one of the most frequently used Bayesian structure learning methods, which dramatically 

reduces the computational complexity by using a prior ordering on all the nodes (Cooper 

and Herskovits 1992). Thus, for the successful Bayesian structure learning with K2 
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algorithm, knowing the node ordering is essential. In this study, we proposed a novel 

method for finding the node ordering that is used as an input to the K2 algorithm. The 

overall proposed K2-based Bayesian structure learning (K2BSL) algorithm is presented in 

Table 1.

3.8. Classification

A Bayesian network can also be used for evaluation of classification performance. Suppose 

that for a test sample, the values of all nodes but the class label node c are known. Then, the 

Bayesian classifier assigns the test sample to a class with the highest posterior probability 

that is mathematically determined according to Bayes’ theorem (Pernkopf and O’Leary 

2003):

(7)

As a simple Bayesian classifier, the naive Bayes assumes that each variable is conditionally 

independent of the remaining variables given the class label so that the conditional 

probability density function is expressed as follows:

(8)

Therefore, using Bayes’ theorem the most probable class label can be found by:

(9)

To relax the restrictive independence assumption behind the naive Bayes classifier, an 

extended model called tree augmented naive Bayes or TAN classifier was proposed 

(Friedman et al 1997). It produces a tree-like structure taking into account additional 

dependencies among the variables, in which the class node directly points to all nodes and 

each node can have one additional parent from other nodes.

3.9. High-confidence Bayesian network

For unbiased evaluation of the proposed method, we performed the K2BSL algorithm q 

times using r-fold cross validation and the results were averaged. As a result, we attained 

q×r Bayesian network structures. To find a high-confidence Bayesian network, we 

employed a hierarchical structure learning method proposed by Armañanzas and his 

colleagues (Armañanzas et al 2008). Similar to Eqs. (3) and (4), we define the following 

equations:

(10)

and
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(11)

As the gij(≤ q × r) is larger, the relationship between variable Xi and variable Xj is more 

likely to be reliable. Let t be the confidence threshold and let Lt denote the set of edges that 

meet the following condition:

(12)

Starting from the maximum confidence threshold, tmax = max{gij} for i, j ∈ {1, …, n}, we 

attempt to build a Bayesian network structure. If the maximum confidence threshold is 

unique, there exists only a single dependency between the corresponding two nodes in the 

initial graph. Decreasing the confidence threshold by 1, we keep building the Bayesian 

network connecting the corresponding edges while avoiding cyclic pitfalls. This process is 

continued until a predefined confidence threshold is reached. The algorithm for 

identification of a high-confidence Bayesian network is presented in Table 2.

4. Results

4.1. Analysis of Dataset A

With the Dataset A described in Section 3.2, we tested the proposed method using clinical 

and dosimetric variables. For evaluation of classification performance we iterated 20 times 

using 5-fold cross validation and the final results were averaged. As performance evaluation 

metrics, in addition to the area under the receiver operating characteristic (ROC) curve 

(AUC) and the Spearman’s rank correlation (rs) coefficient that was used in our previous 

work (El Naqa et al 2010), we also used accuracy (acc) and Matthew’s correlation 

coefficient (r) that are respectively calculated as follows:

(13)

(14)

where T P and T N are the number of patients correctly classified in the local failure and 

control group, and F N and F P are the number of patients falsely classified in the local 

failure and control group, respectively. r takes a real value in the range of [−1.0, 1.0]. A 

coefficient of +1 means a perfect classification while −1 represents a perfect inverse 

prediction.

For comparison, we also carried out naive Bayes and T AN classifiers using the WEKA 

software package (http://www.cs.waikato.ac.nz/ml/weka/) (Witten and Frank 2005). Figures 

3 and 4 show the experimental results for three different Bayesian-based classifiers. The 

results demonstrate the feasibility of the proposed method with an accuracy of 80.18%, r = 

0.5818, and AUC = 0.8201 achieving a better performance over other two methods (naive 

Oh et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2015 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cs.waikato.ac.nz/ml/weka/


Bayes with an accuracy of 74.05%, r = 0.4912, and AUC = 0.8326 and TAN with an 

accuracy of 62.86%, r = 0.3092, and AUC = 0.5410). It is worthy to note that the proposed 

method (with the smaller error range) is more stable compared to the other two Bayesian-

based classifiers. Note that TAN classifier had the worst performance in our experiments 

despite the more restrictive assumption of naive Bayes classifier. In addition, with the 

probabilities the Bayesian network predicted and outcomes for test samples, rs of the 

proposed method was 0.5811.

Figure 5 displays the acceptance ratio (i.e., the frequency of acceptance of proposed samples 

to the frequency of rejection in the Metropolis-Hastings algorithm) versus the number of the 

iteration steps in MCMC simulation including the “burn-in” period of 1,000 runs. As can be 

seen in the figure, roughly after the burn-in period, the acceptance rate somewhat converges. 

Figure 6 illustrates a Bayesian network structure with high-confidence dependency 

constructed by the proposed method to predict the local failure in lung cancer. The arrows 

indicate cause-effect relationships, pointing from cause to effect (Jayasurya et al 2010).

4.2. Analysis of Dataset B

We also conducted experiments with the Dataset B described in Section 3.3. The Dataset B 

consists of physical variables and four biomarker proteins. For physical variables we used 

two variables (V75 and GTV) selected from our top logistic regression analysis in addition 

to volume regression between pre- and mid-treatment. To test the importance of each type of 

variables in prediction of local failure, we generated three different sub-datasets each of 

which consisted of physical variables, biomarker proteins, and physical variables+biomarker 

proteins. However, the small number of samples (n = 18) in this dataset might lead to biased 

estimates. As an alternative to overcome this small sample size problem, we applied the 

following resampling scheme. First, leave-one-out cross-validation (LOO-CV) was 

performed in which at each iteration, one out of the 18 available samples was reserved for 

testing, while using resampling with replacement from the remaining 17 samples, 2 × (n − 1) 

bootstrap samples (b = 34) were randomly generated for training. Note that the testing 

sample was not included in the new 34 training samples. Then, with these resulting testing 

and training sets, the same method described in Section 4.1 was repeated. Finally, we 

iterated this procedure 20 times and averaged the results as previously.

As can be seen in Table 3, when both physical variables and biological proteins were used, a 

slightly better performance (with a classification accuracy of 87.78%, r = 0.7396, rs = 

0.7512, and AUC = 0.9527) was obtained compared to an accuracy of 86.11%, r = 0.7042, 

rs = 0.7168, and AUC = 0.9497 and an accuracy of 85.00%, r = 0.6933, rs = 0.6946, and 

AUC = 0.9457 with biomarker proteins and physical variables alone, respectively. From 

these results, it is implied that the contribution of biomarker proteins in classification of this 

dataset is considerable. To estimate the importance of each protein, we carried out the same 

experiments with only three proteins included in the network (excluding one protein at a 

time). Interestingly, we found that when OPN was removed, the performance was least 

degraded, suggesting that the contribution of OPN is relatively small compared to 

inflammatory cytokines in this case.

Oh et al. Page 9

Phys Med Biol. Author manuscript; available in PMC 2015 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7 shows the acceptance rate of MCMC simulation including the burn-in period of 

1,000 runs. It is interesting to note that the acceptance rate quickly converged in this case. 

Figure 8 illustrates a Bayesian network structure with the high-confidence dependency to 

predict the local failure in lung cancer using heterogeneous variables. From this figure, it is 

observed that overall the physical variables affect protein expressions as would be expected. 

Figure 9 displays a Bayesian network structure built using biomarker proteins only. As 

shown in this figure, ACE points to TGF-β and OPN, which interestingly agrees with the 

signalling model assumed in the case of radiation-induced lung injury summarized by 

Fleckenstein et al (2007).

4.3. Evaluation of strategy effects on Bayesian structure learning algorithm

Our Bayesian structure learning algorithm was designed based on MCMC and K2 

algorithms, in which the MCMC algorithm is used to obtain a node ordering that is fed as an 

input into the K2 algorithm. This idea was driven by the fact that the K2 algorithm is well 

known as a good Bayesian structure learning method in case where the node ordering is 

given. To test the role of K2 algorithm, we excluded it from the process and results are 

summarized in Table 4. That is, the table shows the results when Step 5 in Table 1 was not 

used, where the DAG is obtained by the directed maximum spanning tree algorithm only. 

For all cases, the performance was degraded considerably (particulary, when biomarker 

proteins were used) compared to that of the proposed method (an accuracy of 80.18%, 

r=0.5818, rs=0.5811, and AUC = 0.8201 using Dataset A, and an accuracy of 87.78%, 

r=0.7396, rs=0.7512, and AUC = 0.9527 using all variables in Dataset B).

In addition, to evaluate the effect of using the collective information from MCMC 

simulation, we tested the proposed method using the last model (Bayesian structure) after 

the completion of MCMC simulation. Table 5 displays the experimental results when Step 3 

through 5 in Table 1 were excluded and the last model after MCMC simulation was used. 

Again, it is observed that the performance in all cases was somewhat degraded against the 

proposed method, but better than that shown in Table 4. Note that when biomarker proteins 

were used, the degradation of the performance is negligible. This suggests that the model 

after MCMC simulation is very reliable, which can be confirmed from Fig. 7 where the 

acceptance rate converges very quickly. The Bayesian classifier is based on probability to 

decide the class label of a test sample. To do that, we used Eq. (7), that is, a test sample is 

assigned to a class label that has probability more than 50% in binary problems. Changing 

the decision threshold (τ) from 0 to 1 (assigning a test sample to the control group if 

p(control group|X1, X2, ···, Xn) > τ), we generated ROC curves. The ROC curve is a useful 

tool to measure the discriminative value between two diagnostic groups, plotting the true 

positive rate (TPR) against false positive rate (FPR). Figure 10 displays ROC curves for the 

proposed method, the last model after the MCMC simulation, and the method without K2 

algorithm using Dataset B.

4.4. Evaluation of Bayesian structure across different datasets

To analyze dataset effect, we used Dataset B for testing, and evaluated the Bayesian 

structure learned from Dataset A. It is noticed that when all five variables mentioned in 

Section 3.2 were used, the following performance was achieved: an accuracy of 61.11%, r = 
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0.2039, rs = 0.2510, and AUC = 0.6062. However, when only GTV and PreTxChemo 

variables were selected, much better performance was attained: an accuracy of 77.78%, r = 

0.5534, rs = 0.2854, and AUC = 0.6500. These results may suggest that variable selection 

across different datasets may play a critical role in deciding optimal performance.

5. Discussion

In this work, we investigated a Bayesian network approach for building predictive models of 

tumor local failure post-radiotherapy in locally advanced NSCLC patients. The proposed 

methods for Bayesian structure learning and classification of local failure performed 

relatively well when applied to the larger retrospective and the smaller prospective datasets. 

Our Bayesian structure learning algorithm was designed based on MCMC and K2 

algorithms. We have shown that this combination is important to achieve good structure 

learning of the Bayesian network. The detailed network in this case with variable ranges and 

conditional probability tables is given in Fig. 11 for reference. When using one dataset for 

training and the other one for testing, the role of pre-treatment chemo seems to emerge as a 

more relevant variable. In our experiments, the Bayesian network based on biomarkers only 

seemed to provide a better performance than using physical variables only, and a combined 

model had slight performance improvement overall. Although the datasets we have used 

were relatively small and insufficient to deduce rigorous clinical or biological cause-effect 

relations, it is interesting to note that the Bayesian network showed interesting trends that 

agreed with existing knowledge in several cases. Other conflicting issues would require 

further analysis to understand the nature of interactions. Nevertheless, we believe that the 

presented methodology in this paper would be even of greater value once such data is made 

available.

6. Conclusions

We proposed a novel Bayesian structure learning method for modeling local failure in 

NSCLC patients after radiotherapy. The proposed approach was tested with two different 

datasets. We demonstrated that the proposed method has the potential to improve the 

prediction power of tumor local failure. We also showed that the Bayesian network can be 

used as a useful tool for identification of interactions among heterogeneous variables. Our 

experimental results indicate that the integration of heterogeneous variables can increase the 

prediction power of tumor response with higher contribution from biomarkers. However, 

evaluation on larger datasets is necessary to elucidate these observations.
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Figure 1. 
Snapshots taken from our in-house software (CERR). Contours represent planning target 

volume (blue), initial gross tumor volume (green), and shrinkage of gross tumor volume 

(red).
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Figure 2. 
A directed maximum spanning tree that starts from a node s. The bold lines indicate the 

edges in a directed maximum spanning tree. The total weight of the tree shown is 96: w = 

ws1 + ws2 + w25 + w53 + w54=30+5+4+27+30=96. The node order is [s,1,2,5,3,4].
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Figure 3. 
Accuracy of Bayesian-based classifiers including the proposed method, naive Bayes (NB), 

and tree augmented naive Bayes (TAN) with the Dataset A.
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Figure 4. 
MCC of Bayesian-based classifiers including the proposed method, naive Bayes (NB), and 

tree augmented naive Bayes (TAN) with the Dataset A.
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Figure 5. 
MCMC simulation with 1,000 burn-in runs using the Dataset A.
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Figure 6. 
A Bayesian network constructed using the Dataset A.
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Figure 7. 
MCMC simulation with 1,000 burn-in runs using the Dataset B.
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Figure 8. 
A Bayesian network constructed using combined biomarker proteins and physical variables 

in Dataset B.
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Figure 9. 
A Bayesian network constructed using biomarker proteins in Dataset B.
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Figure 10. 
Comparison of ROC curves for the proposed method, the last model after the MCMC 

simulation, and the method without K2 algorithm using Dataset B.
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Figure 11. 
(a) A Bayesian network with probability tables for combined biomarker proteins and 

physical variables in Dataset B. (b) The binning boundaries for each variable.
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Table 1

K2-based Bayesian structure learning (K2BSL) algorithm.

Step 1. For each variable Xi (i=1, …, n), run the binning algorithm using the mutual information with respect to the class variable c, I(Xi; c)

Initialize a matrix Mn×n = []

Step 2. Repeat the MCMC algorithm m times

 Step 2.1. For all nodes

  aij=1 if there is an edge from variable Xi to variable Xj, otherwise 0

 Step 2.2. M=M+[aij]

Step 3. Run the directed maximum spanning tree algorithm and obtain a DAG

Step 4. Perform topological sort of the DAG and obtain a node order

Step 5. Run the K2 algorithm and obtain a Bayesian network structure

Step 6. Run the Bayesian classifier for test samples using c*=argmaxc p(c|X1, X2, …, Xn)
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Table 2

Algorithm for identification of a high-confidence Bayesian network.

Step 1. Repeat q times

 Step 1.1. Perform r-fold cross validation

  Step 1.1.1. Run Step 2 through Step 5 in K2BSL algorithm with training samples

  Step 1.1.2. Run Step 6 in K2BSL algorithm with testing samples

Step 2. Compute the performance on average

Step 3. Find a high-confidence Bayesian network from the q×r induced models
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Table 3

Performance measurements obtained using the Dataset B with different kinds of variables.

Variables\Measurement acc r rs AUC

All variables 0.8778 (0.0777) 0.7396 0.7512 0.9527

Biomarker proteins 0.8611 (0.0878) 0.7042 0.7168 0.9497

Physical variables 0.8500 (0.0457) 0.6933 0.6946 0.9457
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