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 Abstract 
 Chronic kidney disease (CKD) is an independent risk factor for cardiovascular disease. Recent-
ly, noninvasive and simple morphological and functional methods have been introduced to 
assess atherosclerotic vascular damage. This review describes the association of CKD with 
vascular damage as assessed by these methods. Carotid intima-media thickness (IMT) and 
coronary artery calcium score (CACS) are morphological parameters of vascular damage, and 
an ankle-brachial index (ABI) <0.90 suggests the presence of peripheral arterial disease (i.e., 
it represents advanced atherosclerosis). Several prospective studies have demonstrated that 
CKD is a risk factor for an increased IMT, an increased CACS and a decreased ABI. While it has 
not been clarified whether measuring the IMT or CACS might be useful to predict the progres-
sion of renal function decline, a reduced ABI has been demonstrated as a predictor of accel-
erated renal function decline. On the other hand, pulse wave velocity (PWV) is a marker of 
arterial stiffness rather than atherosclerosis, reflecting functional abnormalities caused by 
vascular damage, and moderate-to-severe CKD may be a risk factor for the progression of 
arterial stiffness. The measurement of functional markers, especially of PWV or pulse pressure, 
has been demonstrated to be useful to predict the rate of progression of renal function de-
cline. Thus, renal dysfunction and atherogenic states may be components of a vicious cycle, 
and vascular function abnormalities associated with atherosclerosis may accelerate this cycle. 
As the next step, we propose to examine whether improvement of vascular function abnor-
malities can interrupt this vicious cycle.  © 2015 S. Karger AG, Basel 
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 Introduction 

 In addition to conventional risk factors for cardiovascular (CV) disease, chronic kidney 
disease (CKD) is also an independent risk factor  [1, 2] . Combined disorders of the heart and 
kidney are common and have been referred to as the cardiorenal syndrome  [3, 4] . Atheroscle-
rotic vascular disorder is one of the common pathways for heart failure and kidney disease 
 [3, 4] . Clinically, atherosclerotic vascular damage is assessed by morphological and functional 
approaches. Those parameters of atherosclerotic vascular damage are used as predictors of 
future CV events  [5] , and they are a rather useful tool for the prevention and management of 
CV disease. On the other hand, the usefulness of the parameters of vascular damage for the 
management of renal dysfunction has not yet been fully clarified. 

  This review summarizes the methodologies used for the morphological and functional 
assessment of vascular damage in clinical settings and describes the pathophysiological basis 
for the association between vascular damage and renal dysfunction.

  Methodologies to Assess Vascular Damage 

 Morphological Assessments 
 Carotid Ultrasound 
 Carotid intima-media thickness (IMT) is measured by B-mode ultrasound, in which the 

distance from the intimal to the adventitial layer is measured as the width of the typical 
double line of the arterial wall. Usually, IMT is measured in the common carotid artery  [6] . 
IMT increases with the progression of atherosclerosis, and in cases with advanced atheroscle-
rosis, atherosclerotic plaques can be detected by carotid ultrasonography ( fig. 1 ). Assessing 
IMT, an increase of which is an independent risk factor for future CV events, has been demon-
strated to show acceptable reproducibility  [6, 7] . While the methodological consensus for 
standardization has been obtained and reference values have been reported  [8] , experienced 
sonographers are required for the measurement  [6, 7] . 

  Coronary Artery Calcium Score 
 Calcification of coronary arteries is strictly associated with the process of atheroscle-

rotic plaque formation; therefore, the presence of calcific deposits in the coronary arteries 
is considered to be pathognomonic of coronary atherosclerosis. Electron beam or multislice 
computed tomography is used to measure the coronary artery calcium score (CACS).
Using images of 3-mm slice thickness, CACS is calculated as the area of calcification per 
coronary segment. CACS is commonly classified into four categories: 0, 1–99, 100–399, and 
 ≥ 400  [9] . Recently, the Multi-Ethnic Study of Atherosclerosis (MESA) has reported that 
CACS allows a superior discrimination and risk reclassification as compared to other risk 
markers  [10] .

  Functional Assessments 
 Endothelial Function 
  Flow-Mediated Vasodilatation.  Flow-mediated vasodilatation (FMD) is calculated as the 

percent change of the diameter of the brachial artery (i.e., the diameter before reactive 
hyperemia vs. the maximum dilatation induced by reactive hyperemia)  [5, 11] . Usually, 
reactive hyperemia is induced by compression of the forearm by inflation of a pressure cuff 
to 200–250 mm Hg for 5 min. The limitation of this method is that it is operator-dependent, 
although recently, semiautomated devices have been introduced to overcome this disad-
vantage ( fig. 2 ).
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Normal Increased IMT Plaque

  Fig. 1.  Carotid ultrasound images with the progression of carotid atherosclerosis. 
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  Fig. 2.  Results of FMD measurement under normal and disease (impaired) conditions. 
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   Reactive Hyperemia Index Measured by Peripheral Arterial Tonometry.  The reactive hy-
peremia index measured by peripheral arterial tonometry (RH-PAT) is based on the nonin-
vasive measurement of changes in the pulsatile volume at the fingertip (before and after 
reactive hyperemia) by PAT ( fig. 3 )  [11] . The procedure for inducing reactive hyperemia is 
the same as that used for the measurement of FMD. PAT probes are placed on the index finger 
of each arm, and the post- to preocclusion ratio is calculated. The RH-PAT signals are corrected 
for the signals in the contralateral arm. FMD reflects endothelial function in the conduit 
arteries, while RH-PAT reflects endothelial function in the peripheral resistance arteries, and 
the two parameters have not been demonstrated to show a close association with each other 
 [5, 11] . However, while the two parameters may not be interchangeable markers, several 
prospective studies have demonstrated that they are independently useful for predicting 
future CV events  [5, 7, 11] . Measurements of both show acceptable reproducibility, although 
that of FMD is more operator-dependent. At present, some methodological differences exist 
in the measurement of FMD among institutions (e.g., in the placement of the pressure cuff 
above vs. below the elbow, duration of cuff occlusion, method used to determine the vascular 
diameter, and definition of maximal dilatation of the brachial artery), and there are no 
reference values. On the other hand, RH-PAT is measured by a uniform method, although 
reference values have not been established for this parameter either. 

  Pulse Wave Velocity 
 Pulse wave velocity (PWV) reflects segmental arterial elasticity  [5, 7] . Contraction of the 

left ventricle generates a pulse wave, which is propagated throughout the arterial tree. PWV 

High pressure Low
pressure

Sensing
region

Buffer
region

Antivenous pooling region

  Fig. 3.  Description of RH-PAT. 
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is calculated as the distance traveled by the pulse wave divided by the time taken by the wave 
to travel the distance: PWV = ΔL/ΔT, where ΔLm is the distance between the two sites of pulse 
wave recording (in meters) and ΔT is the time delay in the appearance of the pulse wave from 
the proximal to the distal site of the recording (in seconds). The Moens–Korteweg equation 
states that the PWV is proportional to the square root of the incremental elastic modulus of 
the vessel wall, given a constant ratio of the wall thickness to the vessel radius and blood 
density. Therefore, increased arterial rigidity and arterial wall thickness act to increase the 
PWV. PWV can be measured in any arterial segment between two pulse-wave palpable 
regions.

   Carotid-Femoral PWV.  Carotid-femoral PWV (cfPWV) is the most commonly used non-
invasive method for determining the PWV and is considered the gold standard  [5, 10, 12] . 
Usually, it is measured using the ‘foot-to-foot’ velocity method  [10, 12]  and recorded trans-
cutaneously at the right common carotid artery and right femoral artery, and the time delay 
is measured between the feet of the two waveforms. While several methodological differ-
ences existed in the measurement of the cfPWV (e.g., in the method used to determine the foot 
of a waveform or in the calculation of the path length), now, a standardized method has been 
established  [13] .

   Brachial-Ankle PWV.  Brachial-ankle PWV (baPWV) is measured using a volume-plethys-
mographic apparatus. Since baPWV only involves wrapping a pressure cuff around the four 
limbs for its measurement, it is easier to measure than cfPWV, and the measurement is also 
well-standardized. The brachial and posterior tibial arterial pressure waveforms are recorded 
by a plethysmographic sensor. baPWV reflects the stiffness of the large- to middle-sized ar-
teries  [5, 12] . The method has been primarily used in Asian populations. In the measurement 
of baPWV, the ankle-brachial pressure index (ABI) is simultaneously obtained, and when the 
ABI is <0.95, the accuracy of baPWV is diminished  [14] . Meta-analyses have already confirmed 
that not only an increased cfPWV, but also an increased baPWV, is an independent risk factor 
for CV events and that there is a significant positive relation between the baPWV and cfPWV 
(r = 0.73)  [15] . The standard value of cfPWV is 10 m/s and that of baPWV is 18 m/s  [5, 11] .

  Wave Reflections/Central Hemodynamics 
 Cardiac contraction generates a pressure pulse wave, which propagates from the heart 

to the periphery  [5, 9, 16] . On the other hand, in the arterial tree, the arteries branch and taper 
as they reach the periphery, which is associated with an increase in the arterial resistance. A 
reflected pressure pulse wave (from the periphery towards the heart) occurs at sites of abrupt 
increase of arterial resistance. Then, an interaction between the forward and reflected 
pressure pulse waves occurs in the arterial tree. Under physiological conditions, this inter-
action is observed at a distal site of the arterial tree; therefore, blood pressure is lower at the 
level of the kidney than at the level of the brachial artery. Under the condition of increased 
arterial stiffness, on the other hand, the travelling speed of the pressure pulse wave is 
increased and the interaction between the forward and reflected pulse wave is observed at a 
more proximal site of the arterial tree (i.e., the aorta). Pressure wave analysis is conducted at 
the carotid, radial or brachial artery. Since the radial bone is backboned, the radial arterial 
pressure wave can be easily recorded. Therefore, recently, radial pressure wave analysis has 
become a common approach. The AtCor and the OMRON devices are popularly used for radial 
pressure wave analysis ( fig. 4 )  [5, 12, 16] . The AtCor device estimates the central systolic 
blood pressure derived by the general transfer function of the radial pressure wave, and the 
OMRON device estimates the central systolic blood pressure derived by the regression 
equation from the directly measured late systolic shoulder of the radial pressure waveform. 
Estimation of the central systolic blood pressure based on the late systolic shoulder of the 
radial pressure wave provides comparable accuracy to that of the validated general transfer 
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function  [17] . However, standard values of pressure wave analyses/central hemodynamics 
have not yet been clearly established, and an international project to determine the reference 
values of the central hemodynamic indices is ongoing. 

  Ankle-Brachial Index 
 Normally, systolic blood pressure is higher in the lower extremities than in the arms. The 

ABI is the ratio of the ankle-to-brachial systolic pressure. The standard mode of measurement 
requires a (hand-held) continuous-wave Doppler device and a manual blood pressure cuff 
 [18] . This method allows measuring the systolic blood pressures of the posterior tibial and 
dorsalis pedis arteries. Recently, an oscillometric device has become available to measure the 
ABI  [5, 19] . This method is easier as compared to the method using the Doppler device because 
the former only involves wrapping of a pressure cuff around the four limbs. The ABI measured 
by the oscillometric method has an acceptable accuracy ( fig. 5 )  [19] . An ABI <0.90 reflects the 
presence of peripheral arterial disease. The sensitivity and specificity of an ABI <0.90 for 
>50% stenosis in the lower limb arteries are 90 and 95%  [20] , respectively. The meta-analysis 
demonstrated that not only an ABI <0.90, but also an ABI >1.40 is an independent risk factor 
for future CV events  [21] .

AI measurement
unit

Main unit

AI sensor unit

Cuff
(regular size)

BP air tube

OMRON

AtCor

  Fig. 4.  Devices used for radial 
pressure waveform analysis. 
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  Vascular Damage and Renal Dysfunction 

 Effect of CKD on the Progression of Vascular Damage as Assessed from the Morphological 
and Functional Aspects 
 Recent meta-analyses have confirmed that CKD is an independent risk factor for clinical 

outcomes such as mortality and dialysis/kidney transplantation  [1, 2] . Anemia, sympathetic 
nerve activation, oxidative stress/inflammation, endothelial dysfunction, coagulation dis-
orders, abnormal mineral metabolisms, and/or uremic toxins are thought to be additional 
risk factors for atherosclerotic vascular damage in patients with CKD  [22] . 

r = 0.90, p < 0.01 

r = 0.92, p < 0.01 
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  Fig. 5.  Correlation between the 
ABI value obtained using a Dop-
pler device and that obtained us-
ing an oscillometric device in the 
posterior tibial artery ( a ) and the 
dorsalis pedis artery ( b ). 



88Pulse 2014;2:81–94

 DOI: 10.1159/000374092 

 Tomiyama and Yamashina: Clinical Considerations for the Association between 
Vascular Damage and Chronic Kidney Disease 

www.karger.com/pls
© 2015 S. Karger AG, Basel

  IMT and CACS 
Carotid IMT has been reported to be increased even in subjects with early-stage CKD 

 [23] , and this association is especially pronounced in subjects with hypertension  [24] . 
Desbien et al.  [25]  conducted a 2-year prospective study to examine the association between 
CKD of different severities and the carotid IMT in a community cohort (n = 3,364) and demon-
strated that decreased renal function was associated with accelerated increase of the IMT. 
Furthermore, Yilmaz et al.  [26]  reported that kidney transplantation was associated with a 
decrease of the IMT within 90 days of the transplantation, and this decrease was associated 
with the improvement of the glomerular filtration rate (GFR). Thus, even early-stage CKD 
may affect the rate of increase of the carotid IMT. CACS can be assessed by electron-beam or 
multislice computed tomography. The Chronic Renal Insufficiency Cohort (CRIC) study  [27]  
reported the existence of a significant relationship between the estimated GFR (eGFR) and 
CACS: the lower the eGFR, the higher the CACS. Among prospective studies, the MESA (n = 
2,795) demonstrated that the incidence of coronary artery calcification (CACS >0) was 
higher in subjects with eGFR values of 30–59 ml/min/1.73 m 2  (27%) than in those with 
eGFR values of >90 ml/min/1.73 m 2  (12%) during a 2.4-year follow-up period  [28] . The 
Spokane Heart Study (n = 883) also reported similar findings over a 6-year follow-up peri-
od  [29] .

 Endothelial Function 
 Endothelial dysfunction is an early-stage abnormality in atherosclerotic vascular 

damage  [5, 10] , and several cross-sectional studies have demonstrated the existence of 
endothelial dysfunction in patients with CKD. Yilmaz et al.  [30]  reported that endothelial 
dysfunction was observed even in cases with early-stage CKD; however, Lilitkarntakul et al. 
 [31]  reported that endothelial dysfunction was significant only in subjects with stage 5 CKD. 
Hypertension and diabetes mellitus, both of which can cause endothelial dysfunction, are 
common disorders in CKD, and they might be confounding factors when evaluating the asso-
ciation of CKD with endothelial dysfunction  [32] . Thus, a further prospective study is 
proposed to examine whether early-stage CKD might be a risk factor for the progression of 
endothelial dysfunction.

  PWV and Wave Reflection/Central Hemodynamics 
 Several cross-sectional studies have reported the existence of a significant association 

between accelerated GFR decline and increased arterial stiffness  [33, 34] . Previously, however, 
we reported, based on a 5.6-year follow-up study (n = 2,053), that early CKD was not a risk 
factor for arterial stiffening as assessed by the baPWV  [35] . Tholen et al.  [36]  reported that 
loss of renal function had no significant impact on the increase of cfPWV during a 1-year 
follow-up period in subjects with mild CKD (n = 70, mean eGFR 52 ml/min/1.73 m 2 ). On the 
other hand, Benetos et al.  [37]  demonstrated that high serum creatinine (>1.0 mg/dl) was 
associated with an accelerated increase of cfPWV over a 6-year observation period in subjects 
with treated hypertension (n = 483). Furthermore, in subjects under maintenance hemodi-
alysis, Utescu et al.  [38]  suggested that CKD-related risk factors such as advanced glycation 
end products may contribute to the accelerated worsening of the cfPWV. Therefore, moderate-
to-severe CKD may affect the progression of arterial stiffening.

  Ankle-Brachial Index 
 ABI <0.90 is a risk factor for CV disease and reflects peripheral arterial disease, and ABI 

>1.40, which is partially related to medial layer calcification, is also a risk factor for CV disease 
 [7, 18] . In the cross-sectional Cardiovascular Health Study (CHS), Ix et al.  [39]  reported that 
CKD was associated with both high and low ABI values. Recently, Garimella et al.  [40]  have 
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demonstrated in a 9.8-year follow-up study of MESA (n = 6,814) that albuminuria is a risk 
factor for both high and low ABI values and that elevated serum cystatin C is a risk factor for 
low ABI values.

  In summary, CKD may affect the rate of progression of morphological vascular damage, 
as assessed by IMT or CACS, even in the early stages, and also serves as an atherogenic factor 
in the advanced stage of atherosclerosis. However, the effect of CKD on the rate of progression 
of functional vascular damage, such as arterial stiffening, may be significant in cases with 
moderate-to-severe CKD.

  Can Morphological and Functional Assessments of Vascular Damage be Useful to Predict 
the Progression of Renal Function Decline? 
 IMT and CACS 
 The MESA (n = 4,878) reported that increased carotid IMT is a risk factor for the 

progression of albuminuria  [41] . To the best of our knowledge, however, no study has been 
conducted to examine whether increased IMT and/or a high CACS might be a risk factor for 
accelerated GFR decline.

  Endothelial Function 
 For the assessment of endothelial function, FMD and RH-PAT are available in clinical 

settings. The former assesses endothelial function in the brachial artery, a conduit artery, and 
the latter assesses endothelial function in the peripheral resistance arteries of the forearm  [5, 
10] . They are thought to reflect different facets of pathophysiological abnormalities in the 
endothelium. While the risk factors for CV disease are also risk factors for renal dysfunction 
 [22] , controversial results have been reported concerning the significance of the association 
between endothelial and renal dysfunction. Perticone et al.  [42]  reported that endothelial 
dysfunction, as assessed by strain-gauge plethysmography during intra-arterial infusion of 
acetylcholine, which reflects the endothelial nitric oxide bioavailability in peripheral resis-
tance arteries, was a risk factor for the accelerated renal function decline during at least a 
2-year follow-up period in subjects with treated hypertension. On the other hand, in the 
MESA, Peralta et al.  [43]  reported that decreased FMD, which reflects the nitric oxid bioavail-
ability in conduit arteries, was not a risk factor for accelerated renal function decline during 
a 4.8-year follow-up period. Lerman and Zeiher  [44]  described that endothelial dysfunction 
was a predictor of CV events, which may occur remotely from the site at which the endothelial 
dysfunction was initially detected. Further study is needed to clarify whether endothelial 
dysfunction in the peripheral resistance arteries, rather than in the conduit arteries, might be 
a better predictor of accelerated renal function decline.

  PWV and Wave Reflections/Central Hemodynamics  
 Differing from other parameters of vascular damage, arterial stiffness is thought to serve 

as a risk factor for accelerated renal function decline, independent of the conventional risk 
factors for CV disease, via abnormal central hemodynamics and/or pulsatile nephropathy  [5, 
12, 16] . Elevated blood pressure is a risk factor for accelerated renal function decline, and 
conventionally, blood pressure is determined in the brachial artery. As mentioned above, the 
arterial tree has a blood pressure gradient, and under physiological conditions, the blood 
pressure is lower at more central sites than at distal sites  [5, 12, 16] . When the arterial stiffness 
increases, the travelling speeds of both the forward and the reflected pressure wave in the 
arterial tree are increased, and interaction between the two pressure waves is observed at a 
more proximal site in the arterial tree. This results in a decrease of the pressure gradient in 
the arterial tree. For the same blood pressure measured in the brachial artery, the blood 
pressure at the level of the kidney is higher in cases with increased arterial stiffness than in 
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those without increased arterial stiffness, and the renal function may decline more rapidly in 
the former cases  [5, 12, 16] . Conventionally, blood pressure is measured in mm Hg, and the 
specific gravity of mercury is 13. Therefore, a blood pressure of 140 mm Hg would corre-
spond to the energy that can push up water up to a height of 180 cm. Thus, the heart generates 

 Table 1.  Parameters related to arterial stiffness and renal function decline in prospective studies

First author 
[ref.]

Parameter 
related to 
arterial 
stiffness

Parameters of renal 
function and outcomes

CKD stage Study subjects and clinical 
characteristics

Follow-up, 
years

Main findings

Positive results
Tomiyama 
[35]

baPWV eGFRcr and proteinuria 
(dipstick analysis)
CKD <60 ml/min/1.73 m2, 
rapid eGFRcr decline (2.9 
ml/min/1.73 m2/year), 
incidence of proteinuria

eGFRcr >60 ml/
min/1.73 m2

n = 2,053; mean age = 38 
years; 20% women; all 
Japanese

5.6 baPWV was associated 
with the incidence of CKD 
and rapid eGFRcr decline, 
but not with the incidence 
of proteinuria

Peralta 
[43]

brPP and 
arterial 
elasticity 
measured by 
pulse contour 
analysis

eGFRcr and eGFRcys
Changes during the 
follow-up period

eGFRcr >60 ml/
min/1.73 m2

MESA study cohort;
n = 4,853; 49% women; 
27% black; 12% Chinese

5 brPP and parameters of 
arterial elasticity were 
associated with eGFR 
changes during the 
follow-up period

Madero 
[46]

cfPWV and 
brPP

eGFRcys
CKD <60 ml/min/1.73 m2, 
change of eGFRcys during 
the follow-up period, rapid 
eGFRcys decline (3 ml/
min/1.7 3 m2/year)

eGFRcys >60 
ml/min/1.73 
m2

Health, Aging and Body 
Composition (Health ABC) 
study cohort; n = 2,129; 
mean age = 74 years;
53% female; 38% black

3 (n = 2,068) 
and 10
(n = 1,221)
Mean = 8.9

cfPWV was associated 
with the incidence of CKD, 
and brPP was associated 
with the CKD incidence of 
CKD and rapid eGFRcys 
decline

Kim 
[47]

baPWV, cfPWV, 
and brPP

eGFRcr
Rapid eGFRcr decline
(3 ml/min/1.73 m2/year)

eGFRcr >30 ml/
min/1.73 m2 
(100/913 
subjects had 
eGFRcr 30 – 59)

n = 913; mean age = 63 
years; 45% women

3.2 brPP, but not cfPWV and 
baPWV, was associated 
with rapid renal function 
decline

Chen 
[48]

baPWV eGFRcr
eGFR slope calculated from 
more than 3 measurements 
of eGFRcr

CKD stages 3 – 5 n = 145; mean age = 69 
years; 32% women; all 
Chinese

1.1 baPWV was associated 
with the eGFR slope

Ford 
[49]

cfPWV and 
brPP

eGFRcr
Gradient of reciprocal 
creatinine plots and renal 
end point (dialysis/25% 
decline of eGFRcr)

CKD stages 3 
and 4

n = 133; mean age = 69 
years; 22% women

1.5 cfPWV was associated 
with renal function decline 
and the renal end point

Briet 
[50]

cfPWV and AI/
cPP obtained 
from carotid 
artery.

GFR determined by
51Cr-EDTA
GFR slope and end-stage 
renal disease (dialysis or 
kidney transplantation)

CKD (mean
GFR 32 ml/
min/1.73 m2)

n = 180; mean age = 60 
years; 26% women

3.1 Carotid PP, but not cfPWV, 
was associated with the 
incidence of end-stage 
renal disease

Munakata 
[51]

baPWV Microalbuminuria = urinary 
albumin/creatinine 
excretion ratio >30

Mean serum 
creatinine 0.7 
mg/dl

n = 321; mean age = 62 
years; 61% women

2 baPWV was associated 
with the incidence of  
microalbuminuria

Negative results
Tomiyama 
[52]

baPWV, rAI, 
brPP and PP2

eGFRcr and eGFRcys
Changes during the 
follow-up period

eGFRcr >60 ml/
min/1.73 m2

n = 1,229; mean age = 43 
years; all Japanese men 
without hypertension

3 None of the parameters of 
arterial stiffness/central 
hemodynamics was 
associated with the 
changes in renal function

Upadhyay 
[53]

cfPWV and AI/
cPP obtained 
from carotid 
artery

eGFRcr, eGFRcys, and 
urinary albumin/creatinine 
excretion ratio
CKD <60 ml/min/1.73m2, 
microalbuminuria = urinary 
albumin/creatinine 
excretion ratio >17 in men 
and 25 in women

eGFR >60 ml/
min/1.73 m2

Framingham study cohort;
n = 2,501 for CKD;
n = 5,339 for 
microalbuminuria;
Subjects without CKD: 
mean age = 60 years;
55% women
Subjects without 
microalbuminuria: mean 
age = 46 years;
54% women 

7 – 10 None of the parameters of 
arterial stiffness/central 
hemodynamics was 
associated with the 
incidence of CKD and/or 
microabluminuria

 brPP = Brachial pulse pressure; eGFRcr = estimated glomerular filtration rate from the serum creatinine; eGFRcys = estimated glomerular filtration rate 
pressure obtained from the second peak of the radial pressure waveform; AI = augmentation index; cPP = central pulse pressure.
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a large amount of energy during in every cardiac contraction, which is mostly absorbed in the 
aorta by its shock absorber effect. However, increased aortic stiffness attenuates this cush-
ioning effect and increases the transmission of the pulsatile energy generated in the heart to 
the peripheral microcirculation. These phenomena cause the condition referred to as pulsatile 
nephropathy that results in accelerated renal function decline  [5, 12, 16, 45] . Based on these 
logical backgrounds, several prospective studies have been conducted to examine whether 
increased arterial stiffness might be a risk factor for accelerated renal function decline  [35, 
46–53] . The results of these studies are summarized in  table 1 . Most studies demonstrated 
that parameters related to arterial stiffness and/or wave reflection/central hemodynamics 
are useful to predict the rate of renal function decline. 

  Ankle-Brachial Index 
 The Atherosclerosis Risk in Communities (ARIC) study  [54]  and the Framingham study 

 [55]  demonstrated that a low ABI represents a risk factor for accelerated renal function 
decline. Foster et al.  [55]  describe two plausible mechanisms for this association: (1) sub-
jects with a low ABI may have subclinical vascular damage in the renal arterial bed, which 
cannot be detected by GFR and/or microalbiminuria, and (2) they might also have the shared 
risk factors or preexisting systemic disease that could lead to both peripheral vascular damage 
and decreased renal function. 

  In summary, both vascular morphological and functional abnormalities are risk factors 
for the progression of renal dysfunction. Arterial stiffness/central hemodynamics are thought 
to serve as a risk factor for accelerated renal function decline, independent of the conven-
tional risk factors for CV disease.

  Conclusion 

 A vicious cycle may exist between renal dysfunction and atherogenic states even from 
their early stages. Vascular function abnormalities associated with atherosclerosis may ac-
celerate this cycle. Not only renal but also vascular assessment, especially measurements of 
arterial stiffness markers and/or wave reflection/central hemodynamics, is needed to 
evaluate the progression of this vicious cycle. As the next step, we propose to examine whether 
improvement of vascular function abnormalities, especially arterial destiffening, can inter-
rupt this vicious cycle.
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