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Abstract

This paper describes the use of continuous vector space models for reasoning with a formal 

knowledge base. The practical significance of these models is that they support fast, approximate 

but robust inference and hypothesis generation, which is complementary to the slow, exact, but 

sometimes brittle behavior of more traditional deduction engines such as theorem provers.

The paper explains the way logical connectives can be used in semantic vector models, and 

summarizes the development of Predication-based Semantic Indexing, which involves the use of 

Vector Symbolic Architectures to represent the concepts and relationships from a knowledge base 

of subject-predicate-object triples. Experiments show that the use of continuous models for formal 

reasoning is not only possible, but already demonstrably effective for some recognized informatics 

tasks, and showing promise in other traditional problem areas. Examples described in this paper 

include: predicting new uses for existing drugs in biomedical informatics; removing unwanted 

meanings from search results in information retrieval and concept navigation; type-inference from 

attributes; comparing words based on their orthography; and representing tabular data, including 

modelling numerical values.

The algorithms and techniques described in this paper are all publicly released and freely available 

in the Semantic Vectors open-source software package.1

1 Introduction

Logic traditionally relies on discrete mathematical systems, rather than the continuous 

geometric representations that are foundational in mechanics and physics. These particular 

associations between branches of mathematics and their application domains are already 

well-developed in the writings of Aristotle,2 and became de facto paradigms for centuries.

More recently, these paradigms have been challenged with many useful and startling results. 

Early in the twentieth century, discrete structures reappeared in physics partly due to the 

1http://semanticvectors.googlecode.com
2For canonical examples, compare Aristotle’s introduction of discrete symbols in logic for things that are either affirmed or denied 
(Prior Analytics, Bk I), as against the continuous treatment of physical magnitudes, locomotion, and time (Physics, Bk VI).
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development of quantum mechanics (see e.g., von Neumann (1932)). Conversely, new 

sciences such as information retrieval have incorporated continuous methods into analyzing 

language (Salton and McGill, 1983; van Rijsbergen, 2004), a traditional province of discrete 

symbolic reasoning; and continuous-valued logics such as fuzzy logic have been developed 

and applied to many areas (Zadeh, 1988). As part of this boundary-crossing development, 

this paper demonstrates that continuous methods, more traditionally associated with linear 

algebra, geometry, and mechanics, can be used for logic and reasoning in semantic vector 

models.

The uncompromising nature of discrete symbolic logic is of course vitally important to 

many applications. Most obvious perhaps is mathematics itself, where a theorem must be 

proved to be true without doubt: mathematical proof does not embrace a “partially true” 

state! But in many cases, such demonstrable certainty in results is unattainable or 

undesirable. In our criminal justice system, “beyond reasonable doubt” is the benchmark. 

Psychological experiments have demonstrated that humans judge belonging to a category 

relatively, not absolutely: for example, people are quick to judge that a robin is a bird, but 

take longer to make the same judgment for a chicken or a penguin (Rosch, 1975; Aitchison, 

2002), and the question “Was the archaeopteryx a bird?” is open to reasonable discussion. A 

variety of algebraic operators on vector spaces can be used to model such graded reasoning, 

with conceptual representations whose relationships and tendencies are learned from large 

amounts of training examples. Graded reasoning modelled in this way need not be 

probabilistic (in the sense of estimating the chance that an event will or will not take place), 

but it does need to quantify the notions of nearer and farther, stronger and weaker, and so 

on. As in quantum mechanics, probabilities of different outcomes can sometimes be derived 

from these measures of association.

This paper describes some of these methods and their applications, particularly Predication-

based Semantic Indexing (PSI), which represents traditional “subject–predicate–object” 

relationships (such as “aspirin TREATS headache”) using points and operators in a vector 

space. Section 2 introduces the traditional vector model for search engines, and how the 

vector sum and orthogonal complement can be used to add logical disjunction and negation 

to such systems. Section 3 explains why the robustness of such models stems directly from 

the mathematical properties of vectors in high dimensions: in particular, the way that in 

higher dimensions, the chances of accidentally confusing two known vectors become very 

small, even in the presence of considerable noise. These properties are crucial for the 

recovery of basic elements from compositional structures in Vector Symbolic Architectures 

(VSAs), which enrich the standard additive operations on vectors with a multiplicative 

binding operator, and are described in Section 4.

Section 5, the heart of the paper, illustrates a significant application of VSAs to logical 

deduction, a method we call Predication-based Semantic Indexing (PSI). For complex 

inferences with many pathways, PSI is sometimes especially robust (because reasonable 

doubt in one step is propagated throughout a chain of deductions), and computationally 

simple (because many logical combinations can be searched simultaneously using the same 

query, an example of entangled superposition whose mathematics is identical to that of 
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quantum theory). This section also summarizes some experimental results-to-date that 

demonstrate that PSI is already successful as a large-scale working system.

Section 6 goes on to introduce several related applications, including the discovery of 

reasoning patterns, orthogonal negation in PSI models, type-systems, orthographic encoding, 

and the representation of structured tabular data and continuous quantities. Finally, Section 7 

describes related work, in the hope of giving the reader a small taste of the wealth of 

research activity ongoing in this area, and Section 8 concludes the paper.

2 Vector Models for Search, and their Logical Connectives

In the early decades of information retrieval (roughly the 1950s to the 1980s), the challenge 

was modelled as “finding all the documents in a collection relevant to a given query”. As 

document collections grew, this swiftly became untenable, especially since the rise of the 

World Wide Web: there is no use in returning to the user every webpage that is relevant in 

some way to the query New York. This observation naturally led to the conclusion that 

search results need to be ranked: not just divided into relevant and non-relevant, but 

presented to the user starting with the most relevant. Thus, unlike mathematical truth, 

relevance has to be treated as a graded quantity.

The vector model for search (Salton and McGill, 1983, Ch. 3) is a famous response to this 

problem, other solutions including the probabilistic and fuzzy Boolean models (Baeza-Yates 

and Ribiero-Neto, 1999). A vector model search engine is created by counting the number of 

times each term occurs in each document. (A ‘term’ is a word in the vocabulary, often 

subject to normalization or tokenization rules such as “disregard very frequent words like 

the and of ”, “normalize to lower-case”, “strip off endings so that John’s becomes John”, 

etc.) This counting process creates what is known as a term-document matrix (Table 1).

In the King James Bible corpus used as an example below, this gives 12818 terms and 1189 

documents (treating each chapter as a document). Typically, modern corpora are much 

larger: representations need to scale to several million terms and sometimes billions of 

documents, which leads to a variety of challenges in sparse representations and distributed 

systems.

In this representation it’s easy to see that each term can be treated as a row-vector and each 

document as a column-vector. Multiplying each element of such a vector by an appropriate 

weight is called scalar multiplication, the operation of adding two vectors together 

coordinate-by-coordinate is called the vector sum, and these operations are crucial in the 

standard definition of a vector space (Widdows, 2004, Ch 5).

However, since the search engine needs to be able to assess similarity between terms and 

documents, a new set of document vectors D is created with the same number of coordinates 

(same dimension) as the term vectors: each such document vector d ∈ D is usually 

constructed as a weighted sum of the rows corresponding to the terms in the document, 

using appropriate weights. Using the symbols from Table 1, the coordinates dj of such a 

vector can be expressed as dj = ΣTermi∈Docj wijMij, where w is a weighting function and the 

sum is over the set of terms occurring in the given document.
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At search time, the system looks up the row for each known term in the query, and again 

adds these rows together with appropriate weights to construct a query vector q. The query 

vector is then compared with the set of document vectors, and returns the closest matches. 

The similarity between query vectors and document vectors is scored using a suitable 

overlap measure. In geometric models, the similarity measure used most typically is the 

cosine of the angle between a pair of vectors, which varies between +1 and −1 and is 

commutative. Rows of the term-document matrix are often normalized before the similarity-

comparison step, using the Euclidean or L2 norm.

The practice of using vector spaces to represent and retrieve documents goes back at least to 

the 1960’s (Switzer, 1965), one of the most famous working implementations being the 

SMART system (Salton and McGill, 1983). The model has many modern descendants, 

including (for example) Apache Lucene, a widely-used open-source search engine.3 Though 

simple and precise, the term-document matrices tend to be very sparse. To concentrate or 

distill the information in such matrices, dimension-reduction techniques are sometimes used, 

the best-known of which is singular-value decomposition. That is, an n×m matrix A can be 

factorized as the product of three matrices ÛΣ̂V*, where the columns of Û are orthonormal, 

V* is an orthonormal matrix, and Σ̂ is a diagonal matrix which can be ordered so that the 

values along the diagonal (called the singular values) are non-increasing. Taking the first k 

singular values and leaving the rest zero leads to a simplification of the original matrix 

which retains the most important variations in the original vectors in a vector space where 

each row has k coordinates, thus projecting the original space onto a lower-dimensional 

subspace. The application of this technique to a term-document matrix is called Latent 

Semantic Indexing or Latent Semantic Analysis (LSA) (Deerwester et al, 1990; Landauer 

and Dumais, 1997). LSA has been widely studied and several alternatives have been 

implemented.

Term vectors can be compared with one another, and the space can be searched for the 

nearest neighbors of any given term. An example is shown in Table 2, which shows the 

terms with the highest similarity with fire and water in a model built from the chapters in the 

King James Bible, using the Semantic Vectors package, a freely available open-source 

software package maintained by the authors (Widdows and Cohen, 2010).4

As we come to apply vector models to more complicated reasoning tasks in the rest of this 

paper, it is important to bear in mind that vector model search can be done quite quickly 

even with large vocabularies. For example, with a vector of 200 dimensions whose 

coordinates are represented by 4-byte floating point numbers, the memory requirement is on 

the order of 1 kilobyte for each term or document vector (that is, 200 * 4 for the vector plus 

a generous 200 bytes for the name / identifier of the item being indexed). So approximately 

1 million terms and their vectors can be represented in 1 gigabyte of main memory, which is 

well within the capabilities of standard hardware today. This can be searched linearly in 

comfortably under 3 seconds in experiments on one of the authors’ laptops. This is not 

dramatically fast when compared with other keyword-based search engines, but when 

3See http://lucene.apache.org.
4See http://semanticvectors.googlecode.com.
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applied to tasks that involve chains of reasoning, it is dramatically faster than many 

symbolic alternatives.

For all of the above, there are corresponding probabilistic formulations. Rows in the term-

document matrix are normalized using an L1 norm (that is, the coordinates are rescaled so 

that they sum to 1, whereas with the Euclidean or L2 norm, the sum of the squares of the 

coordinates is 1). Rows are compared using a probabilistic measure such as the Kullbeck–

Liebler divergence, which measures the amount of information lost when approximating one 

distribution with another (Manning and Schütze, 1999, §2.2.5). Matrix decomposition is 

likely to use a suitable non-negative matrix factorization, so that the coordinates can be 

interpreted as probabilities (with some geometric methods such as LSA, negative 

coordinates arise naturally through projection onto a subspace, even if all the initial 

coordinates are non-negative). We emphasize this point here so that the reader is aware that 

there is a large body of work on probabilistic models for text in the statistical machine 

learning literature (see e.g., Blei (2012)), and that these models have some differences but 

also much in common with the geometric vector models.

2.1 Logical Operators in Vector Space Models

As well as adding term vectors together to form simple vector representations for queries or 

documents, such spaces can be explored to a limited extent using vector versions of the 

traditional logical NOT and OR operators. An appropriate NOT operator for two vectors a 

and b is the projection of a onto the subset orthogonal to b, that is:

(1)

For example, the term vector for pharaoh in the King James Bible has neighbors that are 

associated with two different Pharaohs in two different stories (that is, the story of Joseph in 

Genesis and the story of Moses in Exodus). The term magicians is only pertinent to the 

Exodus story, and projecting the vector for pharaoh so that it is orthogonal to the vector for 

magicians brings the vector for joseph from position 20 to the top of the list. A more 

systematic examination of such behavior demonstrated that removing unwanted terms using 

such projection techniques does a much better job at also removing neighbors and synonyms 

of the unwanted terms than just removing documents containing an unwanted term from 

search results (Widdows, 2003). The effect is particularly marked when multiple terms are 

removed by projecting the original query so that is is orthogonal to all of these related terms. 

This involves creating a subspace spanned by all the unwanted terms, so in vector logic, the 

disjunction a OR b becomes modelled by the plane spanned by a and b. The query vector is 

then projected onto the subspace orthogonal to the plane spanned by a and b, by subtracting 

appropriate linear multiples of the a and b vectors.

This leads to a logic of projection operators in vector spaces. Each projection operator 

projects onto a (linear) subspace; the conjunction of two operators projects onto the 

intersection if these subspaces; their disjunction projects onto the linear sum of these 

subspaces; and the negation is the projection onto the orthogonal complement. Such a logic 
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has in fact been known since the 1930’s, when it was introduced by Garrett Birkhoff and 

John von Neumann to model the logical relations between observables in quantum 

mechanics (Birkhoff and von Neumann, 1936). The relation between the Hilbert-space 

model for quantum mechanics and the vector models used in search engines is explored in 

Widdows (2004, Ch 7), and much more fully in van Rijsbergen (2004), part of a growing list 

of applications of mathematics originally invented in quantum theory to problems in other 

disciplines including economics (Khrennikov, 2010) and cognitive science (Busemeyer and 

Bruza, 2012). A discussion of whether quantum mechanics itself is related to any of these 

human activities is beyond the scope of this paper: what is clearer is that the mathematics of 

high-dimensional vector spaces and their associated lattices and projections, pioneered long 

before quantum theory by Hermann Grassmann (1862), has considerable applications 

beyond its adoption as a model for the Hilbert-space formulation of quantum mechanics. An 

introduction to Grassmann’s work in this area, its influence on the foundations of lattice 

theory, the relevance of these concepts to Boolean and quantum logic, and their impact on 

the design of search engines in recent years, is presented in Widdows (2004, Ch. 7,8).

3 Special Features of High Dimensional Vector Spaces

The robust retrieval of documents that contain many terms, using vectors that are linear 

combinations of the appropriate term vectors, depends on some properties of high-

dimensional spaces that are somewhat counter-intuitive if we generalize too naively from 

experience in one, two and three dimensions. Most importantly, high dimensional spaces are 

sparse, in the sense that vectors chosen at random are likely to be almost orthogonal, and so 

the cosine of the angle between them is likely to be close to zero. The distributions of the 

similarity scores between randomly-chosen unit vectors in high dimensions is shown in 

Figure 1.

A mathematical explanation for these distributions, and the contrast with the low dimensions 

of our immediate physical experience, is given in Appendix A. Similar conclusions are 

reached by Kanerva (1988, Ch. 1) with binary-valued vectors, and by Sandin et al (2011) 

with ternary-valued vectors (that is, vectors whose coordinates are taken from the set {1; 0; 

+1}). As Kanerva puts it “In terms of the sphere analogy, with any point and its complement 

taken as poles, almost all the space lies at or near the equator” (Kanerva, 1988, p. 19).

The observation that two randomly-chosen vectors are likely to be almost orthogonal has 

significant consequences for robust engineering and cognitive plausibility. Firstly, it enables 

vectors to “recognize themselves” from a set of randomly-assigned vectors, even in the 

presence of significant inaccuracy or noise. That is, suppose that X is a distinct set of (unit) 

vectors. Select an element x ∈ X and add a random vector y of similar length. Assuming that 

y is almost orthogonal to x, normalization to unit length gives a vector , whose 

similarity to x is roughly , which in high dimensions is far above the region of 

similarities expected by chance (again, see Figure 1). It follows that out of all the elements 

in the set X, a noisy vector x + y will still easily be recognized as a distorted copy of x (or y) 

rather than any other vector. As Kanerva puts it, “if 200 features (20%) can be determined 

with certainty, the remaining 800 features can be assigned zeros and ones at random . . . and 

the test item can still be recognized” (Kanerva, 1988, p. 26).
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This argument holds for any superpositions, not just noisy ones. So if x and y are two term 

vectors summed to create a document vector x + y, then either x or y as query vectors will 

recognize themselves as constituents of this document vector. The extent to which this 

behavior can be relied upon in practice is examined in Wahle et al (2012): with an element 

set of 1000 vectors, over 100 real vectors (dimension 500) can be added before a non-

constituent is accidentally recognized as a constituent; and for binary vectors, this number 

can be increased to over 1000 constituents without increasing the physical memory used. 

This superposition property is also discussed in detail by Plate (2003, §3.2) and by Gallant 

and Okaywe (2013).

Finally, it is important to note that finding almost-orthogonal vectors in high dimensions is 

easy and incremental. This is very unlike the problem of finding exactly orthogonal vectors 

using an eigenvalue decomposition such as the Singular-Value Decomposition, which is 

computationally intensive and requires prior knowledge of the system to be orthogonalized. 

In high dimensions, new elements can be created automatically with almost no effort, and 

almost no danger that they will clash with preexisting elements. This is crucial to the 

robustness of VSA’s, because it means that we almost never encounter accidental 

similarities between elements that have nothing in common. Back in 1739, David Hume, 

often acknowledged as the greatest empiricist philosopher of modern times, postulated that 

our sensations and perceptions lead to mental representations called impressions, and that:

every simple idea has a simple impression, which resembles it, and every simple 

impression a correspondent idea.

(Hume, 1739, Bk I, Part I, §1)

Initially it may seem a daunting task to create such impressions without carefully organizing 

and curating the available representations, or alternatively running out of memory. Instead, 

the investigation of similarities in high dimensions teaches us that there are systems where 

such representations are cheap to create and robust to all kinds of noise and comingling.

4 Vector Symbolic Architectures

Thus far we have explained some of the uses of vector spaces, similarity measures, and the 

associated projection operators in creating relatively simple and clearly useful search 

engines. These behaviors depend on the properties of vectors in high dimensions, and as we 

saw in the previous section, the challenge in using these spaces does not lie in creating 

enough diversity for different objects to be easily distinguished and recognized: this is easy. 

Instead, the challenge is to represent complex relationships between impressions and ideas 

in a mathematical model where the natural tendency of a randomly chosen element is to be 

unrelated to almost all other elements.

Most obviously, the basic way of composing term vectors in vector-model search engines is 

to use the linear sum of vectors. This is commutative, in the sense that a + b is always the 

same as b + a, and similarity-preserving, in the sense that the vector dot product a · (a + b) is 

large. These are sometimes desirable properties: for example, they enable a vector-model 

search engine to find matching documents from just a handful of query terms, without being 

disrupted by word order. But they are limited: one natural drawback is that if we keep 
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adding vectors constructed in this fashion, they eventually all converge. For modelling the 

meaning of concepts and their combinations, this is untenable in many situations: for 

example, there are many negational descriptors such as “former president”, “fake ten-dollar 

bill”, “red herring”, whose effect is to combine into a concept that is clearly different from 

the unmodified original. Empirically, even when composition is not negational in this sense, 

when meanings depend on one another, cycles of repeated addition are only useful for a few 

iterations before semantic distinctions become eroded (Cohen et al, 2010a).

To model more general operations, we introduce at least one more operation, called binding, 

which will be written as ⊗. Good binding operators obey at least the following rules:

• For two vectors a and b, a ⊗ b is a new vector, that is usually not similar to either a 

or b, in the sense that a · (a ⊗ b) and b · (a ⊗ b) should be approximately zero.

• Binding has an inverse or at least an approximate inverse operator ⊘, called the 

release operator, such that (a ⊘ (a ⊗ b)) · b ≈ 1.

The release operator ensures that, given a bound product and one of its factors, we can 

recover the other factor with reasonable accuracy. The introduction of the binding and 

release operators turns a standard vector space (with the axioms described in Widdows 

(2004, Ch. 5)) into a structure increasingly known as a Vector Symbolic Architecture or 

VSA (Gayler, 2004; Levy and Gayler, 2008). The core operations in a VSA are summarized 

in Table 3. Note that several of these rules are currently somewhat vague: for example, 

superposition and measure overlap need to behave in such a way that A · (A + B) is ‘large’, 

but what do we mean by large? In practice, we mean that the result must be much larger than 

similarities we would find by chance. In this and many other cases, VSAs depend very 

fundamentally on the high-dimensional properties discussed in Section 3: in more 

dimensions, it is less likely that a large similarity between randomly-chosen vectors would 

occur by chance, and the required size of A · (A + B) would be correspondingly smaller. This 

example emphasizes the general point that the rules in Table 3 are mathematically a work-

in-progress. They are not, properly speaking, axioms, because axioms should not contain 

vague terms like ‘near to’ and ‘relatively large’. Instead, they are extremely useful 

guidelines, which may become (with suitable mathematical development) an axiomatic 

definition for a VSA as an algebraic structure.

Note that the definition of Measure Overlap is different from the standard definition of a 

scalar product in vector spaces: it is required that the outcome be a real number, even if the 

vector space itself uses a different ground field from the real numbers. (The ‘ground field’ of 

a vector space is in practice the number field from which coordinates for the vectors are 

drawn.) Note also that the symbol ⊗ is not intended to denote the tensor product itself, but 

(like the use of the addition symbol + in group theory), denotes an operation which in some 

ways resembles multiplication, and must be defined in each particular VSA.

Now we give some examples of VSAs over the ground fields of real, complex, and binary 

numbers. These (and some other options) are all available in the Semantic Vectors package: 

for more details, consult Widdows and Cohen (2012).
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4.1 Real Vectors

Real vectors (that is, vectors whose coordinates are taken from the real numbers ) are used 

throughout machine learning and computational linguistics. The most standard similarity 

measure between real vectors is cosine similarity, which is simple, cheap, and works nicely 

with the natural definition of superposition as the sum of two vectors.

Binding, however, is less obvious. A simple and cheap suggestion is to use permutation of 

coordinates before superposing two vectors, since this has worked well for modelling word-

order effects in semantic vector spaces (Sahlgren et al, 2008). That is, let Pn(x) be the vector 

obtained by permuting each coordinate in x through n places, so that for example P1(x1, x2, 

x3) = (x3, x1, x2). Then x ⊗ y can be defined as P−1(x) + P1(y). An exact inverse is easy to 

define, and the rules in Table 3 are satisfied. However, it also follows from this definition 

that a ⊗ b + c ⊗ d = a ⊗ d + b ⊗ c, so the way in which the vectors were combined becomes 

confused in the output, which can have unintended lossy consequences. (Rules of operator 

precedence are standard, so that ⊗ is applies before +.)

Other popular alternatives can be derived from the standard tensor product operation (in 

coordinates, this is the product of x as column vector with y as a row vector, giving an n-

squared matrix). Tensor products have been investigated as a useful product operator in 

artificial intelligence (for background, see Plate (2003, Ch 1)), with renewed interest in 

recent years. The quadratic increase in dimensions can be a practical problem, one solution 

to which is the circular convolution, which sums the coordinates of the tensor product along 

each diagonal (from left to right, wrapping round at the left-hand edge), recovering a 

product that is itself a vector in dimension n. (This process is described in detail with 

diagrams in Plate (2003) and Levy and Gayler (2008).) The naive method for constructing 

the circular convolution of two vectors is thus to construct the tensor product and then sum 

along the diagonals, which takes quadratic or n2 time: however, this can be improved by 

using Fast Fourier Transforms, which enable the convolution to be computed in n log(n) 

time. An approximate inverse (which becomes more exact in more dimensions) can be 

defined relatively easily. This method has also been used to model word-order effects and 

language n-grams, as a component of the BEAGLE model (Jones and Mewhort, 2007).

4.2 Complex Vectors

The use of complex numbers is ubiquitous in physics, but applications in informatics-related 

disciplines have been uncommon to date (often because we don’t know intuitively what the 

imaginary coordinates might be useful for). However, there is at least one clear 

computational benefit to using complex numbers for a VSA: the circular convolution is 

much simpler. The circular convolution involves summing vectors in the ‘frequency 

domain’, and Fast Fourier Transforms can transform between the spatial domain and the 

frequency domain in n log(n) time. But for complex vectors this is already done: the vector 

in the frequency domain is effectively given by the arguments (angles) of each complex 

coordinate in modulus-argument form (Plate, 2003; De Vine and Bruza, 2010), so the 

circular convolution binding operator is as simple as summing the arguments of each pair of 

coordinates (which therefore has a simple and exact inverse).
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This easy success motivates other questions, including whether the overlap measure should 

be the standard Hermitian metric, or the circular metric computed by comparing the angles 

of each coordinate (Plate, 2003, Ch. 4): and this question leads to further questions including 

the nature of normalization and the status of zero coordinates in sparse vectors. This is 

philosophically and mathematically a healthy situation, because it challenges us to consider 

the basic question of whether complex numbers should be treated as circular or rectilinear.

Practically, complex vectors have been successful in some reasoning experiments: due to the 

exact inverse and computational optimization, they can give models that are more accurate 

and faster than those created using real numbers; and when binding is involved, they are 

much faster to generate than models that use binary numbers.

4.3 Binary Vectors

The use of binary-valued vectors for representing concepts in a VSA has been developed 

and championed by Kanerva (1988, 2009). A binary vector of dimension n is simply a string 

of n binary digits or bits. The overlap between two of these bit-vectors is computed by 

counting the number of binary digits in common between the two vectors (which is n minus 

the Hamming distance, Hamming distance being the number of bits that differ). This can 

easily be normalized to a suitable overlap measure using the definition

where x and y are binary vectors in n-dimensions. This gives a number between −1 (all bits 

are opposite) and 1 (all bits are the same), with 0 if exactly half the bits are the same and 

half are different.

Superposition is trickier: Kanerva (2009) recommends taking a majority vote between 

constituents to choose a 0 or a 1 for each position, and breaking ties at random: but when 

summing just two vectors, ties are very frequent, and the outcome is highly 

nondeterministic. This becomes a practical problem when we try to reconstruct chains of 

reasoning. We partly solve this problem by making the tie-breaking process deterministic, 

by making the seed for the random number generator depend in some procedural way on the 

vectors themselves. Such a process can also be used to define partial sums of binary vectors: 

so, for example, with suitably-weighted deterministic tie-breaking, we can define a binary 

vector λa+μb such that a · (λa+μb) = λ and b · (λa+μb) = λ. This process also enables us to 

define orthogonalization in the same way as for real and complex vectors.

The binding operation predominantly used is the bitwise XOR of coordinates, again 

following Kanerva (1988). This has the property of being self-inverse, so in this particular 

example of a VSA, the bind and release operations are the same.

Because of the need for bitwise operations such as pseudorandom tie-breaking, the use of 

binary vectors can be computationally costlier than real or complex vectors. However, these 

costs can be isolated to the appropriate indexing phases: querying or searching models can 
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be made at least as fast than with real and complex numbers (or faster, because no floating-

point arithmetic is necessary). Binary vectors have been shown in experiments to be even 

more robust to noise than real or complex vectors with the same storage requirements 

(Wahle et al, 2012).

4.4 Summary and Implementation Details

The VSAs described above are implemented, tested, and freely available as part of the 

Semantic Vectors open source package. As well as the choice between real, complex, and 

binary numbers, there are many other details and options available that can significantly 

change behavior. These include:

• The availability of permutation (as introduced by Sahlgren et al (2008)) as a 

complementary, non-commutative binding operation.

• The use of sparse vectors (especially for real, and sometimes for complex numbers) 

to represent elemental vectors. This enables models to scale from hundreds-of-

thousands to tens-of-millions of inputs (such as large corpora of documents) on a 

typical contemporary desktop machine.

• Deterministic generation of elemental vectors for any input. For example, for a 

given term, one can take a deterministic hash of its string representation, and use 

this as the random seed to generate pseudorandom elemental vectors. One 

immediate benefit of such deterministic approaches is that they reduce storage and 

synchronization requirements in distributed systems.

• Reuse of semantic vectors from one modelling process as elemental vectors for a 

subsequent modelling process. Reflective Random Indexing (Cohen et al, 2010a) 

applies this method to the term-document scenario in information retrieval, 

effectively predicting term cooccurrence in hitherto unseen documents.

For these and other reasons, the use of a particular VSA in practice always includes a 

considerable number of options and choices. These must be tailored to the requirements and 

resources available for a particular system. For example, for larger datasets binary VSAs 

preserve information more effectively, which can improve accuracy on reasoning tasks. 

However, the training phase is typically more time-consuming, which may be problematic 

for rapid prototyping, or for comparisons between several sets of models. In such situations 

the computational performance of complex vectors with the circular convolution as a 

binding operator is sometimes more desirable. VSAs are an important mathematical 

abstraction that describe the commonalities shared by many varied systems that can be used 

for distributional semantic computing.

5 Predication-based Semantic Indexing

In this section, we describe Predication-based Semantic Indexing (PSI), a technique we have 

developed that uses VSAs to represent structured data from a formal knowledge base. This 

is the main development described in this paper, because it is at the heart of using 

continuous mathematical methods to model formal systems traditionally manipulated using 

purely discrete mathematical approaches. It is a significant development in the field of 
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distributional semantics, because since the early vector model search engines, most research 

in semantic vector models and distributional semantics generally has focussed on learning 

from free ‘unstructured’ natural language text, rather than formal ‘structured’ knowledge 

representations.

5.1 PSI fundamentals

Let X be a set of objects and let  be a set of relations on X, that is, each R ∈  is a relation 

on X in the sense that R ⊆ X × X. A semantic vector for each concept x is generated by 

summing the bound products of the elemental vectors for each relation xRy that involves x. 

In symbols,

Here W(Rj, x, y) is some weighting function depending on (for example) the frequencies of 

the concepts x, y and the relation Rj. In practice, the inverse relation R-INV, defined by yR-

INV x if and only if xRy, is always included in the set .

For readers less familiar with the algebra of relations and its application to semantics and 

knowledge representation, the rest of this section explains this process in a step-by-step 

fashion.

Predication-based Semantic Indexing takes as input a collection of concept–relation–concept 

triplets, sometimes called subject–predicate–object triples. Examples might be:

“Zeus PARENT OF Hercules”, “Insulin TREATS Diabetes”.

Such relations have natural inverses, such as

“Hercules CHILD OF Zeus”, “Diabetes TREATED BY Insulin”.

In general, for a relation R we will write its inverse as R-INV.

Relations of this nature as a category of meaning were introduced by Aristotle (Categories, 

Ch. 7), and have come to the fore again in recent decades to support computational and 

electronic representations of meaning. Perhaps most famously, such triples are at the heart of 

the Semantic Web initiative (Berners-Lee et al, 2001). In the cognitive and biomedical 

literature they are sometimes referred to as “propositions” or “predications”: they are 

thought to represent the atomic unit of meaning in memory in cognitive theories of text 

comprehension (Kintsch, 1998) on the basis of evidence from recall studies (for example, 

Kintsch and Keenan (1973)).

Algebraically, a subject–relation–object predication is often written xRy, where x is the 

subject, y is the object, and R is the relation. PSI takes as input a collection of such 

predications. For each such term x or relation R, its elemental vector will be written as E(x) 

or E(R). Elemental vectors are generated for each concept using one of the processes 

outlined in the previous section. (Alternatively, vectors from a previously-learned model can 
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be reused as elemental vectors.) Elemental vectors are also generated for each type of 

relation. No syntactic distinction between concept and relation types is made when selecting 

elemental vectors: this distinction comes later in the training phase depending on how these 

vectors are used in binding and superposition operations.

Semantic vectors for concepts are learned gradually by binding with the elemental vectors of 

related items: thus, if we have a predication xRy, the semantic vector for x, written S(x), is 

incremented by the bound product E(R) ⊗ E(y). The same process is applied in reverse to 

S(y) using the inverse relation R-INV, for which a different elemental vector E(R-INV) is 

generated (the elemental vector E(R-INV) need not be mathematically derived from E(R) in 

any special way).

For example, encoding a single instance of the predication “Insulin TREATS Diabetes 

Mellitus” is accomplished as follows:

(The symbol “+=” is used here in the computing sense of “add the right hand side to the left 

hand side”.) Thus, the semantic vector for diabetes mellitus encodes the assertion that it is 

treated by insulin, and the semantic vector for insulin encodes the assertion that it treats 

diabetes. Statistical weighting metrics may be applied at this point to temper the effect of 

repeated mentions of the same predication, and increase the influence of infrequently 

occurring concepts and predicates. The net result is a set of semantic vectors derived from 

the set of predications in which each concept occurs. On account of the reversible nature of 

the binding operator, this information can be retrieved. One would anticipate, for example:

If insulin occurs in many other predications, this retrieval will be approximate, but on 

account of the sparse and noise-robust properties of high-dimensional spaces explained in 

Section 3 we would still anticipate the vector

being much closer to E(insulin) than to other unrelated elemental vectors in the space.

This explains the fundamentals of how PSI models are built, and how information from 

these models can be searched and recognized.

5.2 PSI Examples Using SemMedDB

Much of the completed work described in this paper uses PSI models built from 

SemMedDB (Kilicoglu et al, 2012). SemMedDB contains predications extracted by 

SemRep, a biomedical Natural Language Processing system that draws on both knowledge 
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of grammatical structure and domain knowledge of the ways in which types of biomedical 

entities relate to one another (such as a drug can have side effects) to extract predications 

from the biomedical literature (Rindflesch and Fiszman, 2003). For example, SemRep 

extracts the predication “Insulin TREATS Diabetes Mellitus” from the phrase “Insulin lispro 

(Humalog), a novel fast-acting insulin analogue for the treatment of diabetes mellitus”. To 

date, SemRep has extracted more than sixty million predications from the biomedical 

literature, which have been publicly released as the part of the SemMedDB database.

For example, Table 4 shows the results of nearest-neighbor searches for two composite 

query vectors in a PSI space derived from the SemMedDB database (specifically the June 

2013 release). The PSI space is a 32,000-dimensional binary vector space that includes all 

predicates in SemMedDB, and all concepts occurring 500,000 or fewer times in the 

database. In addition, log(1 + predication count) and the inverse document frequency of the 

concept concerned were applied as local and global weighting metrics respectively during 

training.

The diabetes-related search retrieves many standard treatments for diabetes, as well as a few 

tangentially related concepts in the ten nearest neighbors. The food-related query retrieves 

many types of food.

As VSAs use the same representational unit to represent both concepts and the relationships 

between them, the same decoding process that is used to retrieve concepts related in a 

particular way can determine the way in which a pair of concepts are related. So we would 

anticipate:

This is indeed the case in the PSI space that generated the results in Table 4, where the 

nearest neighboring elemental vector representing a predicate to the vector product S(food) 

⊘ E(vegetables) is E(ISA-INV). So PSI is able to recall the fact that vegetables are a type of 

food, which follows naturally from the underlying mathematics.

5.3 Analogical Inference with PSI

Perhaps more surprising, however, is that the noisy approximation of E(ISA-INV) recalled 

in this manner is sufficient to solve a proportional analogy problem of the form a is to b as c 

is to ?. The nearest neighboring semantic concept vector to the cue vector S(food) ⊘ 

E(vegetables) ⊗ E(bourbon) is S(whiskey). This capacity for analogical reasoning, in which 

concepts are identified on the basis of shared structural relations, underlies many of the 

applications we will subsequently discuss.

In practice, accurate inference with a single cue is not always possible, but the signal 

preserved in a noisy approximation of a predicate can be amplified. One way to accomplish 

this is to explicitly retrieve the vector representation for the predicate concerned. However, 

superposing additional cues greatly amplifies the strength of this signal. For example,
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is closer to S(whiskey) than either of the above summands is individually. A more general 

analysis of this phenomenon is illustrated in Figure 2, which shows the similarity between 

S(whiskey) and individual cue vectors derived from the food types in Table 4, as well as the 

superposition of these individual cue vectors. As more cues are added, the similarity 

between the superposed product of these cues and S(whiskey) rapidly moves from the realm 

of the merely improbable to more than five standard deviations above the mean anticipated 

between random vectors of this dimensionality. Of note, this degree of similarity is higher 

than that produced by any individual cue.

Analogical inference can extend across longer predicate pathways also. Consider the case of 

Major Depressive Disorder (MDD). The product of S(MDD) ⊘ E(TREATS-INV) 

approximates the elemental vectors representing instances of things that treat MDD, so we 

would anticipate that the vector for S(MDD) ⊘ E(TREATS-INV) ⊗ E(ISA-INV) would 

approximate the semantic vectors representing classes of treatments for depression (as the 

operation S(CLASS) + =E(ISA-INV) ⊗ E(INSTANCE) will have occurred during training).

For example, the five nearest neighboring semantic vectors to the vector product S(MDD) ⊘ 

E(TREATS-INV) ⊗ E(ISA-INV) in the previously used PSI space represent the concepts 

“reuptake inhibitors”, “antidepressive agents, second-generation”, “antidepressive agents”, 

“psychotropic drugs” and “selective serotonin re-uptake inhibitor”, all of which are 

categories of agents used to treat depression.

Furthermore, it is possible to infer the dual predicate path connecting two concepts from an 

example pair. The vector representation of E(TREATS-INV) ⊗ E(ISA-INV) is more similar 

to the vector product S(MDD) ⊘ S(reuptake inhibitors) than the vector representation of any 

other pair of predicate vectors. As is the case with individual predicates, analogical retrieval 

can be accomplished without explicitly retrieving the predicates concerned. Instead of using 

an explicit predicate vector, a cue pair of vectors can be selected whose bound product 

closely approximates the vector representation of the predicate or predicate pathway 

concerned. Several such products of cue pairs can be superposed, leading to a combined 

‘holistic’ or ‘entangled’ representation that cannot be decomposed into the product of any 

two individual cues (Cohen et al, 2011).

6 Applications of VSAs and PSI

This section presents a variety of new topic areas to which PSI has been applied more 

recently.

6.1 Discovering Discovery Patterns

This section explores further the use of analogical reasoning in PSI space as a means to infer 

previously unseen relationships between biological entities, with a focus on the recovery and 

discovery of potentially therapeutic relationships.
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We have applied PSI to knowledge extracted by SemRep to infer therapeutic relationships 

between pharmaceutical agents and human diseases (Cohen et al, 2012a,b,c), using an 

approach we call discovery-by-analogy. The idea underlying this approach is to constrain the 

search for potential treatments to those that are connected to the disease in question along 

reasoning pathways suggesting therapeutic relationships. The idea of using reasoning 

pathways consisting of predicates, called discovery patterns, was developed by researchers 

in the field of literature-based discovery (Hristovski et al, 2006). Rather than manually 

constructing these pathways as had been attempted previously, we were interested to see 

whether we could both infer and apply them using PSI-mediated analogical reasoning.

For example, in the PSI space we have utilized for our examples so far, the vector product 

S(insulin) ⊘ S(diabetes mellitus) generates a vector with relatively high similarity to the 

vector product S(INTERACTS WITH-INV) ⊘ S(ASSOCIATED WITH-INV), suggesting 

that a set of biological entities exists that is both ASSOCIATED WITH diabetes, and 

INTERACTS WITH insulin. When applying this pattern to the semantic vector for asthma 

the closest semantic vector for a pharmaceutical agent to the resulting vector represents 

dexamethasone, a commonly employed asthma therapy.

In our discovery experiments, the best results were obtained by evaluating multiple 

reasoning pathways simultaneously, with around one third of the total held-out therapeutic 

relations ranked in the top one percent of predictions for each of the types of cancer 

evaluated. The five most popular reasoning pathways across large numbers of known 

treatment pairs were inferred, and used together to ‘rediscover’ a held-out set of treatments. 

These reasoning pathways were combined using the quantum disjunction operator to create 

a compound search expression which was used to retrieve treatments connected to other 

diseases across one, or several of these pathways (Cohen et al, 2012c,b). Further 

improvements in performance were obtained by extending the length of the predicate 

pathways concerned to include popular triple-predicate pathways also (Cohen et al, 2012a), 

allowing for the recovery of around ten percent more of the held-out set within the top one 

percent of predictions across all cancer types. This was accomplished by creating second-

order semantic vectors for diseases, as the superposition of the semantic vectors of concepts 

that occurred in a predication of predicate type ASSOCIATED WITH with the disease in 

question, and using these as the starting point for inference instead of the disease in 

question.

In our most recent work, we have evaluated the ability of these models to predict the results 

of a high-throughput screening experiment in which over a thousand pharmaceutical agents 

(that is, active pharmaceutical substances) were evaluated for their activity against prostate 

cancer cells that are resistant to commonly used hormonal therapies (Cohen et al, 2014). Of 

these agents, only a small number actively inhibited the growth of these particular cancer 

cells: of the 1398 evaluated agents that were represented in our PSI space, only 68 slowed 

the growth of cancer cells to 1.5 standard deviations less than the average across all agents 

tested (this average value was indistinguishable from negative controls). Table 5 presents the 

20 highest ranked predictions generated by applying discovery-by-analogy to a PSI space 

that was deprived of knowledge of any direct relationships between pharmaceutical agents 

and types of cancer. Specifically, any predication involving a direct relationship between a 
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pharmaceutical agent and a cancer type was withheld, as were any TREATS relationships, to 

simulate discovery. In addition, only a subset of predicates were encoded (see Cohen et al 

(2014) for further details). Aside from these restrictions, parameters were identical to those 

used to generate the space used in Table 4.

As shown in the table, the vast majority of the top 20 predictions occurred in TREATS 

relationships with hormone-refractory prostate cancer in the predication database (most 

likely indicating they had an inhibitory effect on a prostate cancer cell line, or showed 

efficacy in an animal model or clinical trial—though these may also be due to natural 

language processing errors, or an effect observed in combination with other drugs), once 

again illustrating the ability of discovery-by-analogy to recover held-out TREATS 

relationships. In addition, seven of the top 20 predictions were amongst the small number of 

agents that were effective against prostate cancer cells in our empirical experiments, a yield 

of active agents approximately seven times higher than would be anticipated if 20 agents 

were selected at random.

These experiments also illustrate the efficient (albeit approximate) reasoning that PSI 

mediates. For example, with relevant vector stores retained in main memory, inferring the 

most strongly associated dual-predicate path connecting two concepts can be accomplished 

in milliseconds, and determining which pharmaceutical substance is most strongly 

associated across a multitude of such paths can be accomplished within microseconds. 

Strongly ranked predictions are often connected across more than 10,000 unique reasoning 

pathways (such as docetaxel INHIBITS prostate specific antigen ASSOCIATED WITH 

hormone-refractory prostate cancer). However, PSI is able to evaluate the extent through 

which two concepts are related across large numbers of pathways simultaneously, by 

converting the task of exploring multiple possible reasoning pathways into the task of 

measuring the similarity between vector representations. Furthermore, unlike a discrete 

system in which the time required to explore such pathways increases exponentially with 

pathway length, the time required for search in PSI is identical for single-, double- and 

triple-predicate search once the relevant vectors have been constructed.

6.2 Negation in PSI Models

Negation can be carried out in PSI models using orthogonal projection in just the same way 

as in semantic vector models built from free text (see Section 2.1). The basic principle is that 

for any vector x, “not x” is modelled as the subspace orthogonal to x, and so the operation of 

negating x is performed by projection onto this orthogonal subspace. In the particular case of 

a desired concept x and and unwanted concept y, the compound concept x NOT y is 

represented using Equation 1.

The example in this section (and below) uses a simple database of national facts extracted 

from Wikipedia, which is included in the Semantic Vectors package, and lists the currency, 

capital city, and national animal of 277 world countries.5 The example query we consider is 

“Find countries other than the USA that use the US Dollar.” Since the semantic vector 

5This includes several regions such as England and the Isle of Man that are countries in an informal sense but not sovereign states in 
an official sense, hence the large number of countries.
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S(united states dollar) is learned by summing vectors of the form E(HAS CURRENCY) ⊗ 

E(country), and binding distributes over addition (in the sense that a ⊗ (b + c) = (a ⊗ b) + (a 

⊗ c) for all vectors a, b, c), we can decode this relationship using the release operator, so 

that S(united states dollar) ⊘ E(HAS CURRENCY) gives a vector which, in the PSI model, 

could be interpreted as a prototypical vector for representing the concept “countries that use 

the US dollar”. Using this vector as a query and searching for nearest neighbors correctly 

recovers the list of countries that use the US dollar as currency. Projecting this query vector 

so that it is orthogonal to E(united states) and repeating the search gives results without the 

United States, and with other similarity scores slightly readjusted according to how similar 

or different the other countries are to the United States if only the other attributes are 

considered. Results are presented in Table 6.

The exact scores depend on the vector type, the choice of VSA operations, and the number 

of dimensions used. For comparison, the next highest-ranked result that is not a country 

using the US dollar is included. Note that while all the result sets correctly rank countries 

that use the US dollar over all other results, the complex and binary result scores make a 

much clearer categorical distinction than the results obtained using real vectors.

The key points to note include:

• PSI correctly finds the intended set of results.

• Projecting orthogonally to the USA vector removes this result without removing 

others unnecessarily.

• If dimensions are reduced, eventually the recovery becomes noisy and polluted 

with other results. Experiments like this can be used to tune models by choosing 

appropriate numbers of dimensions.

This example demonstrates that the orthogonal negation operator used with free text models 

works in this particular PSI model. Several topics remain to be investigated, such as the 

behavior of orthogonal negation in PSI models built using recursive hierarchies, the 

relationship between negation and normalization, and the use of negation in more complex 

statements and chains of reasoning.

6.3 Semantic Types

A long-time criticism of distributional models is that they do not have a type-system or 

taxonomic structure. For example, the words related to ‘water’ in Table 2 tend to be objects 

and actions related to water such as ‘clothes’ and ‘wash’, rather than other physical 

substances, and there is nothing that tells us explicitly that water is a physical substance.

In PSI models, each predication x Ry that goes into the encoding of a concept x tells us 

that ”x has some attribute R”. In many situations, the list of attributes of a concept can be 

used to assign a category or type for that concept (a process pioneered again by Aristotle, 

c.f. Posterior Analytics, Bk I Ch. 4, though the notion that this defines “Aristotle’s theory of 

concepts” is a simplification). The type information for a concept x can therefore in some 

cases be recovered by examining the possible relations of its semantic vector, and seeing 

which of these relations leads clearly to another vector, rather than an empty region of 
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semantic space. Thus for each possible relation R, we check to see if there is an elemental 

vector E(y) which is close to the vector produced by releasing the elemental relation vector 

E(R) from the semantic vector S(x), so that S(x) ⊘ E(R) ≈ E(y). If so, this indicates that the 

relation x Ry was used in the semantic indexing for the vector S(x), so the concept x has 

some relation R. Then the collection of populated relations is compared with a list of 

attributes appropriate for each type. An example result is as follows:6

0.478   lesotho  :  HAS_NATIONAL_ANIMAL  :  black_rhinoceros

0.557   lesotho  :  CAPITAL_OF-inv    :   maseru

0.535   lesotho  :  HAS_CURRENCY :    lesotho_loti

’lesotho’ is therefore   a  ’COUNTRY’

This numerical example could be described informally in words as “Lesotho has a capital 

city, a currency, and a national animal: it sounds as if Lesotho is a country.”

Using a list of known attributes to infer a type in this way is a standard technique, 

introduced formally at least as early as Aristotle (Posterior Analytics, Bk I, Ch 4), and often 

known to computer scientists as “duck typing” (swims like a duck, quacks like a duck, so 

it’s a duck). This so-called Aristotelian approach is sometimes criticized because it is too 

brittle and does not account for graded or probabilistic classification. The most famous critic 

was Aristotle himself, who is strict in applying the technique to triangles in mathematics, but 

often states that biological properties such as “cows have four stomachs” are true “for the 

most part”. More recently, psychological experiments suggest that belonging to a category is 

perceived in a graded fashion (Aitchison, 2002, Ch 5), and Hofstadter and Sander (2013) 

propose that such fine gradations in concepts are at the core of our ability to reason by 

analogy.

The type-recovery process for PSI is similarly ‘graded’, in that the score for each relation is 

continuous, and the overall category-belonging score can easily be made continuous as a 

result. This is of course standard in the construction of any probabilistic classifier which 

works by combining indicative features. The interesting thing about type-recovery in PSI 

particularly is that all the features are simultaneously encoded in a single semantic vector, 

and recovered using VSA operations.

There are other ways to approach this challenge. One would be to build classifiers for entire 

regions of semantic space, in much the way that “concepts” are modelled as convex regions 

in the cognitive theory of Conceptual Spaces (Gärdenfors, 2000). Another would be to infer 

a type T(x) deterministically from the relations listed in the initial triple store, and to add the 

relation S(x) += E(IS A) ⊗ E(T(x)) during the indexing phase. (That is, each type T would be 

assigned an elemental vector E(T), and then a binding of the IS A relationship with this type 

would be added into the semantic vector S(x) and recovered as robustly as other contributing 

relationships.) Another would be to model the category T as a sum of the predicates 

6This example uses the example National Facts dataset (available with the SemanticVectors package), real vectors of dimension 200, 
and a score-cutoff value of 0.25 so that the relation a ≈ b is defined by the inequality a · b > 0.25.
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involved in T in the PSI space itself. This last would be the most innovative approach, and 

introduces the more general question of which metadata about the PSI model can be 

modelled within the PSI model.

6.4 Representing Orthography

In most VSA applications, the binding operator is applied to near orthogonal elemental 

vectors in order to generate a third vector that is dissimilar from either of its component 

vectors. From a geometric perspective, the vector product E(A) ⊗ E(B) is likely to lead to a 

point in space that is far from the bound product of any other pair of elemental vectors, or 

any other individual elemental vector in the space. So these vector products have the same 

desirable property of robustness that characterizes elemental vectors, which have 

deliberately been constructed to be orthogonal, or close-to-orthogonal in space. While this is 

useful for many applications, it is also the case for all the well-behaved binding operators 

that, given a vector E(B ̂) that is similar to E(B), the bound product E(A)⊗E(B̂) will lead to a 

point in space close to E(A)⊗E(B). (See Table 3.)

In recent work (Cohen et al, 2012d), we have exploited this property in order to estimate 

orthographic similarity, the similarity between the surface features of a word. Previous 

attempts to model orthographic similarity in vector space depended upon using a binding 

operator to generate near-orthogonal vector representations of sequences of characters 

within a word, including gapped sequences to allow for flexibility (Cox et al, 2011; 

Kachergis et al, 2011; Hannagan et al, 2011). However, encoding in this way requires the 

generation of a large number of vector products. As an alternative, we used interpolation 

between a pair of elemental vectors to generate a set of demarcator vectors a predetermined 

distance apart from one another in high-dimensional space. A demarcator vector, 

D(position), is used to encode the position of a character within a word. So, the orthographic 

vector for the term “bard” is constructed as follows:

The similarity between E(a) ⊗ D(2) and E(a) ⊗ D(1) is simply the similarity between D(2) 

and D(1)). Demarcator vectors are constructed such that D(1) · D(2) > D(1) · D(3), so the 

similarity between a pair of orthographic vectors reflects the distance between the position 

of the characters they have in common. The method for doing this is simple. First, 

orthogonal endpoint vectors are generated for the start and the end position in the word. 

Then the other demarcator vectors are generated by linear interpolation between these 

endpoints.

Table 7 provides examples of nearest-neighbor search based on orthographic similarity in a 

32,000 dimensional binary vector space derived from the widely-used Touchstone Applied 

Science Associates, Inc. (TASA) corpus (only terms with at least two characters that 

occurred between 5 and 15,000 times in the corpus were considered, and terms containing 

non-alphabet characters were excluded). In each case, the cue consists of a misspelled word, 

and the nearest neighboring terms in the corpus to this misspelling are retrieved.
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As illustrated in the table, this simple encoding results in a vector representation of terms 

that preserves similarity in the face of insertion, deletion, substitution and change in the 

position of characters. Such representations are of interest from a psychological perspective, 

as humans are also able to recognize terms despite changes of this sort.

6.5 Tabular Data and Continuous Quantities

In this example, we show that the ideas used for indexing predications and encoding 

orthography can also be applied to modelling tabular data. The principal is similarly simple: 

any column-value pair in a table can be modelled as a bound product of the vector 

representing the column with the vector representing the value, and then these vectors can be 

superposed to give a combined vector for each row. (This is equivalent to transforming a 

table into a set of triples and performing PSI on the resulting triples.)

Results can, however, be initially disappointing. As an example, we used a test dataset 

listing the Presidents of the USA (available with the Semantic Vectors package, columns 

including name, party, state of birth, religion, years of birth, death, taking and leaving office, 

and age at these times). Using random elemental vectors for the data values, the combined 

vectors for the rows tend to share features only if they have an exactly equal value in at least 

one column. Example results for the queries J. Adams and T. Roosevelt are shown in Table 

8. The nearest neighbors tend to come from exact matches: for example, John Adams and 

Thomas Jefferson died in the same year (1826), while Theodore Roosevelt and Calvin 

Coolidge shared a party (Republican) and an age of death (60). With such a small dataset, 

there is also a lot of variation between different experimental runs when using random 

elemental vectors.

Results are improved by using orthographic vectors for the values, as described in the 

previous section (Table 9). The orthographic similarity between names has, for example, 

raised the similarity of the other Adams and Roosevelt presidents as nearest neighbors.

However, orthographic similarity remains a poor way of comparing dates or numbers. There 

is some similarity between (say) 1800 and 1801, but much less similarity between (say) 

1799 and 1800. This challenge can be addressed using the same technique as used for 

generating demarcator vectors for orthographic encoding. That is, for each column that is 

recognized as a numerical quantity, orthogonal endpoint vectors are created for the 

minimum and maximum numbers in the range of values in this column. Vectors for 

intermediate values are then generated by weighted interpolation between these endpoints. 

Results using this method are shown in Table 10. Note that several spurious results have 

disappeared, and historically closer presidents are now preferred.

This technique of generating vectors to represent numeric quantities can also be used to 

create queries for particular columns. For example, we can now search for items whose year 

of taking office or whose year of birth are close to a particular value, by generating the 

vector E(column) ⊗ D(year), where D again refers to a demarcator vector. Note the way the 

column is important, because it gives both the property to be searched for, and the 

appropriate endpoints. Results for year of taking office near to 1800 and year of birth near to 

1900 are given in Table 11. The method using raw elemental vectors is more or less random, 
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whereas the use of numeric vectors gives results that are all in the right periods. (Results 

vary considerably between real, complex, and binary vectors, the reasons for which are at 

present poorly understood.)

This case-study demonstrates the following points:

• Tabular data can be represented in a distributional model.

• Quantitative numeric attributes can be treated appropriately and recovered easily 

(this overcomes something that has been considered a major theoretical 

shortcoming of distributional semantic models).

• This can be done by reusing the VSA operations and demarcator vector techniques 

introduced already: no special new mathematical operators need to be used.

• The representation stays holistic throughout: we do not have to attach any special 

semantics to particular dimensions.

Of course, the set-theoretic approach to representing structured tabular data, and its 

instantiation in relational databases, is well-established and highly successful: the goal of 

this new work is not to supplant such technologies, but to explore alternatives that may 

support complementary and more contextual features.

7 Previous and Related Work

Using spatial models for reasoning tasks is not a new idea: the explicit correspondence 

between geometric inclusion and logical implication goes back at least as far as Aristotle’s 

introduction to logic itself, with the definition:

That one term should be included in another as in a whole is the same as for the 

other to be predicated of all of the first. (Prior Analytics, Book I, Ch. 1).

Recent years have seen a significant growth of new mathematical applications and empirical 

successes in this area, of which Predication-based Semantic Analysis is just one.

The introduction of tensor products to conceptual modelling in artificial intelligence is often 

ascribed to Smolensky (1990). The tensor product concept can be extended mathematically 

to products of any number of constituents, the mathematical links with quantum models for 

cognition being perhaps most thoroughly explored in the physics literature in the works of 

Aerts et al (Aerts and Czachor, 2003; Aerts, 2009).

Within the cognitive science community, vector symbolic approaches to reasoning have 

been developed and evaluated for their ability to perform tasks traditionally accomplished 

by discrete symbolic models, often motivated by Fodor and Pylyshn’s critique concerning 

the limited ability of existing connectionist models of cognition to address such issues 

(Fodor and Pylyshyn, 1988). One prominent area of application concerns analogical 

reasoning (Plate, 1994, 2000; Kanerva et al, 2001; Eliasmith and Thagard, 2001). This work 

demonstrates that analogical mapping can be accomplished by a VSA trained on a small set 

of propositions that have been deliberately constructed to represent a well-defined analogical 

reasoning problem. A further motivating argument for this work has to do with the relative 
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biological plausibility of distributed representations, that do not require a one-to-one 

mapping between their representational units and units of information such as discrete 

symbols. Further support for this argument is provided by recent work by Crawford and his 

colleagues, who demonstrate that a VSA that encodes and retrieves propositions can be 

implemented using a network of simulated neurones (Crawford et al, 2013). This work 

involved the encoding of a fairly large number of propositions, and is similar in this respect 

to our work with PSI, though the goals of these endeavors are markedly different. Some of 

this work explores the biological plausibility of such networks as “simulated brains” (see 

e.g., Eliasmith (2013)), and investigations in this area have become mature enough to 

progress beyond purely informatics questions (such as “Does the system produce good 

outputs?”) to physical questions (such as “Would such a system in a real brain consume a 

reasonable amount of energy?”).

In computational linguistics, some of the most innovative recent works have been in 

semantic composition, to the extent that ‘compositional distributional semantics’ has 

become a recognized area of study in its own right. This work was initially motivated by 

several long-time problems with classical (in the sense of Boolean or set-theoretic) models 

for compositionality, such as the natural observations that a tiger moth is not a tiger and a 

stone lion is not a lion (Gärdenfors, 2000; Widdows, 2008). Partly to address the fact that 

adjectives change their meaning depending on the noun being modified, Baroni and 

Zamparelli (2010) developed the representation of nouns as vectors and adjectives as 

matrices (equivalent to rank-2 tensors) that operate on nouns. This idea is applied to more 

general syntactic binding operations by Socher et al (2012), who use a recursive neural 

network to learn an appropriate vector and matrix to every node in a parse tree. Grefenstette 

and Sadrzadeh (2011) also use matrices for composition of vectors, based on a general 

model for composition of meaning using category theory, and Grefenstette (2013) has 

generalized this approach to describe a full-blown predicate calculus using tensors. One 

feature of several of these works is the continued use of matrices and tensors: so instead of 

projecting the n2 representation of a product-state back into n dimensions using an operator 

such as convolution, some researchers rely on numerical optimizations such sparse-matrix 

representations to maintain tractability at larger scales. For more of the mathematical and 

linguistic basis for some of these theories, see Coecke et al (2010) and Clark and Pulman 

(2007): for further experiments on composition, explorations of the relationship with 

quantum structures, see Blacoe and Lapata (2012) and Blacoe et al (2013).

Vector representations still have many mathematical properties that are well-known in other 

applications whose use in computational linguistics and artificial intelligence is in its early 

stages. Examples of such developments include the use of dual-spaces by Turney (2012) and 

lattices by Widdows (2004, Ch. 8), and Clarke (2012). In general, the mathematical 

sophistication and experimental successes of compositional distributional semantics have 

been making considerable strides over the past decade, sometimes hand-in-hand and 

sometimes independently, and we expect developments in this field to keep accelerating 

over the next few years.
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7.1 Summary of Previous Results using PSI

In this section we provide a brief summary of results achieved using PSI over the past five 

years. The bullet points below provide key results only, and we encourage the interested 

reader to refer to the source material for a more detailed description of these and other 

related findings. The list is provided roughly in the sequence in which these results were 

obtained. As such it generally demonstrates a progression from the foundational to the 

applied. Earlier work established with the capacity of PSI to retrieve encoded information, 

explored the application of quantum logical operators in PSI space, and established a basis 

for large-scale analogical reasoning experiments. Recent work has applied these capabilities 

predict helpful and harmful effects of drugs.

• Predication-based Semantic Indexing was first implemented using real vectors and 

with permutation of coordinates used to encode predicate type. It was trained on a 

set of over ten million semantic predications extracted by SemRep, and tested by 

comparing the retrieved predications for 1000 concepts with those in the original 

set. When evaluated for its ability to recover these predications, the PSI system 

achieved best results of 99.7% precision and 65.8% recall at 1500 dimensions 

(Cohen et al, 2009).

• This work was extended to chains of reasoning over several predications, 

recovering 2-step conclusions from 1000 pairs of linked predications as premises, 

with 95.9% precision (Cohen et al, 2010c). Orthogonal negation was also used to 

obtain new middle-terms in such pathways, resulting in new reasoning pathways 

being found in 94.1% of cases, maintaining a precision of 92.3%.

• Along with other distributional models, the initial implementation of PSI was 

embedded in a system called EpiphaNet, providing biomedical scientists with the 

means to explore the relations between concepts for research purposes Cohen et al 

(2010b); Schvaneveldt et al (2013). Qualitative evaluation of the use of the system 

by biomedical domain experts revealed frequent discovery of surprising yet 

informative associations between concepts within their domain of expertise, as one 

might anticipate given the breadth of literature upon which the models concerned 

were trained.

• PSI for analogical reasoning with binary vectors was implemented following an 

example from Kanerva (2010). This permitted analogical retrieval (of the form A is 

to B as C is to ?), with precision over 60% with an individual cue, and in the high 

90%’s if many cues are superposed (Cohen et al, 2011). This supports the claim 

that analogy works best with ‘entangled’ concepts, where entangled is used to mean 

‘a compound object that cannot be factored into a single pair of elements’, as in 

quantum mechanics.

• Reasoning paths of using a variety of different relation types can be inferred by 

analogy from known examples, and combined to recover held-out sets of 

therapeutic relations (Cohen et al, 2012a,b,c). For both complex and binary vectors, 

this work also demonstrated gains when using quantum disjunction (subspace) over 

superposition for combining several near-orthogonal reasoning pathways. In 
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addition, superposing vectors to extend the search over longer (triple-predicate) 

pathways further improved performance.

• Similarly, reasoning pathways indicating adverse effects of drugs can be inferred 

from known examples and used to recover held-out side-effects. Predications 

populating these reasoning pathways can be linked back to the literature from 

which they were extracted, revealing plausible physiological explanations for these 

effects (Shang et al, 2014).

• Most recently, therapeutic substances that may inhibit prostate cancer growth have 

been predicted. Laboratory experiments have shown that one-third of positive 

results are in the top 10% of the ranked predictions (Cohen et al, 2014).

8 Conclusion

What we have discovered in recent years is that continuous models can address some of the 

gaps between formal deductive reasoning and human-like intelligent inference. This is 

primarily because continuous models can support the notion of ‘near enough’ in such a way 

that we can analyse several reasoning pathways simultaneously and generate likely 

hypotheses of relationships between concepts: not in the way humans do when we write a 

mathematical proof; but more akin to the way humans, including domain-experts, have 

hypotheses or hunches that may progress from vague associations to confirmed pieces of 

knowledge when put to the test.

Predication-based Semantic Indexing or PSI is one of the successful models that has been 

developed in this area. PSI represents the concepts and relationships from a knowledge-base 

in such a way that new relationships can be inferred, not just by following individual chains 

of predications, but also by examining many reinforcing pieces of information 

simultaneously, using superposition and quantum disjunction. PSI has so far been applied 

particularly to biomedical informatics challenges such as predicting TREATS relationships 

for drug discovery and drug repurposing: however, the mathematical models are more 

general than these particular examples, and several other researchers have applied related 

techniques to other concept-representation, composition, and inference challenges, with 

increasing and notable successes. As well as achieving good semantic performance, the 

computational performance of these methods is typically very favorable when compared 

with traditional logic programming.

Some well-known challenges remain, including representing and inferring the semantic type 

of an object (such as DISEASE or COUNTRY), and (somewhat surprisingly) using 

continuous models to represent continuous as well as discrete concepts. As demonstrated in 

this paper, these topics can be addressed and these problems can be solved in vector models. 

We expect that at least some of these initial successes will take root firmly in computational 

linguistics and informatics more generally. For many researchers and practitioners, the 

accustomed gulf between symbolic and distributional, rule-based and statistical, rationalist 

and empiricist methods is quickly disappearing, to be replaced by the much more interesting 

challenge of making these methods work together to produce systems that can apply human-

like sophistication to bodies of information far beyond the individual human scale.
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A Appendix: Mathematical Explanation of Similarity Distributions in High 

Dimensions

This appendix explains the mathematics behind the distributions of similarities between 

random vectors shown in Figure 1 from Section 3, and why these are so different from the 

distributions that we experience intuitively in one, two, and three dimensions.

In one dimension, the unit vectors are just the set {−1, 1} and the cosine similarities 

available are exactly plus and minus one, which mirrors the situation in traditional two-

valued logic. In two dimensions, the unit vectors fall on the unit circle, and the cosine of the 

angle between two randomly-chosen vectors follows the arcsin distribution, which is 

concentrated towards the extremes. In three dimensions, the unit vectors fall on the standard 

unit sphere, and the extra concentration of cosine values ‘near the poles’ is exactly cancelled 

out by the larger size of the parallels ‘near the equator’, and the distribution of angles 

between randomly-chosen angles is uniform. In four dimensions, the distribution starts to 

prefer the middle-region near the equator. These distributions are shown in Figure 3, which 

should be contrasted with Figure 1.

The key mathematical simplification that leads to these distributions comes from noting that 

without loss of generality, we can use symmetry of the unit sphere in any dimension to fix 
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one of the vectors to (1, 0, …, 0), and then the cosine similarity of this vector for any other 

unit vector (x1, …, xn) is simply x1. It follows that the distribution of cosine similarities of 

pairs of unit vectors is the same as the distribution of any chosen coordinate xi in the unit 

sphere .

Geometrically speaking, for any fixed x1 ∈ [−1, 1], the locus of points in Sn−1 with the first-

coordinate x1 is a lower-dimensional sphere, given by the constraint , which 

describes a sphere isomorphic to S n−2 with radius , as shown in Figure 4. The 

surface area of this sphere is proportional to the (n−2)th power of its radius (modulo 

constants involving π and the total number of dimensions), so for each cosine similarity x, 

the size of the set of unit vectors with this similarity score is proportional to . 

Finally we adjust for the fact that cosine similarity values closer to ±1 correspond to 

proportionally more angles, by a similar factor of  (the arcsin distribution which we 

already saw is the dominant factor in 2 dimensions). Thus the distribution of similarity 

scores between randomly-chosen unit vectors in  is proportional to . These 

curves are depicted in Figures 3 and 1.

These curves are shown non-normalized for the sake of comparison: to represent them as 

probability distributions, they need to be normalized so that the area under each curve is 

equal to 1, a general solution of which requires hypergeometric functions.

The mean and variance of the distribution in each dimension can be deduced using relatively 

elementary methods. Making continued use of the simplification that the distribution of 

similarities is the same as the distribution of the first coordinate x1, it follows that the mean 

similarity is zero in each dimension, because each coordinate on the unit sphere is 

distributed symmetrically. The variance of the distribution is therefore given by , the 

expected value of the square of the first coordinate. Since all the xi have the same 

distribution,

since for unit vectors, .

Thus the distribution of cosine similarity scores between randomly-chosen unit vectors in 

has a mean of 0 and a standard deviation of .
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Figure 1. 
Distributions of cosine similarities between randomly-chosen vectors in high dimensions
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Figure 2. 
Cue Superposition Amplifies Analogical Retrieval
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Figure 3. 
Distributions of cosine similarities between randomly-chosen vectors in low dimensions
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Figure 4. 
The set of points on the unit sphere S2 with first coordinate equal to x is a circle (isomorphic 

to the sphere S1) with radius .

Widdows and Cohen Page 34

Log J IGPL. Author manuscript; available in PMC 2015 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Widdows and Cohen Page 35

T
ab

le
 1

A
 te

rm
–d

oc
um

en
t m

at
ri

x

D
oc

1
D

oc
2

D
oc

3
...

D
oc

m

T
er

m
1

M
11

M
12

M
13

...
M

1m

T
er

m
2

M
21

M
22

M
23

...
M

2m

T
er

m
3

M
31

M
32

M
33

...
M

3m

...
...

...
...

...
...

T
er

m
n

M
n1

M
n2

M
n3

...
M

nm

Log J IGPL. Author manuscript; available in PMC 2015 November 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Widdows and Cohen Page 36

Table 2

The nearest words to fire and water in an LSA model built from 1189 chapters in the King James Bible. Real 

vectors, dimension 200.

fire water

fire 1.000000 water 1.000000

offer 0.600808 toucheth 0.566327

offering 0.569526 bathe 0.539766

sweet 0.468413 issue 0.517784

flour 0.466211 wash 0.513593

savour 0.465213 copulation 0.504446

burn 0.460434 clothes 0.479129

burnt 0.459722 rinsed 0.461367

meat 0.448330 separation 0.439121

shall 0.443111 unclean 0.422366
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Table 3

The core algebraic operations in a Vector Symbolic Architecture

• Generate Random Vector. Creates a random vector that can be used to represent an elemental concept (that is, a concept used as 
an ingredient for assembling derived concepts). Random elemental vectors can be thought of as arbitrary names or labels for 
concepts. Random vectors in high dimensions are typically almost-orthogonal to one another.

• Measure Overlap. Measures the similarity between two vectors x and y, giving a real number, x · y, typically between −1 
(opposite), 0 (unrelated) and 1 (identical). The overlap between two randomly generated elemental vectors should be near to zero 
(or some other value that means ‘no significant overlap’ or geometrically orthogonal).

• Superpose. Takes two vectors x and y and generates a third vector x + y, such that x · (x+y) and y · (x+y) are relatively large. 
Superposition is sometimes called bundling in the literature. Superpositions can be weighted by any real number.

Measure Overlap distributes over Superposition in the sense that a · (b + c) = (a · b) + (a · c) for all vectors a, b, c.

• Bind. Takes two vectors x and y and generates a third vector x ⊗ y, such that x · (x ⊗ y) and y · (x ⊗ y) are usually near to zero. 
However, if y and y′ are close to each other, x ⊗ y should be close to x ⊗ y′.

Binding distributes over Superposition in the sense that a ⊗ (b + c) = (a ⊗ b) + (a ⊗ c) for all vectors a, b, c.

• Release. Inverse of bind, written as x ⊘ y. Should behave in such a way that (x ⊘ (x ⊗ y)) · y ≈ 1.
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Table 4

Nearest-neighbor Searches in a PSI Space derived from SemMedDB.  HammingDistance(x, 

y).

S(diabetes mellitus) ⊘ E(TREATS-INV) S(food) ⊘ E(ISA-INV)

score concept score concept

0.039 biguanides 0.078 vegetables

0.035 insulin, regular 0.076 flavoring

0.034 acetohexamide 0.076 wheat

0.033 pancreas, artificial 0.074 rice

0.033 medical therapy 0.072 cow’s milk

0.032 islets of langerhans 0.072 cereals

0.031 drug eluting stent 0.071 soybeans

0.030 insulin, glargine, human 0.70 meat

0.030 insulin 0.67 peanuts dietary

0.029 tolbutamide 0.66 fruit
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Table 5

Twenty Top Predicted Therapeutic Relationships for Hormone-refractory Prostate Cancer

rank agent TREATS Active

1 gefitinib ✓

2 paclitaxel ✓ ✓

3 gemcitabine ✓ ✓

4 resveratrol ✓

5 methotrexate ✓

6 sorafenib ✓

7 tretinoin ✓

8 cyclophosphamide ✓

9 cyclosporine ✓

10 epigallocatechin gallate

11 sirolimus ✓

12 fluorouracil ✓

13 troglitazone

14 dactinomycin ✓

15 estradiol

16 topotecan ✓ ✓

17 cycloheximide ✓

18 docetaxel ✓ ✓

19 dehydroepiandrosterone

20 celecoxib ✓
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Table 8

Nearest neighbors in a model built from tabular data, with each distinct value treated as a random elemental 

vector. Real vectors, dimension 200.

J. Adams T. Roosevelt

J. Adams 1.000 T. Roosevelt 1.000

Jefferson 0.257 Coolidge 0.322

Kennedy 0.255 B. Harrison 0.217

Ford 0.219 Eisenhower 0.209

Hoover 0.195 Garfield 0.197

Taft 0.191 Hayes 0.181
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Table 9

Nearest neighbors with values treated as orthographic vectors. Real vectors, dimension 200.

J. Adams T. Roosevelt

J. Adams 1.000 T. Roosevelt 1.000

Ford 0.808 Coolidge 0.830

Buchanan 0.794 F. D. Roosevelt 0.812

J. Q. Adams 0.788 B. Harrison 0.807

Garfield 0.788 Kennedy 0.796

Van Buren 0.788 Carter 0.791
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Table 10

Nearest neighbors with dates and ages treated as numerical quantity vectors, other string values treated as 

orthographic vectors. Real vectors, dimension 200.

J. Adams T. Roosevelt

J. Adams 1.000 T. Roosevelt 1.000

Jefferson 0.994 Coolidge 0.969

Madison 0.992 Grant 0.964

Jackson 0.982 Taft 0.957

Monroe 0.980 F. D. Roosevelt 0.956

J. Q. Adams 0.979 Arthur 0.953
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