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Background: Insulin regulates metabolism via the PI3K/Akt pathway.
Results: A kinome siRNA screen identified PFKFB3, a glycolysis regulator, as a modulator of insulin action. Manipulation of
PFKFB3 activity or glycolysis affected insulin signaling.
Conclusion: Intracellular metabolism modulates important signal transduction pathways.
Significance: The novel link between glycolysis and growth factor signaling has important implications for the treatment of
metabolic diseases.

The insulin/insulin-like growth factor (IGF)-1 signaling path-
way (ISP) plays a fundamental role in long term health in a range
of organisms. Protein kinases including Akt and ERK are inti-
mately involved in the ISP. To identify other kinases that may
participate in this pathway or intersect with it in a regulatory
manner, we performed a whole kinome (779 kinases) siRNA
screen for positive or negative regulators of the ISP, using
GLUT4 translocation to the cell surface as an output for path-
way activity. We identified PFKFB3, a positive regulator of gly-
colysis that is highly expressed in cancer cells and adipocytes, as
a positive ISP regulator. Pharmacological inhibition of PFKFB3
suppressed insulin-stimulated glucose uptake, GLUT4 translo-
cation, and Akt signaling in 3T3-L1 adipocytes. In contrast,
overexpression of PFKFB3 in HEK293 cells potentiated insulin-
dependent phosphorylation of Akt and Akt substrates. Further-
more, pharmacological modulation of glycolysis in 3T3-L1 adi-

pocytes affected Akt phosphorylation. These data add to an
emerging body of evidence that metabolism plays a central role
in regulating numerous biological processes including the ISP.
Our findings have important implications for diseases such as
type 2 diabetes and cancer that are characterized by marked
disruption of both metabolism and growth factor signaling.

The insulin/insulin-like growth factor (IGF)-1 signaling
pathway (ISP)10 regulates a number of cellular processes, par-
ticularly those relating to metabolism including glucose trans-
port, glycogen synthesis, protein synthesis, lipid metabolism,
and gene expression (1). One of these processes specific to fat
and muscle cells is the translocation of the glucose transporter
GLUT4 to the plasma membrane (PM) to facilitate glucose
uptake. This process is defective in metabolic diseases such as
insulin resistance and type 2 diabetes (T2D). Insulin triggers
GLUT4 translocation via the PI3K/Akt pathway, resulting in
phosphorylation of downstream substrates including the Akt
substrate AS160. In addition, a number of other protein kinases
have been implicated in insulin action including Cdk5 (2, 3), the
G protein-coupled receptor kinase 2 (GRK2) (4, 5), Src family
kinases (6, 7), members of the PKC family (8), and JNK (9). To
understand the role of protein kinases and phosphorylation
in insulin action we recently performed global analysis of
insulin-regulated protein phosphorylation in 3T3-L1 adi-
pocytes. This identified changes in �5,000 phosphorylation
sites in response to insulin (10). Although this comprised
substrates of Akt and other kinases known to play a role in
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insulin action, clearly there are many insulin-regulated sub-
strates with no known kinase.

In this study, we set out to identify additional kinases that
regulate insulin action. We chose insulin regulation of GLUT4
translocation to the PM as our end point because this is one of
the most complex and important actions of insulin and it is
postulated to represent one of the earliest contributors to the
development of insulin resistance (11). We established a novel
GLUT4 translocation assay in HeLa cells, facilitating high
throughput analysis. We then performed a global kinase screen
using this system in combination with siRNA knockdown of all
kinases in the human genome. This resulted in identification of
�300 kinases with a putative involvement in insulin action.
Surprisingly there was an enrichment of kinases that play an
important role in glucose metabolism. We next focused on one
of these kinases, PFKFB3 (6-phosphofructo-2-kinase fruc-
tose-2,6-bisphosphatase 3). This enzyme regulates glycolysis
through the production of fructose 2,6-bisphosphate (Fru-
2,6-BP) (12) a potent allosteric activator of 6-phospho-
fructo-1-kinase (PFK-1), the rate-limiting step in glycolysis.
Using a variety of pharmacological and genetic approaches
we confirmed that PFKFB3 has an important role in insulin
action. The mechanism for this effect involves a positive
feedback regulation of glycolysis onto the Akt signaling
pathway. These data have important implications for the
Warburg effect in tumor cells.

Experimental Procedures

Reagents, Antibodies and Constructs—General chemicals
were purchased from Sigma unless otherwise stated. FCS,
DMEM, antibiotics, Glutamax, bicinchoninic acid reagent, and
SuperSignal West Pico chemiluminescent substrate were
obtained from Thermo Scientific. BSA was purchased from
Bovostar. Inhibitors were purchased from Calbiochem (3-(3-
pyridinyl)-1-(4-pyridinyl)-2-propen-1-one, 3-PO) and Thermo
Scientific (�-cyano-8-(1-phenylindol-3-yl)acrylate, UK-5099).
GPR81 agonists were from Calbiochem (3-chloro-5-hydroxy-
benzoic acid) and Toronto Research Chemicals (3,5-dihy-
droxybenzoic acid). Antibodies were purchased from Covance
Research Products (HA), Sigma (FLAG, �-tubulin), Roche
Applied Science (GFP), Santa Cruz Biotechnology (14-3-3),
Cell Signaling Technology (pSer473-Akt, pThr308-Akt, Akt,
pThr642-AS160, pThr246-PRAS40, PRAS40, pSer235/236-S6,
pThr389-S6K, pSer21/9-GSK�/�, and �-actin), Invitrogen
(Alexa 488-conjugated antibody), Rockland Immunochemicals
(IRDye 700- or 800-conjugated antibodies), GE Healthcare
(HRP-conjugated antibodies), and Abgent (PFKFB3, N-termi-
nal). The antibody against AS160 was previously described (13).
Human PFKFB3 in pDEST47 was a gift from Charles Watt
(Garvan Institute) and was originally derived from a Open Bio-
systems clone (catalog number MHS1010-9203644). PFKFB3
was subcloned into Gateway converted p3xFLAG-CMV-10
(Sigma) using Gateway cloning (Clontech).

Cell Culture and Transfection—3T3-L1 fibroblasts were
obtained from Howard Green (14) and cultured and differenti-
ated to adipocytes as previously described (15). HA-GLUT4
retrovirus was produced using Plat-E cells and used for infec-
tion of 3T3-L1 cells as previously described (15). HEK293 cells

were transfected with FLAG-PFKFB3, PFKFB3 in pDEST47, or
empty vector control p3xFLAG-CMV-10 or pEGFP-N1 (Clon-
tech) using Lipofectamine 2000 (Thermo Scientific) according
to the manufacturer’s instructions 48 h prior to experiments.
To establish the HA-GLUT4-HeLa cell line, HeLa cells were
transfected with linearized HA-GLUT4 in pBABE-puro (15)
using FuGENE HD (Thermo Scientific) according to the man-
ufacturer’s instructions. HeLa cell colonies stably expressing
HA-GLUT4 were selected with 1 �g/ml of puromycin and
screened for GLUT4 expression and insulin-stimulated
GLUT4 translocation to the PM.

siRNA Screen and HA-GLUT4 Translocation Assay—
Reverse transfection was performed using Dharmafect1 and
siGenome SMARTpool and On Target-plus pool and single
oligo siRNAs (Dharmacon) in HA-GLUT4 HeLa cells in
96-well plates. Cells were incubated for 72 h after transfection
before the GLUT4 translocation assay. Cells were serum-
starved for 2 h, followed by incubation in the presence or
absence of 100 ng/ml of IGF-1 for 15 min, fixed, and immuno-
stained for surface (and total in secondary screen) HA-GLUT4
as previously described (16). The assay was performed in dupli-
cate 96-well plates per condition with controls on each plate
amounting to a total of 10 plates in quadruplicates (duplicates
of basal and IGF-1). Nuclei were stained with Hoechst nuclear
stain. Fluorescence intensity was quantified using an IN Cell
Analyzer 2000 (GE Healthcare). Images were collected at �20
magnification and 9 fields/well.

Image and Data Analysis—Image analysis and processing
was performed using IN Cell developer toolbox 1.8 to obtain
fluorescence intensity of surface HA-GLUT4, normalized to
cell number (Fig. 1A). Image processing involved object and
intensity segmentation and post processing including binary
sieving and erosion. Fluorescence intensity and area were
determined for surface HA-GLUT4 staining and nuclei count
for DAPI staining and the ratio of fluorescence intensity � area
divided by nuclei was calculated. Z-scores were calculated for
each plate independently. Mean � S.D. (n � 2) of the duplicates
were calculated for raw values (fluorescence intensity � area/
nuclei count) and Z-scores. Z-score mean was used for filtering
and selection for secondary screen.

Lactate Determination—Lactate efflux into the extracellular
medium was determined as described previously (17). Cells
were lysed in PBS containing 2% SDS and the protein concen-
tration was determined by bicinchoninic acid assay and media
lactate levels were normalized to protein content. For intracel-
lular lactate measurements cells were washed twice with ice-
cold PBS and quenched in a freezing cold solution of methanol
and H2O. Metabolites were extracted with an equal volume of
ice-cold chloroform, the supernatant was evaporated at 45 °C
and resuspended in H2O. Lactate was measured using a tetra-
zolium-coupled lactate assay (104) with modifications. Briefly,
the sample was incubated with 2� reaction buffer (1.1 mM thia-
zolyl blue tetrazolium bromide, 0.45 mM phenazine methosul-
fate, 2.1 mM NAD�, 39 IU/ml of lactate dehydrogenase (Roche),
5.3 g/liter of glycine, 1.4% (v/v) Triton X-100). The reaction was
incubated for 15 min in the dark at room temperature and absor-
bance was measured at 590 nm.

PFKFB3 and Insulin Signalling

OCTOBER 23, 2015 • VOLUME 290 • NUMBER 43 JOURNAL OF BIOLOGICAL CHEMISTRY 25835



Extracellular Acidification Rate—Extracellular acidification
rate was measured using the Seahorse Bioanalyser XF24 system
(Seahorse Biosciences). Cells growing in XF24 plates were incu-
bated in buffer-free DMEM for the duration of the experiment,
with additions made by injection according to the manufactu-
rer’s instructions.

siRNA Transfection in 3T3-L1 Adipocytes—3T3-L1 adi-
pocytes were transfected with scrambled and PFKFB3 siRNA,
as previously described (18). A pool of 4 siRNAs was used for
PFKFB3 (#1, caacgaaagtgttcaatgttt; #2, ccaagaagctgactcgctatt;
#3 gttctacgctgcctactagtt; #4, cgaattgtatactacctgatt) and one
scrambled siRNA (gacttaactcatccaacgatt).

Quantitative Real-time RT-PCR Assays—RNA extraction
and real-time PCR analysis were performed as previously
described (19). Primers and probes for the PFKFB3 mouse gene
were selected according to the Universal Probe Library System
(Roche Applied Science). The Cyclophilin gene was used as a
control. The following primers were used for PFKFB3, cact-
gcgtgaacaggacaag and tggcgctctaattccatgat, and for Cyclophi-
lin, ttcttcataaccacagtcaagacc and accttccgtaccacatccat.

Fructose-2,6-bisphosphate (Fru-2,6-BP) Assay—Fru-2,6-BP
was measured in 3T3-L1 adipocytes using a fluorescent assay as
previously described (20). Fru-2,6-BP levels were normalized to
protein amount as determined by bicinchoninic acid assay.

Glucose Uptake—[3H]2-Deoxyglucose (PerkinElmer Life
Sciences) uptake into 3T3-L1 adipocytes was determined as
described previously (21).

Immunoblotting—Cells were incubated in serum-free
DMEM containing 0.2% BSA for 2 h prior to stimulation with
insulin or IGF-1. Cell lysates were subjected to SDS-PAGE anal-
ysis and immunoblotting with indicated antibodies as previ-
ously described (22).

Immunofluorescence Microscopy—HA-GLUT4-HeLa cells
were incubated in serum-free medium for 2 h, followed by incu-
bation with or without 100 ng/ml of IGF-1 for 15 min and sub-
sequently fixed, permeabilized, and stained with HA antibody
as previously described (23).

Pathway and Kinase Enrichment Analysis—A hypergeomet-
ric test was performed to identify over-representation of KEGG
pathways in identified kinases using gene set collection C2
CP:KEGG from the molecular signature database (MSigDB)
(24) and a universe of �45,000 genes. The false discovery rate
q-value for the hypergeometric p value was obtained by correct-
ing for multiple hypothesis testing using a Benjanmin and
Hochberg method and q-value �0.05 was considered signifi-
cant. Broad disease-related enriched pathways were excluded
from further analysis. The kinase composition of each of the
remaining significantly over-represented pathways was further
characterized and the overlap between the kinases identified in
the screen and the kinases in each pathway was calculated.
Pathways with at least 2 overlapping kinases and �25% kinase
enrichment were selected.

Statistical Analysis—Data are expressed as mean � S.E.
unless otherwise stated. p values were calculated by t test, one-
way analysis of variance or two-way analysis of variance using
GraphPad Prism.

Results

Establishment of siRNA Screen in HA-GLUT4-HeLa Cells—
To identify novel kinases that play a role in insulin action we
chose GLUT4 translocation as the end point and developed a
GLUT4 translocation assay in HeLa cells stably expressing a
GLUT4 reporter for a number of reasons: (a) GLUT4 translo-
cation is a complex action of insulin involving several processes
including signal transduction, metabolism, and regulated vesi-
cle trafficking; (b) impaired GLUT4 translocation is one of the
earliest defects in the development of insulin resistance and
type 2 diabetes and hence is an important action of insulin; (c)
HeLa cells provide an excellent system for high throughput
siRNA screening due to their ease of transfection and knock-
down efficiency; (d) cell lines that do not endogenously express
GLUT4 including CHO (25, 26), HeLa (27), and HEK cells (28)
have previously been used to study trafficking of transfected
GLUT4; and (e) as shown below, HeLa cells recapitulate many
of the characteristics of insulin-regulated GLUT4 trafficking in
adipocytes. We developed HeLa cells stably expressing a
GLUT4 reporter (HA-GLUT4) that facilitates measurement of
surface GLUT4 in intact cells (16) (Fig. 1A). GLUT4 transloca-
tion to the PM was quantified in the presence of several growth
factors. Among these, IGF-1 and EGF induced the most signif-
icant increase in PM GLUT4 (Fig. 1B). IGF-1 was selected for
the siRNA screen because IGF-1 signaling, like insulin, requires
IRS1 phosphorylation for PI3K activation. IGF-1 signals via the
insulin and IGF-1 receptors and increases GLUT4 transloca-
tion and glucose uptake via pathways common to insulin (29,
30). The HA-GLUT4-HeLa cell system recapitulated many of
the features of insulin-regulated GLUT4 trafficking in adi-
pocytes. HA-GLUT4 immunostaining in HeLa cells exhibited
basal and IGF-1-stimulated localization analogous to endoge-
nous GLUT4 in 3T3-L1 adipocytes (31) (Fig. 1C). IGF-1 stimu-
lation resulted in a robust increase in phosphorylation of com-
ponents of the insulin signaling pathway in HA-GLUT4-HeLa
cells similar to HA-GLUT4 expressing 3T3-L1 adipocytes (Fig.
1D). HA-GLUT4 translocation to the PM in HA-GLUT4-HeLa
cells was measured as previously described (16) except an IN
CELL Analyzer was used for quantitation (Fig. 1A). To validate
the use of these cells for siRNA kinome screen, we transfected
cells with siRNAs targeting a range of components of the ISP.
Knockdown of the insulin receptor, IRS1, Akt1, Akt2, and Akt1
� 2 (Akt1/2) impaired IGF-1-stimulated GLUT4 translocation
to the PM in HA-GLUT4-HeLa cells (Fig. 1, E and F), whereas
knockdown of AS160, a negative regulator of GLUT4 translo-
cation (13, 32, 33), increased GLUT4 translocation in unstimu-
lated (basal) conditions (Fig. 1, E and F). These data confirmed
that IGF-1-stimulated GLUT4 translocation in HA-GLUT4-
HeLa cells shared many of the essential features of insulin-stim-
ulated GLUT4 translocation in 3T3-L1 adipocytes and hence
HA-GLUT4-HeLa cells provide an ideal system for high
throughput analysis of insulin action.

siRNA Kinase Screen of GLUT4 Translocation to the PM—
The siRNA screen targeted 779 human kinases, including pro-
tein, lipid, and metabolite kinases, as well as kinase regulatory
proteins (Fig. 2). Z-scores were calculated for each siRNA treat-
ment in both basal and IGF-1-stimulated conditions (Fig. 2B,
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supplemental Table S1). These were compared with several
controls, including a non-targeting control (NTC, Z-score
basal 	0.54, stimulated 0.22) and siRNAs targeting Akt1 � 2
(Z-score stimulated 	0.75), and AS160 (Z-score basal 0.9). Hits
from the screen were defined as either positive or negative
kinases. Positive kinases were those that impaired IGF-1-stim-
ulated GLUT4 translocation when knocked down with a
Z-score �	0.75. Negative kinases were those that stimulated
PM GLUT4 levels under basal conditions upon knockdown
with a Z-score basal �0.9 (Fig. 2, A and B). We identified 112
negative kinases and 189 positive kinases in the primary screen.

We performed pathway over-representation analysis followed
by kinase enrichment analysis for the 301 kinases identified as
“hits” in the primary screen. This revealed an enrichment of
kinases involved in signaling pathways known to play a role in
GLUT4 translocation, thus validating the screen. These included
signaling pathways for insulin, mechanistic target of rapamycin,
and phosphatidylinositol (Fig. 3, supplemental Table S2). Interest-
ingly, 10 of 32 ranked pathways identified in this analysis were
involved in metabolism and the majority were directly involved

in glucose metabolism: glycolysis/gluconeogenesis, pentose
phosphate pathway, fructose and mannose metabolism, purine
metabolism, and galactose and amino/nucleotide sugar metab-
olism. This implicates glucose metabolism as a potential regu-
lator of GLUT4 translocation, in addition to being downstream
of GLUT4-mediated glucose uptake.

For the secondary screen we chose the top 30 negative
kinases (basal Z-score �1.6) and the top 28 positive kinases
(stimulated Z-score �	1.27) that were expressed in HeLa cells
by gene expression. In addition, we included 6 lower ranked
positive kinases (stimulated Z-score �	0.8) because they had
also been identified in a separate screen for insulin action in
adipocytes (10). In the secondary screen, we deconvoluted the
siRNA pools used in the primary screen to test each of the four
siRNAs separately (Fig. 2A). In addition to basal and IGF-1-
stimulated GLUT4 translocation, we also determined total
GLUT4 levels in the secondary screen and eliminated siRNA
targets that modulated total GLUT4 levels. Hits were consid-
ered as validated if at least two oligonucleotides in the pool
yielded the same phenotype as observed in the primary screen.
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FIGURE 1. Establishment of siRNA screen in HA-GLUT4-HeLa cells. A, HA-GLUT4-HeLa cells were subject to IGF-1-stimulated HA-GLUT4 translocation assay
and images taken at �20 magnification using an IN Cell Analyzer detecting nuclei (1) or surface GLUT4 (3). Images were analyzed using IN Cell developer
toolbox 1.8 software. Object segmentation and post-processing including binary sieving and erosion was applied to identify and count the nuclei (2) from the
unprocessed image (1). To quantify surface GLUT4, intensity segmentation was applied to exclude background fluorescence and post-processing (binary
sieving) was applied to measure the fluorescence intensity and the area (4). Surface GLUT4 (fluorescence intensity � area) was divided by number of nuclei for
normalization. B, HA-GLUT4-HeLa cells were serum starved for 2 h before treatment with or without 200 nM insulin, 100 ng/ml of IGF-1, 100 ng/ml of PDGF, or
100 ng/ml of EGF for 15 min. GLUT4 translocation to the PM was determined by surface HA-GLUT4 staining normalized to total HA-GLUT4, n � 4, standard
deviation is shown, *, p � 0.001; **, p � 0.0001 versus basal. C, immunofluorescence of HA-GLUT4 in HA-GLUT4-HeLa cells in the presence or absence of 100
ng/ml of IGF-1 for 15 min was performed. Scale bar is 5 �m. D, HA-GLUT4-HeLa cells and HA-GLUT4 –3T3-L1 adipocytes were serum-starved for 2 h, followed by
incubation with or without 100 nM PI3K inhibitor wortmannin, and stimulation with or without 200 nM insulin or 100 ng/ml of IGF-1 for 15 min. Cell lysates were
immunoblotted with the indicated antibodies (loading control: �-actin). E and F, validation of the siRNA screen in HA-GLUT4-HeLa cells with siRNAs against
components of the insulin signaling pathway, including insulin receptor (INSR), AS160, IRS1, Akt1, Akt2, Akt1 � 2, and non-targeting control (NTC). 72 h after
siRNA transfection, cells were serum starved, stimulated with or without 100 ng/ml of IGF-1 for 15 min, followed by HA-GLUT4 translocation assay and image
analysis. Mean � S.D. of raw values of 2 replicates (E) and representative images taken by IN Cell Analyzer (F) are shown. Scale bar is 70 �m.
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As a result of the secondary screen, 10 negative and 23 positive
kinases were validated (Fig. 2C). Raw values of the GLUT4
translocation to the PM and Z-scores from the primary screen
of these 33 hits are shown in Fig. 4. These candidates include a
number of kinases that have previously been implicated in insu-
lin signaling: connector enhancer of kinase suppressor of Ras 1
(CNKSR1) (34), death-associated protein kinase 3 (DAPK3)/
myosin light chain kinase (35, 36), microtubule-associated ser-
ine/threonine-protein kinase 2 (MAST2) (37), TP53 regulating
kinase (TP53RK) (38 – 41), the Src adaptor protein phospho-
protein associated with glycosphingolipid microdomains
(PAG) (6, 7, 42, 43), and STK6 (44) (Fig. 4 and Table 1). Among
these candidates we also identified a number of metabolic reg-
ulatory kinases: NME1, a subunit of the nucleoside diphosphate
kinase (45), thiamin pyrophosphokinase (TPK1) (46), panto-
thenate kinase (PANK4) (47– 49), and PFKFB3 (12, 50) (Fig. 4
and Table 1).

PFKFB3 Inhibition in 3T3-L1 Adipocytes Decreases Insulin-
stimulated GLUT4 Translocation to the PM, Reduces Lactate
Efflux and Impairs Akt Signaling—In view of the enrichment of
glucose metabolism pathways in the pathway analysis of the
identified kinases in our screen, we selected PFKFB3, a key reg-
ulator of glycolysis, for further characterization (12). PFKFB3
catalyzes the formation of Fru-2,6-BP, which allosterically acti-
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vates the rate-limiting step of glycolysis, PFK-1 (50). PFKFB3 is
highly expressed in adipocytes and its expression increases dur-
ing the differentiation process, accompanied by an increase in
its product Fru-2,6-BP (51, 52). Disruption of PFKFB3 in mice
causes decreased insulin signaling and exacerbates high fat
diet-induced insulin resistance (52). Furthermore, PFKFB3
protein and its product Fru-2,6-BP are increased in several can-
cers and are suggested to contribute to the Warburg effect (12).
Finally, our analysis of the insulin-regulated phosphoproteome
in adipocytes revealed PFKFB3 as one of the most highly regu-
lated insulin-dependent phosphoproteins (10).

In the present screen, PFKFB3 was identified as a positive
regulatory kinase of GLUT4 translocation, as its knockdown
impaired IGF-1-stimulated GLUT4 translocation (Figs. 1F, 2B,
and 4, Z-score 	1.54). To validate this finding in 3T3-L1 adi-
pocytes, we used siRNA to knockdown PFKFB3 mRNA in
3T3-L1 adipocytes by 69% (Fig. 5A). PFKFB3 knockdown
resulted in reduced extracellular lactate by 38%, consistent with

reduced glycolytic flux, which is a key action of PFKFB3 activity
(Fig. 5B). PFKFB3 knockdown also led to a reduction in insulin-
stimulated 2-deoxyglucose uptake by 22% (Fig. 5C), confirming
a role for PFKFB3 in insulin-stimulated GLUT4 translocation
and validating the siRNA screen. To further characterize this
kinase in 3T3-L1 adipocytes, we employed 3-PO, a competitive
inhibitor of PFKFB3 that binds to the substrate binding site in
PFKFB3 (53). 3-PO is specific for PFKFB3 as verified in cells
with reduced PFKFB3 (53, 54), and it has been widely used to
inhibit PFKFB3 in vitro and in vivo (53–59). In 3T3-L1 adi-
pocytes, insulin significantly increased the levels of Fru-2,6-BP,
the product of PFKFB3 activity, by 1.7-fold and incubation of
cells with 3-PO blocked this increase, thus confirming that
3-PO inhibited PFKFB3 (Fig. 5D). Insulin markedly increased
lactate efflux from 3T3-L1 adipocytes, measured by the extra-
cellular acidification rate, and this effect was inhibited by 3-PO
(Fig. 5E), consistent with the siRNA data. In addition, 3-PO
inhibited insulin-stimulated glucose uptake (Fig. 5F) and
GLUT4 translocation in 3T3-L1 adipocytes (Fig. 5G). The
effect with 3-PO was greater than with PFKFB3 knockdown and
this likely involves residual PFKFB3 activity due to incomplete
knockdown. To explore the mechanism for this effect, we
examinedinsulinsignaling.3-PObluntedinsulin-mediatedphos-
phorylation of Akt at Ser-473, whereas phosphorylation at the
other key regulatory site Thr-308 was significantly increased
with 3-PO (Fig. 5H). Although it is thought that Akt phosphor-
ylation at Thr-308 and Ser-473 are representative of Akt activ-
ity, it was recently reported that Akt hyperphosphorylation can
occur when Akt kinase activity is inhibited, due to a conforma-
tional change in Akt that shields the phosphosites from phos-
phatases (60, 61). We therefore assessed Akt activity by mea-
suring phosphorylation of the Akt substrate GSK3 and the
downstream substrate S6K. Despite the increase in Thr-308
phosphorylation, Akt kinase activity was inhibited with 3-PO as
indicated by reduced insulin-dependent phosphorylation of
GSK3 and S6K (Fig. 5H). These data suggest that PFKFB3
and/or glycolysis regulates insulin signaling possibly at the level
of Akt.

PFKFB3 Overexpression Increases Insulin Signaling and Lac-
tate Efflux—Because PFKFB3 disruption perturbed insulin
action and signaling, we next sought to explore the effects of
PFKFB3 overexpression on insulin signaling. Because 3T3-L1
adipocytes have high levels of PFKFB3 expression, we switched
to HEK293 cells because they have lower PFKFB3 expression
(data not shown). PFKFB3 overexpression in HEK293 cells
resulted in a 1.7-fold increase in lactate efflux (Fig. 6A) and
augmented insulin-stimulated phosphorylation of Akt on Ser-
473 and Thr-308 by 1.5- and 2-fold, respectively (Fig. 6, B and
C). Akt activity was increased as determined by the 1.5-fold
increase in phosphorylation of the Akt substrate, AS160.

Exogenous Lactate Did Not Increase Insulin Signaling—Given
that modulating PFKFB3 resulted in a change in lactate levels
concomitant with a change in insulin signaling, we next
explored whether lactate per se affected insulin signaling. Lac-
tate has been shown to act as a signaling molecule in adipocytes
by binding to the GPR81 receptor (62, 63). To test if this could
explain the effects of PFKFB3 overexpression on Akt activity,
we tested the effects of extracellular lactate or GPR81 agonists
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FIGURE 5. Inhibition of PFKFB3 activity inhibits insulin action in
3T3-L1 adipocytes. A–C, 3T3-L1 adipocytes were transfected with scram-
bled (scr) siRNA or PFKFB3 siRNA (siPFK) 96 h prior to experiments. A, cell
medium that was incubated on the cells for 16 h was collected and lactate
levels were measured and normalized to Scr control (n � 11). B, mRNA was
isolated from Scr- and siPFK-transfected adipocytes, quantitative PCR was
performed for PFKFB3 and normalized to cyclophilin control (n � 3). C, Scr-
and siPFK-transfected 3T3-L1 adipocytes were incubated in serum-free
medium, followed by insulin (100 nM) stimulation. Glucose uptake was
measured using [3H]2-deoxyglucose ([3H]-2DOG) (n � 3). D–F, 3T3-L1 adi-
pocytes were incubated in serum-free medium for 1.5 h, followed by incu-
bation with 100 �M 3-PO or dimethyl sulfoxide control for 30 min, prior to
stimulation with or without 100 nM insulin for 20 min (or indicated time).
D, Fru-2,6-BP (F2,6BP) was measured in 3T3-L1 adipocytes � 3-PO. Mean �
S.D. of n � 2 is shown. E, extracellular acidification rate (ECAR) was mea-
sured during insulin stimulation �3-PO using a Seahorse Bioanalyser (n �
3). F, insulin-stimulated glucose uptake � 3-PO was measured using [3H]-
2DOG (n � 5). G, insulin-stimulated HA-GLUT4 translocation to the PM �
3-PO was determined in HA-GLUT4 expressing 3T3-L1 adipocytes (n � 7).
H, insulin-stimulated phosphorylation of components of the insulin sig-
naling pathway � 3-PO was determined by immunoblotting cell lysates
with the indicated antibodies (loading control: 14-3-3) and representative
immunoblots are shown (n � 3). *, p � 0.05; **, p � 0.01; ***, p � 0.001;
****, p � 0.0001, error bars represent S.E. (except D).
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on insulin signaling. Neither exogenous lactate nor the GPR81
agonists, 3-chloro-5-hydroxybenzoic acid and 3,5–3,5-dihy-
droxybenzoic acid had any significant effect on insulin signaling
in 3T3-L1 adipocytes (Fig. 7 and data not shown). These data
indicate that autocrine effects of lactate were not responsible
for the increase in insulin signaling.

Modulation of Aerobic Glycolysis Affects Insulin Signaling—
We next hypothesized that glycolysis per se might potentiate
Akt signaling. To test this we used two separate approaches to
manipulate the distribution of glucose between glycolysis and
mitochondria, thereby enhancing or reducing glycolysis. Ini-
tially we used UK-5099, a potent and specific inhibitor of the
mitochondrial pyruvate carrier (MPC) (64, 65) in 3T3-L1 adi-
pocytes. UK-5099 dose-dependently potentiated insulin-stim-
ulated lactate efflux (Fig. 8A), suggesting that MPC inhibition
redirected pyruvate metabolism toward lactate, thus enhancing
glycolysis. Inhibition of MPC significantly increased insulin-
stimulated phosphorylation of Akt at Thr-308 by 1.5-fold,
whereas phosphorylation at Ser-473 was unchanged (Fig. 8, B
and C). These data show that increasing glycolysis potentiated
insulin signaling. We next used �-cyano-4-hydroxycinnamate,
an inhibitor of the lactate transporter (MCT1) (66, 67), to deter-

mine whether increased intracellular lactate and the concomi-
tant reduction in glycolytic flux (68) had an effect on insulin
signaling. �-Cyano-4-hydroxycinnamate had a potent effect on
MCT1 activity as indicated by a dose-dependent increase in
intracellular lactate and by reduced extracellular lactate, which
was undetectable at doses �2 mM �-cyano-4-hydroxycin-
namate (Fig. 8D). Notably, MCT1 inhibition also impaired
insulin signaling with similar dose-response characteristics to
that observed for lactate efflux (Fig. 8, E and F). In summary,
enhancing or inhibiting glycolysis resulted in respective
changes in insulin signaling.

Discussion

The insulin/IGF-1 pathway plays a pleiotropic role in long
term health. It is intricately linked to a number of major dis-
eases including cancer, diabetes, cardiovascular disease, and
neurological disorders (69, 70). In the present study we sought
to identify kinases that act as co-regulators of the insulin/IGF-1
pathway. We used GLUT4 trafficking to the PM as a measure of
insulin/IGF-1 action because we have previously established a
robust high throughput assay for PM GLUT4 (16) and this met-
abolic output is linked to a number of intracellular signal trans-
duction pathways including Akt, AMP-activated protein
kinase, and other stress kinase pathways (31, 71). Our screen
identified 33 kinases that either positively or negatively
impacted upon IGF-1 regulated GLUT4 trafficking (Figs. 2 and
4). Among these were kinases that intersect with pathways pre-
viously implicated in insulin/IGF-1 action including p53 (38),
myosin light chain kinase (36), and the Ras scaffold protein
CNKSR1 (34) (Table 1). Surprisingly, there was an enrichment
of kinases that play a role in metabolism and that phosphorylate
metabolites rather than proteins (Fig. 3). These included
NME1, a subunit of nucleoside diphosphate kinase, TPK1,
PANK4, and PFKFB3 (Fig. 4, Table 1). Although we have
focused on PFKFB3 in the present study the role of these other
three metabolic enzymes in insulin action is deserved of further
research.

Metabolic switching between mitochondrial and glycolytic
metabolism is a highly regulated process. One enzyme that has
received much attention in terms of metabolic switching is
PFKFB3. Despite being a bifunctional enzyme, possessing both
phosphatase and kinase activity, its kinase activity is 700-fold
more active than its bisphosphatase activity favoring produc-
tion of Fru-2,6-BP (72, 73), a potent allosteric activator of
PFK-1. PFKFB3 plays an important role in ensuring high glyco-
lytic flux in a range of cell types including tumor cells (74),
endothelial cells (75), and activated lymphocytes (T cells (76),
dendritic cells (77), and M1 macrophages (78)). Inhibition of
PFKFB3 activity using 3-PO or via genetic means has a range of
physiological consequences including reduced tumorigenesis,
reduced angiogenesis (54), and reduced activation of T cells
(56). These and other findings have contributed to the notion
first proposed by Otto Warburg (79, 80) that aerobic glycolysis
favors specific biologic outcomes. Several reasons have been
proposed to explain this association. Glycolysis, although less
efficient in energy production compared with mitochondria,
generates energy rapidly. Second, intermediates generated dur-
ing glycolysis are used for synthesis of a range of macromole-
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cules essential for rapidly proliferating cells (81). Third, glycol-
ysis plays a key role in intracellular redox control and avoids
potential deleterious consequences of mitochondrial reactive
oxygen species production (82).

Here we provide another potential explanation for the War-
burg effect, which is to potentiate signal transduction pathways
that promote cell growth and survival. In this study we provide
evidence that a range of pharmacologic and genetic perturba-
tions that modulate glycolysis have parallel effects on Akt sig-
naling (Figs. 5, 6, and 8). Although much of our study has
focused on PFKFB3, it is unlikely that the feedback onto signal-
ing is specific to this enzyme or its products as other manipu-
lations that affected glycolysis independently of PFKFB3 also
perturbed Akt signaling (Fig. 8). This unveils a novel cyclical
relationship between metabolism and Akt signaling (Fig. 9) that
has potential implications for diseases involving defects in the
Akt/metabolism axes. For example, in tumor cells stabilization
of the PI3K/Akt signaling pathway will ensure both rapid pro-
liferation and inhibition of cell death, two of the major end
points of this signaling nexus (83). It is not surprising that
hyper-activation of Akt is frequently observed in human
tumors and in some cancer types 70 –100% of tumors show
hyper-activated Akt (84), presumably due at least in part to the
high rates of glycolysis in these cells. The reverse situation is
insulin resistance, a pathological situation involving reduced
Akt activity (85). It has long been assumed that reduced Akt
activity is a driver of insulin resistance but another interpreta-
tion, based on the current study, is that reduced glucose metab-
olism, a prominent feature of insulin resistance, leads to
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6-phosphate; F6P, fructose 6-phosphate; F1,6BP, fructose 1,6-bisphosphate.
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reduced Akt activity. Consistent with reduced Akt activity
being a consequence rather than a cause of insulin resistance,
we and others have observed defects in glucose metabolism
earlier than defects in Akt signaling in a range of models of
insulin resistance (86, 87).

The current study raises several key questions, which are
deserved of future study. First, why do adipocytes express such
high levels of PFKFB3? Intriguingly, adipocytes display a War-
burg type of metabolism as the majority of glucose taken up by
adipocytes is converted to lactate (88, 89). We speculate this
high rate of glycolysis might endow adipocytes with a highly
sensitive insulin-regulated Akt network. Indeed, adipocytes are
among the most insulin-sensitive cells in the body, displaying
much greater insulin sensitivity than other bona fide insulin-
sensitive organs such as muscle (90). The rationale for this hier-
archical effect of insulin among different tissues is unclear and
we speculate this may be related to the unusually high rate of
PFKFB3-mediated glycolysis in the fat cell, which potentiates
Akt signaling. Consistent with these observations, transgenic
mice overexpressing PFKFB3 selectively in adipocytes, exhibit
enhanced insulin sensitivity on high fat diet despite increased
adiposity (91). Conversely, reduced PFKFB3 in PFKFB3�/	
mice exacerbates diet-induced insulin resistance (52). This fits
with the emerging role of the fat cell as an energy sensor and so
future studies of this aspect of fat cell metabolism will likely
yield new insights into insulin resistance and whole body met-
abolic homeostasis.

The second question is which metabolite(s) regulate Akt sig-
naling? Lactate has a number of effects aside from its role in
glycolysis including increased HIF1� activity (92) and activa-
tion of receptor tyrosine kinases AXL, TIE2, and VEGFR-2 (93).
Lactate also binds to GPR81, a G protein-coupled receptor that
is highly enriched in adipocytes (62). However, we were unable
to observe a significant effect of external lactate (Fig. 7) or other
GPR81 agonists on Akt signaling. We postulate that the effect
that we have observed is not specific to PFKFB3 per se, but
rather due to the up-regulation of glycolysis. One possibility is
that the positive effect on Akt signaling is due to the partition-
ing of glucose toward lactate thereby preventing mitochondrial
oxidation as well as its consequences on cellular redox
(increased reactive oxygen species) and changes in metabolite
levels (e.g. increased acetyl-CoA, the substrate for acetylation)
(Fig. 9). Moreover, in an RNAi-mediated loss of function screen
in Drosophila melanogaster cells for Akt-mediated prolifera-
tion and morphology, several glycolytic enzymes were identi-
fied including GLUT1, hexokinase, and PFK-1 as major regula-
tors of Akt signaling (94). In addition to phosphorylation,
many signaling proteins such as Akt are subject to regulation
by a range of other post-translational modifications includ-
ing acetylation, ubiquitination, nitrosylation, and
O-GlcNAcylation (95–98). These kinds of modifications are
subject to exquisite control by metabolism and are often
regulated in a non-enzymatic manner and so this is also an
area that requires further investigation.

The final question is which components within the PI3K/Akt
pathway are the regulatory target(s) of this glycolytic feedback
mechanism? Notably, despite a reduction in Akt kinase activity
with PFKFB3 inhibition (Fig. 5), we observed insulin-depen-

dent hyper-phosphorylation of Akt Thr-308. Hyper-phosphor-
ylation of inactive Akt has been observed with direct Akt kinase
inhibitors (60, 61) and oxidation (99). This phenotype is incon-
sistent with a block upstream in the ISP. For example, inhibi-
tion of PI3K completely ablates Akt phosphorylation. There-
fore we predict that perturbations in glycolysis affect the ISP at
the level of Akt itself rather than upstream of Akt.

In summary, our kinome screen has identified an important
role for glucose metabolism in regulating the insulin/IGF-1 sig-
naling pathway. PFKFB3, a key regulator of glycolysis, facilitates
cross-talk between metabolism and signaling, generating a
positive feedback loop (Fig. 9). Therefore, PFKFB3 expression/
activity allows cells to perform high rates of glycolysis indepen-
dently of their energy status. The product of PFKFB3, Fru-2,6-
BP, overrides the inhibitory effect of ATP on PFK-1 and thereby
drives glycolysis in the presence of high energy. PFKFB3 has
been identified as an important target in cancer cells (100, 101).
It is highly expressed in many cancers and efforts are underway
to develop inhibitors and indeed 3-PO emerged from one such
screen (53). Based on the current work we postulate that such
drugs will not only inhibit glycolysis but also the signaling path-
ways required for cancer cell survival. The development of anti-
cancer agents that selectively target the PI3K-Akt signaling
pathway have had limited success, mainly due to adaptive
changes in feedback inhibition pathways allowing reactivation
of signaling (102). One of the intriguing implications of our data
is that a major purpose of the “Warburg pathway,” aside from
saving carbon backbones for biomass, might be to preserve the
activity of signaling kinases that are essential for both cell pro-
liferation and cell survival, two of the essential features of the
Akt pathway. Thus, combination therapies involving metabol-
ic/glycolytic inhibitors together with PI3K/Akt inhibitors may
prove to be powerful antagonists of cancer cells at a broad level
(103).
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