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Background: Alternative splicing can result in proteins with distinct subcellular distributions and functions.
Results: Three ClC-3 splice variants are expressed in the mammalian brain with different subcellular localizations, but identical
transport properties.
Conclusion: Differences in the subcellular localization of ClC-3 splice variants suggest diverse cellular functions.
Significance: The existence of multiple splice variants needs to be considered when studying cellular functions of ClC-3.

ClC-3 is a member of the CLC family of anion channels and
transporters, for which multiple functional properties and sub-
cellular localizations have been reported. Since alternative
splicing often results in proteins with diverse properties, we
investigated to what extent alternative splicing might influence
subcellular targeting and function of ClC-3. We identified three
alternatively spliced ClC-3 isoforms, ClC-3a, ClC-3b, and ClC-
3c, in mouse brain, with ClC-3c being the predominant splice
variant. Whereas ClC-3a and ClC-3b are present in late endo-
somes/lysosomes, ClC-3c is targeted to recycling endosomes via
a novel N-terminal isoleucine-proline (IP) motif. Surface mem-
brane insertion of a fraction of ClC-3c transporters permitted
electrophysiological characterization of this splice variant
through whole-cell patch clamping on transfected mammalian
cells. In contrast, neutralization of the N-terminal dileucine-like
motifs was required for functional analysis of ClC-3a and ClC-
3b. Heterologous expression of ClC-3a or ClC-3b carrying
mutations in N-terminal dileucine motifs as well as WTClC-3c
in HEK293T cells resulted in outwardly rectifying Cl� currents
with significant capacitive current components. We conclude
that alternative splicing of Clcn3 results in proteins with differ-
ent subcellular localizations, but leaves the transport function of
the proteins unaffected.

ClC-3 belongs to the sub-branch of the CLC family of anion
channels and transporters that resides primarily in intracellular
organelles. Its functional relevance in the central nervous sys-
tem is illustrated by Clcn3�/� knock-out animal models (1–3)
that exhibit pronounced hippocampal and retinal degener-
ation. Changes in synaptic transmission in these animals sug-
gest that ClC-3 is present in synaptic vesicles and contributes to
the regulation of neurotransmitter accumulation and release
from the presynaptic nerve terminal (2, 4, 5).

However, besides experimental data that supports localiza-
tion of ClC-3 in synaptic vesicles or lysosomes (2– 8), there are
also results that argue in favor of surface membrane localization
of this protein (9, 10). Moreover, multiple functional properties
have been reported for ClC-3. Our group expressed mutant
ClC-3 after removal of an N-terminal dileucine motif and
observed outwardly rectifying anion-proton exchange current
that resemble currents mediated by ClC-4 and ClC-5 (11–15).
A characteristic property of ClC-3 was the occurrence of prom-
inent capacitive currents, which indicate a large percentage of
transporters mediating incomplete transport cycles (12, 16).
Other groups assigned a postsynaptic Ca/CaMK-regulated
anion channel in hippocampal neurons to ClC-3 and hypothe-
sized that ClC-3 might regulate neuronal excitability as anion
channels by modifying the postsynaptic membrane potential
and/or length constant (9, 10, 17).

A potential reason for such functional differences between
native and heterologously expressed proteins might be the
existence of alternatively spliced ClC-3 variants with distinct
subcellular localizations and transport functions. So far, five
splice variants of Clcn-3 have been identified; ClC-3a, ClC-3b,
ClC-3c, ClC-3d, and ClC-3e, and partially characterized (18 –
20). We decided to clone all ClC-3 splice variants from mouse
brain and to compare their functions and subcellular distribu-
tions. We found three splice variants that differ in the N-termi-
nal domain and exhibit identical transport function, but differ-
ent subcellular distributions.

Experimental Procedures

Cloning and Expression Profile of ClC-3a, ClC-3b, and
ClC-3c—To clone the complete coding regions of ClC-3a, ClC-
3b, and ClC-3c, cDNAs were amplified from mouse brain using
the SuperScriptTM one step RT-PCR system with platinum Taq
(Invitrogen, Carlsbad, CA). We used primers that were specific
to the different 5� coding region together with a common
reverse primer hybridizing to the 3�-end. After assembly of
amplified bands into the pRSETB vector (Invitrogen) variants
were identified by sequencing.

The tissue distribution of the different ClC-3 mRNAs was
determined by RT-PCR. After isolation of total RNA from
brain, heart, pancreas, kidney, liver, lung, retina, olfactory bulb,
and spinal cord from 2-month-old mice and from hippocampi
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from 2, 13, 30, 60, or 120 days old mice RT-PCR was performed
with the following primers: for ClC-3a and ClC-3b 5�-CGCC-
CAGCTTGCTATGCCTCTGAG-3� (forward), ClC-3c 5�-ATG-
GATGCTTCTTCTGATCC-3� (forward) and a common anti-
sense primer 5�-AGCTAGTGCCCCTGATGCCAGTC-3�
(reverse). Three PCR products with the predicted size of 324
bp/ClC-3a, 500 bp/ClC-3b, and 379 bp/ClC-3c were obtained.
To identify ClC-3e (ClC-3d or ClC-3f), 5�-TGCCCTCAGAA-
GAGACCTGACTATTGC-3� (forward) and 5�-AACGAACT-
TCCTCTTCTGTCTCCTCTCTG-3� (reverse) primers were
applied. These primers recognize sequences in the 3�-coding
region of Clcn3 and generates RT-PCR products with expected
sizes of 485 bp and 409 bp corresponding to the ClC-3 with the
long and short C termini, respectively.

PCR products were separated by gel electrophoresis and
quantified using ImageJ 1.44p software (National Institutes of
Health, Bethesda, MD) (21). To account for age-dependent
changes in cell number or size these values were normalized to
mRNA levels of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). GAPDH mRNA levels were determined using 5�-
CAGTATGACTCCACTCACGGCAAATTC-3� as forward
primer and 5�-CACAGTCTTCTGGGTGGCAGTGATG-3� as
reverse primer, generating a PCR product with an expected size
of 423 bp.

Heterologous Expression—cDNAs encoding full-length
mouse ClC-3a, ClC-3b, or ClC-3c (GenBankTM Accession
Number NM_007711.3, NM_173873.1, NM_173876.3) were
fused in-frame to the 5�-end of the coding sequences of
enhanced green or monomeric red fluorescence protein (eGFP
or mRFP) and cloned into FsY1.1 G.W. or p156rrL vectors
(were kindly provided by Dr. M. Filippov, Nizhny Novgorod,
Russia, and Dr. D. Bruns, Homburg, Germany). For each con-
struct, two independent recombinants from the same transfor-
mation were examined and shown to exhibit indistinguishable
functional properties.

ClC-3 splice variants were transiently expressed in HEK293T
or MDCK II cells alone or in combination with fluorescent
markers such as LAMP1 (which was a gift from Walther
Mothes (Addgene plasmid 1817) (22), RAB7, RAB11 (a gift
from Richard Pagano (Addgene plasmid 12605) (23), TfR (a gift
from Gary Banker (Addgene plasmid 45060) (24), or the mem-
brane marker farnesylated eGFP (provided by Dr. M. Filippov,
Nizhny Novgorod, Russia) and examined typically 24 h or 36 h
after transfection of 2 to 5 �g of cDNA using Lipofectamine
2000 (Invitrogen) or calcium phosphate transfection methods
(25).

Electrophysiology—Standard whole-cell patch clamp record-
ings were performed using an EPC-10 amplifier, software con-
trolled by PatchMaster (HEKA) (11). Borosilicate pipettes
(Harvard Apparatus) were pulled with resistances of 0.9 –2
M�. We only recorded from cells with series resistances below
4.5 M�. More than 80% of the series resistance was routinely
compensated, resulting in a voltage error of less than 5 mV. P/4
leak subtraction with a baseline potential of �30 mV was used
to cancel linear capacitances (26). Currents were low-pass fil-
tered at 2.9 kHz and digitalized with a sampling rate of 100 kHz.
The standard external and internal recording solutions con-
tained (in mM) 160 NaCl, 15 HEPES, 4 K-gluconate, 2 CaCl2, 1

MgCl2, pH 7.4 (bath solution), or 105 NaCl, 15 HEPES, 5
MgCl2, 5 EGTA; pH 7.4 (pipette solution).

Confocal Imaging—Images were acquired 24 –36 h after
transfection with a Leica TCS SP5 II inverted microscope
(Manheim, Germany) using a 63� oil immersion objective
from living cells in PBS containing Ca2� and Mg2� (GIBCO) at
room temperature (22–24 °C). EGPF and YFP (enhance green
and yellow fluorescence proteins) fluorophores were excited
with a 488-nm Argon laser and mRFP (monomeric red fluores-
cence protein) with a 594-nm He-Ne laser. Emission signals
were detected after filtering with at 500 –550 nm, 520 –560 nm,
or 600 – 650 nm bandpass filters. To determine the fraction of
ClC-3b mutants inserted into the plasma membrane (Fig. 4H)
we co-expressed farnesylated eGFP as surface membrane
marker together with ClC-3bS3/S2 ClC-3bS3/S1 orClC-3bS3/S2/S1
as mRFP fusion proteins. Surface membrane insertion was then
quantified in confocal images as mRFP fluorescence intensity
overlapping with eGFP fluorescence. For all mutants we used
similar microscope settings in these experiments. Images were
analyzed and assembled for publications in ImageJ 1.44p soft-
ware (National Institutes of Health) (21).

Protein Purification and Pull-down Experiments—Glutathi-
one S-transferase (GST)-fusion constructs (GST-NT ClC-3b
and GST-NT ClC-3bS3/S2/S1) were generated by amplifying
DNA fragments encoding amino acids 1–125aa of ClC-3b and
ClC-3bS3/S2/S1 using PCR. These fragments were then cloned
into the PGEX-6P1 (GE Healthcare, Freiburg, Germany) vector
and verified by sequencing. GST-fusion proteins (GST-NT
ClC-3b, GST-NT ClC-3bS3/S2/S1, and GST alone) were
expressed in Escherichia coli (BL21) for 4 –5 h at 30 °C after
induction with isopropyl �-D-1-thiogalactopyranoside (IPTG)
and purified using affinity and size-exclusion chromatography
as described previously (27, 28). For pull-down experiments
brain lysates were produced by homogenization of brain tissue
from C57Bl/6 mice and two consecutive rounds of centrifuga-
tion. 1 ml of the resulting mouse brain lysate were incubated
with 5 �g of GST-fusion protein (GST-NT ClC-3b, GST-NT
ClC-3bS3/S2/S1, or GST alone) bound to glutathione-Sepharose
(GE Healthcare, Freiburg, Germany) for 4 h at 4 °C under con-
stant agitation. After 5– 6 times washing with HBS containing
0.1% (w/v) Triton X-100 proteins were eluted with SDS loading
buffer, separated by SDS-PAGE and analyzed by immunoblot-
ing with antibodies against clathrin (BD Biosciences, Heidel-
berg, Germany).

Data Analysis—Data analysis was performed using a combi-
nation of FitMaster (HEKA), Origin (OriginLab), SigmaPlot
(Systat Software), and Excel (Microsoft) software. All data are
presented as mean � S.E.

Results

Cloning and Expression Profiles of Mouse ClC-3 Splice
Variants—Four alternatively spliced ClC-3 isoforms, ClC-3a,
ClC-3b, ClC-3c, and ClC-3e (GenBankTM Accession Number
NM_007711.3, NM_173873.1, NM_173876.3, NM_173874.1),
can be found in protein sequence data bases. ClC-3a is the
shortest ClC-3 splice variant with 760 amino acids. Its expres-
sion results from a start codon downstream of the first AUG of
other variants (Fig. 1A) (Clcn3 chloride channel 3 (Mus muscu-
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lus (house mouse)), NCBI accession number 12725). ClC-3b,
sometimes also denoted as ClC-3A (18, 19), and ClC-3c possess
an alternative in-frame exon in the 5� coding region, resulting in
N-terminal domains of different lengths (Fig. 1A) (Clcn3 chlo-
ride channel 3 (Mus musculus (house mouse)), NCBI accession
number 12725) and with 58 (ClC-3b) or 31 (ClC-3c) additional
amino acids residues as compared with ClC-3a (Fig. 1B). For
ClC-3e, also denoted as ClC-3B (18, 19), insertion of an alter-
nate exon (76 bp) in the 3� coding region generates a frameshift
that results in a ClC-3 splice variant that differs from ClC-3b by
additional amino acids in the C-terminal region (Fig. 1B). Fur-
ther splice variants harboring the N-terminal domains of
ClC-3a or ClC-3c combined with the C terminus of ClC-3e
were denoted as ClC-3d (20) and ClC-3f. We used RT-PCR to
determine the tissue distribution of ClC-3 splice variants taking
advantage of the distinct 5� and 3� coding region of ClCn3.
Splice variant-specific PCR products (Fig. 1C, ClC-3a; 324 bp,
ClC-3b; 500 bp, ClC-3c; 379 bp) demonstrate ubiquitous

expression of ClC-3a, ClC-3b and ClC-3c mRNA. Although
this approach does not allow distinction between ClC-3d, ClC-
3e, and ClC-3f (485bp), it permits demonstration that ClC-3
splice variants with long C terminus are only expressed in pan-
creas, kidney, liver, lung, and retina, but not in any other region
of the central nervous system (CNS). Clcn3�/� animals exhibit
a severe neurological phenotype (1–3), and we therefore
decided to focus on alternative splice variants that are
expressed in the central nervous system, ClC-3a, ClC-3b, and
ClC-3c.

Hippocampal degeneration in Clcn3�/� mice starts about 2
weeks after birth (1–3). We reasoned that developmental
changes in splice variant expression might contribute to this
age dependence. Since there are no splice variant-specific anti-
bodies available that distinguish between ClC-3a, ClC-3b, and
ClC-3c, quantification of protein expression levels by Western
blot analysis is not possible. We therefore examined mRNA
profiles in hippocampal tissue from 2, 13, 30, 60, or 120 days old

----------------------------------------------------------MTNGGSINSSTH       PIP 22ClC-3a LLDLLDE
MESEQLFHRGYYRNSYNSITSASSD    DGAGAIMDFQTS      DGDTAAGTHYTMTNGGSINSSTH       PIP 80ClC-3b EELL            EDDNLL                       LLDLLDE
---------------------------MDASSDPYLPYDGGGDS   RELHKRGTHYTMTNGGSINSSTH       PIP 53ClC-3c IPL                       LLDLLDE
MESEQLFHRGYYRNSYNSITSASS     DGAGAIMDFQTS      DGDTAAGTHYTMTNGGSINSSTH       PIP 80ClC-3e DEELL            EDDNLL                       LLDLLDE

KKDILRHMAQTANQ-DPASI--MFN---------------------------------------------          760ClC-3a
KKDILRHMAQTANQ-DPASI--MFN---------------------------------------------          818ClC-3b
KKDILRHMAQTANQ-DPASI--MFN---------------------------------------------          791ClC-3c
KKNILEHLEQLKQHVEPLTPPWHYNKKRYPPSYGPDGKPRPRFNNVQLSPVDEDREETEEEVRLLN              866ClC-3e STIL
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FIGURE 1. Multiple ClC-3 splice variants in mouse tissue. A, genomic organization of the mouse Clcn3 gene. Solid bars represent coding regions (exons; blue)
non-translated regions (light blue), and introns (solid lines, light blue). The genomic sequence for the first 9 nucleotides including the start codon and the
corresponding translated amino acids are given for each splice variant. B, sequence alignment of N- and C-terminal regions of the predicted ClC-3 splice
variants. Conserved residues are denoted with *. C, tissue distribution of ClC-3 splice variants were examined by RT-PCR; expected PCR product size were:
ClC-3a 324 bp, ClC-3b 500 bp, ClC-3c 379 bp, and ClC-3e 485 bp.
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mice (Fig. 2, A and B). We did not observe significant age-de-
pendent changes in the mRNA levels for any ClC-3 splice vari-
ants relative to the amount of GAPDH mRNA (Fig. 2, A and B).
Comparison of mRNA levels demonstrated relatively low levels
of ClC-3a mRNA and much stronger transcription of ClC-3b
and ClC-3c mRNA at all tested ages. These data show that
mRNA levels of ClC-3a, ClC-3b and ClC-3c remain unchanged
at juvenile, early adult and adult ages and that ClC-3b and
ClC-3c are the predominant ClC-3 splice variant in hippocam-
pal neurons.

ClC-3 Splice Variants Exhibit Different Subcellular Local-
izations—Differences in primary structure might result in
altered transport functions and/or subcellular distribution of
ClC-3 splice variants. We therefore studied biophysical prop-
erties and subcellular localization of ClC-3b and ClC-3c and
compared them with the well characterized short isoform
ClC-3a (16). Whole-cell recordings of HEK293T cells heterolo-
gously expressing WT ClC-3a or WT ClC-3b yielded ionic cur-
rents undistinguishable from non-transfected cells (Fig. 3A). In
contrast, we were able to record ClC-3-specific currents from
cells expressing WT ClC-3c. At positive potentials these cells
display outwardly rectifying Cl� currents with amplitudes up to
1.5 nA at �175 mV, whereas no measurable currents could be
observed at negative potentials. Upon depolarizing voltage
steps, there are large peaks at the beginning of the applied volt-
age steps that resemble the gating charge movements of ClC-5
(29) and ClC-313–19A (a ClC-3a mutant in which an N-terminal
dileucine motif had been mutated (8, 16)) (Fig. 3A).

The differences in functional expression are due to separate
subcellular targeting of the distinct splice variants (Fig. 3B).
Upon expression of ClC-3a or of ClC-3b transfected cells
exhibit large vesicular structures that co-localize with the lyso-
somal marker LAMP1 and therefore likely originate from lyso-
somal compartments. ClC-3c exhibited a different intracellular
localization, which results in staining of the surface membrane
and of intracellular vesicular compartments that do not contain
LAMP1 (Fig. 3B). Complementary experiments revealed iden-
tical subcellular distribution of ClC-3 splice variants in MDCK
cells as in HEK293T cells (data not shown).

The N Terminus of ClC-3b Contains Three Potential Dileu-
cine Motifs—Alternative splicing in the N-terminal region
might not only modify the subcellular distribution, but also the
function of ClC-3, as reported for many other proteins (30 –33).
We therefore searched for the signals that are responsible for
the intracellular localization of ClC-3b and whose deletion
might allow membrane surface insertion and electrophysi-
ological characterization. For ClC-3a removal of a dileucine
motif sequence (LLDLLDE (S1) Fig. 4A) allows surface mem-
brane insertion and functional analysis of the protein (8, 16, 34).
ClC-3b contains the same sequence motif, however, its removal
did not result in surface membrane insertion (data not shown).
We therefore screened the N-terminal region of ClC-3b for
additional dileucine motifs (Fig. 4A). We found two such
sequences, 42EDDNLL47 (S2) and 26EELL29 (S3), and generated
mutant constructs in which either two of the three motifs (ClC-
3bS3/S2 and ClC-3S3/S1) or all dileucine motifs (ClC-3bS3/S2/S1)
were substituted by alanine. Removal of only two dileucine
motifs (ClC-3bS3/S2 and ClC-3S3/S1) resulted in surface mem-
brane localization of a fraction of the expressed proteins. How-
ever, there was still some fluorescence staining of intracellular
compartments and large LAMP1-positive vesicular structures.
ClC-3bS3/S2/S1, in which all three dileucine motifs were
removed, inserted predominantly into the surface membrane
so that the large vesicular structures induced by ClC-3bS3/S2
and ClC-3S3/S1 were absent in cell expressing this mutant pro-
tein (Fig. 4B).

To investigate interactions of the dileucine motifs with com-
ponents of the endocytotic machinery using a pull-down strat-
egy, we generated recombinant GST fusion proteins of N-ter-
minal regions of ClC-3b wild type and ClC-3bS3/S2/S1. After
purification N-terminal fusion proteins were incubated with
equal amount of mice brain lysate, and potential binding part-
ners were analyzed by immunoblotting with antibodies to
clathrin. Whereas GST-NT ClC-3b exhibits strong binding to
clathrin (Fig. 4C), this interaction was markedly reduced for
mutant GST-NT ClC-3bS3/S2/S1 (Fig. 4C). These results suggest
that the removal of ClC-3b dileucine motifs results in reduced
internalization of the mutant protein (8). Alternatively, these
mutations might enhance ClC-3b insertion into the plasma
membrane via impaired recognition of mutant sorting motifs
by adaptor proteins in the trans-Golgi network or in endosomal
compartments (35).

The altered localization of mutant ClC-3b permits the elec-
trophysiological characterization of this splice variant. The
existence of various ClC-3b mutants with different dileucine
motifs also provides the possibility to test whether mutations
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FIGURE 2. Developmental expression of the ClC-3 splice variants in hip-
pocampal tissue. A, representative RT PCR experiment of ClC-3 variants
extracted from mouse hippocampus at different ages. B, age dependence of
ClC-3a, ClC-3b, and ClC-3c mRNA levels normalized to the respective GAPDH
mRNA levels and given as means � S.E. from three independent experiments.
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within the internalization motifs change functional properties.
Mutant ClC-3b proteins with or without one dileucine motif
expressed at sufficient amounts in the surface membrane to
account for measurable outwardly rectifying Cl� currents (Fig.
4, D and E). In all cases, we observed time and voltage-depen-
dent currents that resemble ClC-3aS1 (16). Expression of ClC-
3bS3/S2, ClC-3S3/S1, or ClC-3bS3/S2/S1 resulted in voltage-depen-
dent outwardly rectifying currents at potentials positive to �35
mV, without inward currents at negative voltages (Fig. 4, D and
E). Depolarizing voltage steps elicited a capacitive current
followed by ionic current that slightly increased with time.
Stepping back to the holding potential resulted in a capaci-
tive current with identical amplitude as upon membrane
depolarization. For CLC exchangers, a plot of the time integral
of these capacitive currents, the “gating charge movement,” ver-
sus the preceding voltage step provides the voltage dependence
of activation (12, 16, 29, 36). Such analysis did not reveal any
marked differences between the three mutants (Fig. 4F). For
ClC-3, ClC-4, and ClC-5, such capacitive currents have been
shown to originate from transporters that only perform incom-
plete transport cycles (12, 16), and the charge movement upon
voltage steps thus provides a measure of transport-incompe-
tent transporters. On the other hand, ionic currents are propor-

tional to Cl�-H� exchange rates. Plotting gating charges versus
ionic currents at the same voltage provides a value proportional
to the transport competence of the different constructs (Fig.
4G). We observed identical slopes for ClC-3bS3/S2, ClC-3bS3/S1,
and ClC-3bS3/S2/S1.

The different macroscopic current amplitudes of cells
expressing ClC-3bS3/S2, ClC-3bS3/S1, and ClC-3bS3/S2/S1 are
likely due to separate protein densities in the surface membrane
(Fig. 4, A and B), but could be also affected by variation in
individual transport rates. To distinguish between these two
explanations we co-expressed mutant ClC-3b fusion proteins
with farnesylated eGFP as surface membrane marker and cal-
culated surface insertion probabilities as ratio of the mRFP fluo-
rescence intensity in regions overlapping with farnesylated
eGFP by whole-cell fluorescence in confocal images. A plot of
mean macroscopic current amplitudes from cells expressing
ClC-3bS3/S2, ClC-3bS3/S1, or ClC-3bS3/S2/S1 against these values
revealed a linear relationship (Fig. 4H), as expected for sole
differences in trafficking and identical transport rates of the
mutant transporters. We conclude that dileucine motifs in the
N terminus exclusively affect trafficking, but not the transport
activity of ClC-3b.

ClC-3a ClC-3cClC-3b
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LAMP1
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FIGURE 3. Subcellular localization and whole-cell currents of neuronal ClC-3 splice variants. A, representative whole-cell recordings of HEK293T cells
heterologously expressing ClC-3a, ClC-3b, or ClC-3c. B, confocal images of cells co-transfected with either ClC-3a, ClC-3b, or ClC-3c (in green) and a fluorescent
fusion protein of the lysosomal marker protein LAMP-1 (in red). Regions where both proteins overlap are shown as orange. The scale bar represents 10 �m.
Insets show magnifications of the images illustrating the subcellular localization for ClC-3 proteins.
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Biophysical Properties of ClC-3 Splice Variants—Fig. 5 sum-
marizes the electrophysiological analysis of the three variants,
ClC-3aS1, ClC-3bS3/S2/S1, and ClC-3c. Each of the three ClC-3
proteins mediates outwardly rectifying currents (Fig. 5, A and
B) with identical properties. In all cases, we observed large
capacitive currents upon depolarization and subsequent repo-
larization to the holding potential. We quantified the voltage
dependence of ClC-3aS1, ClC-3bS3/S2/S1, and ClC-3c by mea-
suring the area under the off-gating (Qoff) currents and plotting
these “gating” charges versus the preceding voltage steps (12,
16, 37). This analysis revealed identical voltage dependences
with a half-maximal activation voltage of ��65mV for all
ClC-3s proteins (Fig. 5C). A plot of gating charge versus ionic

current at the same voltage revealed identical transport com-
petences for all ClC-3 splice variants expressed in the central
nervous system (Fig. 5D). We conclude that alternative splicing
leaves functional properties of ClC-3 unaffected.

ClC-3c Localizes to Recycling Endosomes—Upon heterolo-
gous expression in cultured cells, ClC-3c was targeted to differ-
ent subcellular organelles than ClC-3a or ClC-3b. ClC-3a and
3b show extensive co-localization with the late endosomal/lys-
osomal markers RAB7/LAMP1, but not with the recycling
endosomal marker RAB11 (38, 39) (Figs. 3B and 6, A and B). In
contrast, ClC-3c displays a perinuclear distribution with a sig-
nificant fraction of the protein being located at the plasma
membrane. Co-localization with RAB11 (Fig. 6C), together
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with the limited overlap with LAMP1 or RAB7 (Figs. 3B and
6C), indicates localization of ClC-3c in the recycling endosome.

Among recycling endosomes two functionally distinct pop-
ulations can be distinguished: endosomes that express RAB11
(38) and endosomes that contain the transferrin receptor TfR
(40). To further study the localization of ClC-3c we co-ex-
pressed ClC-3c-eGFP with the transferrin receptor TfR. We
observed substantial co-localization ClC-3c with TfR (Fig. 6C)
indicating that ClC-3c localizes to both, RAB11- and TfR-pos-
itive compartments.

ClC-3c Targets to Recycling Endosomes via an Isoleucine-Pro-
line (IP) Motif—ClC-3a, ClC-3b, and ClC-3c share dileucine
motifs in the N terminus, and the distinct subcellular localiza-
tion of ClC-3c must therefore be caused by additional targeting
sequences. The ClC-3c N terminus contains a sequence motif
(8YLPY11), which is reminiscent of a consensus binding motif
YXX[FYL] for AP1, AP2, AP3, and AP4 mu subunits (41, 42).
This motif contains the PY residues that were suggested to
result in the internalization of ClC-5 and barttin (43, 44) (Fig.
7A). To determine whether 8YLPY11 is involved in ClC-3c tar-
geting, we substituted all amino acids by alanine and evaluated
whether removal of this motif redirects ClC-3c from recycling
endosomes to late endosomes/lysosomes. Such a change in
localization would be visible as co-localization of mutant
ClC-3c with the late endosomal/lysosomal markers RAB7/
LAMP1 and characteristic enlargement of endosomal/lyso-
somal vesicles in cells expressing mutant ClC-3c. However,
mutation of all amino acids in 8YLPY11 to alanine neither
resulted in obvious changes in the subcellular distribution nor

in the morphology of intracellular compartments (data not
shown).

We next progressively deleted the N-terminal region of
ClC-3c by removing stretches of 5, 6, or 8 amino acids (Fig. 7A).
Neither deletion of the first five amino acids (ClC-3c
1–5, data
not shown) nor of the following six amino acids (ClC-3c
6 –11)
(Fig. 7B) changed the localization of the protein or the mor-
phology of intra-vesicular compartments. In contrast, the sub-
sequent deletion of the amino acids stretch 12DGGGDSIP19

caused insertion of ClC-3c
12–19 into lysosomes and enlarge-
ment of endosomal vesicles (Fig. 7C). We observed substantial
co-localization of ClC-3c
12–19 with LAMP1, but not with
Rab11. Further deletion ClC-3c
20 –25 did not alter the subcel-
lular distribution (data not shown). Fusing DGGGDSIP directly
to the N terminus of ClC-3a (Fig. 8A) resulted in localization of
ClC-3aDGGGDSIP in the recycling endosomes (Fig. 8B). This
result was confirmed by different co-localization pattern of
RAB11/LAMP1 with ClC-3a or ClC-3aDGGGDSIP and by the
absence of large vesicles formation in cells expressing ClC-
3aDGGGDSIP (Fig. 8B). Taken together, our findings indicate that
the amino acids stretch 12DGGGDSIP19 contains a potential
sorting motif to the recycling endosome.

To delineate the minimum sequence necessary for the spe-
cific sorting of ClC-3c, we mutated groups of two amino acids
within this stretch jointly to alanine. Substitution of Asp12 and
Asp16 to alanine (ClC-3cD12/A D16/A) left targeting of ClC-3c
unaltered (Fig. 8, A and C). In contrast, alanine insertion at 18I
and 19P (ClC-3cIP/AA) was sufficient to target mutant ClC-3c to
late endosomes/lysosomes (Fig. 8, A and D), resulting in prom-
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inent vesicular enlargement of LAMP1 positive compartments
in cells expressing mutant ClC-3c. We conclude that an N-ter-
minal isoleucine-proline (IP) motif is responsible for targeting
of ClC-3c to the recycling endosomes.

Discussion

Alternative splicing permits translation of diverse proteins
from a single gene by including or excluding certain exons from
the processed messenger RNA. We here studied alternative
splicing of Clcn3 and the consequences of this process on
protein function and subcellular distribution. The exon-in-
tron arrangement of Clcn3 suggests translation of six alter-
natively spliced gene products, referred to as ClC-3a to ClC-
3f. We amplified ClC-3 splice variant from different mouse
tissues by RT-PCR (Fig. 1A) and demonstrated that only
three splice variants are expressed in the brain, the olfactory
bulb and the spinal cord, ClC-3a, ClC-3b, and ClC-3c, with
ClC-3b and ClC-3c being the predominant ClC-3 splice vari-
ants (Fig. 1C and Fig. 2).

Upon heterologous expression in mammalian cells ClC-3a
and ClC-3b exclusively localize to the late endosomal/lyso-
somal system, whereas ClC-3c can be found in recycling endo-
somes and also in the surface plasma membrane. ClC-3b is
targeted to the late endosomal/lysosomal system via multiple
dileucine retention signals (Fig. 4, A and B), similar to the sig-
nals that control localization of ClC-3a (8, 16). For ClC-3c we
identified an isoleucine-proline (IP) signal that is responsible
for recycling endosome localization. Removal of this signal hin-
ders targeting to recycling endosomes and surface membrane
expression of ClC-3c (Fig. 8). Moreover, insertion of the isoleu-
cine-proline (IP) signals reroutes ClC-3a from the late endo-
somal/lysosomal system to the recycling endosomes (Fig. 8).

We studied localization of ClC-3 splice variants exclusively
in cultured mammalian cells of epithelial origin and not in cul-
tured neurons or even native neuronal tissue. Cultured cells are
well established for studying trafficking and function of mem-
brane transport proteins, and a large body of evidence supports
the notion that similar motifs might direct targeting in epithelia
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and neurons (45). However, there are examples of different sub-
cellular targeting of certain proteins in HEK293T cells and in
neurons (46). Thus, although our work conclusively demon-
strates separate subcellular localizations of ClC-3a, ClC-3b, and
ClC-3c, it does not allow conclusions about which organelles
ClC-3 splice variants insert into native neurons.

Recently, the ClC-3 splice variant ClC-3d was cloned from
mouse liver and functionally analyzed by heterologous expres-
sion in HEK293T cells (20). The authors demonstrated that
ClC-3d differed from ClC-3a and ClC-3b in surface membrane
expression, but exhibit similar transport properties. These
results demonstrate that alternative splicing within the C ter-
minus also affects only trafficking and not function of ClC-3.

All three ClC-3 splice variants in the mammalian central
nervous systems exhibit closely similar transport properties.
We recently performed a detailed electrophysiological analysis
of ClC-3a and demonstrated that this splice variant functions as
Cl�-H� exchanger with low transport efficiency (16). ClC-3a,
ClC-3b, and ClC-3c exhibit identical ratios of the moved
charges by the transport current (providing values proportional
to the number of complete transport cycles (Fig. 5D)) and iden-
tical voltage dependences of these capacitive currents (Fig. 5C).
The importance of these specific functional features of ClC-3 is
not clear (16). The extreme outward rectification results in
maximum transport rates at voltages far away from physiolog-
ical values. The large percentage of incomplete transport cycles
result in transport effectivities that are much lower than those
of ClC-4 and ClC-5 (16). To account for the multiple pro-

nounced effects of ClC-3 ablation we recently proposed that the
main function of ClC-3 might be enlarging the capacitance of
their resident compartments (16). Such a function nicely
accounts for the effects of ClC-3 ablation for synaptic function,
but makes it difficult to assign a cellular role for ClC-3 splice
variants in early or late endosomes/lysosomes.

Because of its predominant intracellular localization, the
functional characterization of ClC-3 has been difficult and mul-
tiple transport functions have been assigned to ClC-3 since its
identification. Initially, a large conductance, slightly outwardly
rectifying anion channel, which was blocked by intracellular
calcium, was assigned to ClC-3 (47, 48). Later, ClC-3 was pos-
tulated to represent a volume-activated anion channel (49 –52).
Another ClC-3 candidate channel is a Ca2�/calmodulin-depen-
dent chloride channel at postsynaptic localizations (10, 17).
Work with Clcn3�/� mice (2) and our functional data on all
existing ClC-3 splice variants strongly suggests that these anion
channels are not identical with ClC-3 and demonstrate that
neuronal ClC-3 splice variants rather function as Cl�-H�

exchangers with strong voltage dependence and low transport
efficiency.

ClC-3a and ClC-3b localize to the late endosomal/lysosomal
system and thus partially overlap with the expression pattern of
ClC-6 and ClC-7. ClC-6 localizes to the late endosome (53–55),
and ClC-7 is a major anion transport protein in lysosomes (56).
Since ClC-3 (16), ClC-6 (46), and ClC-7 (57) are all chloride-
proton exchangers, one might expect that these overlapping
localizations permit compensatory mechanisms upon genetic
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removal of one of these isoforms. However, the severe pheno-
types of animals, in which only one of these three transporters is
genetically removed (1–3, 53, 54), demonstrates that this is not
the case.

Whereas ClC-3a and ClC-3b can only be found in intracellu-
lar compartments, ClC-3c is part of the recycling endosome
with a considerable percentage of transporters present in the
surface membrane. ClC-3c co-localizes with endosomes that
express RAB11 as well as with endosomes that contain the

transferrin receptor TfR (31). RAB11 is present in mature syn-
aptic vesicles of the mammalian brain, and it has been specu-
lated that it might contribute in determining the secretory fate
of a transport vesicle (58). Upon expression in cultured neu-
rons, RAB11 localizes to synaptic boutons and moderately co-
purifies with synaptic vesicle markers (59). So far, we have not
determined the localization of the different splice variants in
neurons, but these data suggest that ClC-3c might account for
altered synaptic transmission in Clcn3�/� (2, 4, 5). Alternative
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splicing of ClC-3 permits targeting intracellular CLC transport-
ers to multiple distinct cellular compartments. ClC-3 is known
to hetero-multimerize with ClC-4 and ClC-5 (60), and alterna-
tive splicing of ClC-3 will thus also affect subcellular localiza-
tion of ClC-3-ClC-4 oligomers in the central nervous system.
Moreover, hetero-dimers between different splice variants are
likely to assemble. At present, it is not clear into which com-
partment these different hetero-oligomers will insert.

In summary, we demonstrate that alternative splicing leads
to the occurrence of three ClC-3 splice variant with differences
in the N terminus in the mammalian system. All three variants
exhibit identical transport properties, but distinct localization
in late endosomes/lysosomes or recycling endosomes. Alterna-
tive splicing enables ClC-3 to fulfill diverse cellular functions,
and our work provides an important step toward understand-
ing the role of ClC-3 in diverse cellular compartments.
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