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Abstract
HER3 is overexpressed in various carcinomas including colorectal cancer (CRC), which is

associated with poor prognosis, and is involved in the development of therapy resistance.

Thus, an in vivo imaging technique is needed to evaluate the expression of HER3, an impor-

tant therapeutic and diagnostic target. Here, we report successful HER3 PET imaging using

a newly generated anti-human HER3 monoclonal antibody, Mab#58, and a mouse model of

a HER3-overexpressing xenograft tumor. Furthermore, we assessed the role of HER3 sig-

naling in CRC cancer tissue-originated spheroid (CTOS) and applied HER3 imaging to

detect endogenous HER3 in CTOS-derived xenografts. Cell binding assays of 89Zr-labeled

Mab#58 using the HER3-overexpressing cell line HER3/RH7777 demonstrated that [89Zr]

Mab#58 specifically bound to HER3/RH7777 cells (Kd = 2.7 nM). In vivo biodistribution

study in mice bearing HER3/RH7777 and its parent cell xenografts showed that tumor accu-

mulation of [89Zr]Mab#58 in HER3/RH7777 xenografts was significantly higher than that in

the control from day 1 to day 4, tending to increase from day 1 to day 4 and reaching 12.2 ±

4.5%ID/g. Radioactivity in other tissues, including the control xenograft, decreased or

remained unchanged from day 1 to day 6. Positron emission tomography (PET) in the same

model enabled clear visualization of HER3/RH7777 xenografts but not of RH7777 xeno-

grafts. CTOS growth assay and signaling assay revealed that CRC CTOS were dependent

on HER3 signaling for their growth. In PET studies of mice bearing a CRC CTOS xenograft,

the tumor was clearly visualized with [89Zr]Mab#58 but not with the 89Zr-labeled control

antibody. Thus, tumor expression of HER3 was successfully visualized by PET with 89Zr-

labeled anti-HER3 antibody in CTOS xenograft-bearing mice, a model that retains the prop-

erties of the patient tumor. Non-invasive targeting of HER3 by antibodies is feasible, and it

is expected to be useful for cancer diagnosis and treatment.
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Introduction
HER3 is a member of the epidermal growth factor receptor (EGFR) family. Each of the four
family members, EGFR (erbB1 or HER1), HER2 (erbB2), HER3 (erbB3), and HER4 (erbB4)
contains a large extracellular (ligand-binding) domain, a single membrane-spanning region,
and a cytoplasmic (protein TK) domain [1]. This family is involved in epithelial cell differentia-
tion, growth, division and motility, and alteration or disruption of their function plays impor-
tant roles in the development and progression of malignancy [2,3]. HER3 is unique among the
family members because it contains a truncated intracytoplasmic domain that is deficient in
TK activity [4–6] and depends on heterodimer formation, usually with HER2, to mediate its
signaling activity [7,8]. HER3 is overexpressed in many carcinomas, including colorectal cancer
(CRC), which is associated with poor prognosis [9,10], making it a target of cancer therapy and
diagnosis.

The importance of HER3 as a therapeutic target has garnered considerable attention
because it was revealed that resistance to HER-family tyrosine kinase inhibitor therapy depends
on HER3 signaling pathways [11,12], and that HER3 is involved in the development of resis-
tance against chemotherapy [13]. Anti-HER3 antibodies have been developed for therapeutic
use [14,15], with some anti-HER3 antibodies being reported to abrogate resistance against
agents targeting the EGFR family in CRC and breast cancer cells [16,17]. Some studies also
report the in vivo imaging of HER3 [18–21].

Cancer Tissue-Originated Spheroid (CTOS) is a recently developed tissue culture method,
in which the properties of original tumors are preserved by maintaining cell-cell contact [22].
CTOSs can be prepared from various types of cancers including colorectal, urothelial, and lung
cancers and are expected to provide a unique and valuable model for cancer research [22–24].
The structure of the spheroid, unlike that of a monolayer culture, provides an opportunity to
explore the factors critical for malignant progression of cancer, possibly relating to invasion or
metastasis, in the context of a three-dimensional (3D) structure, which partly mimics the in
vivo tumor conditions and shares a strong similarity with patient tumors. Moreover, CTOS-
derived xenograft tumors resemble original patient tumors in terms of 3D structure as well as
gene expression [22]. Therefore, CTOS-derived xenografts provide a better platform for the
preclinical evaluation of imaging probes.

Here, we report the feasibility of HER3 PET imaging in vivo by using a newly generated
anti-human HER3 monoclonal antibody with mouse tumor models of a HER3-overexpressing
cell line. Furthermore, as our previous works have revealed that HER3 signaling plays an
important role in the growth of lung and urothelial cancer CTOSs [23,24], we assessed the role
of HER3 signaling in CRC CTOS, and applied the HER3 imaging technique to detect endoge-
nous HER3 in CTOS-derived xenografts.

Materials and Methods

Ethics Statement
The protocol for CTOS experiments was approved by the ethics committees of Osaka Medical
Center for Cancer and Cardiovascular Diseases and the National Institute of Radiological Sci-
ences. The animal experimental protocol was approved by the Animal Care and Use Commit-
tee of the National Institute of Radiological Sciences (permit number: 07-1064-19), and all
animal experiments were conducted in accordance with the institutional guidelines regarding
animal care and handling. All efforts were made to minimize suffering of the animals in all the
experiments.
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Cells and CTOSs
HER3/RH7777, a cell line stably overexpressing human HER3 linked to green fluorescent pro-
tein established from the rat hepatoma cell line RH7777, and the parent cell line were kindly
provided by Dr. Chiba (Mitsubishi Tanabe Pharma, Osaka, Japan). The cells were maintained
in Dulbecco’s modified Eagle’s medium (DMEM, 11995–065; Invitrogen, Thermo Fisher Sci-
entific, Waltham, MA) supplemented with 10% fetal bovine serum, 50 U/mL penicillin, and
50 μg/mL streptomycin (Gibco, Carlsbad, CA) in a humidified incubator maintained at 37°C
with 5% CO2. For HER3/RH7777 culture media, G418 (400 ng/mL, Gibco) was also added.

C45, a CTOS derived from a patient diagnosed with a moderately differentiated colon ade-
nocarcinoma, was prepared and maintained as described previously [22,23]. The CTOSs were
cultured in StemPro hESC medium (Invitrogen) supplemented with 8 ng/mL bFGF (Invitro-
gen), 0.1 mM β-mercaptoethanol (Wako, Osaka, Japan), and antibiotics in a non-treated dish
(IWAKI, Tokyo, Japan) in a humidified atmosphere at 37°C with 5% CO2.

CTOS growth assay
CTOSs were embedded in Matrigel Matrix Growth Factor Reduced (GFR) (BD Biosciences,
Bedford, MA) and cultured in 100 μL of StemPro hESC or basal medium containing one of the
following growth factors: 10 ng/mL of NRG 1 (PeproTech, Rocky Hill, NJ), 200 ng/mL of
Long-IGF1 (GroPep, Adelaide, Australia), 8 ng/mL of bFGF, or 10 ng/mL of Activin A (R&D
Systems, Minneapolis, MN). Basal medium consisted of DMEM/F12, 1x GlutaMAX, 0.1 mM
2-mercaptoethanol, 2% BSA, 50 U/mL penicillin, and 50 μg/mL streptomycin. CTOS growth
was evaluated by the CTOS area at the indicated time point, corrected for the CTOS area at day
0. CTOS area was measured using an image analysis software (Image J, NIH).

Signal assay in CTOS
C45 CTOS were prepared from mouse xenografts as previously described [22]. After culture
for 1 day, the medium was changed from StemPro hESC to starvation medium, the basal
medium mentioned above. After an overnight culture in the starvation medium, CTOS were
stimulated by 10 ng/mL of NRG 1 or 1/50 volume of StemPro supplement. After 15 min, the
cells were subjected to western blotting, as previously described [23].

Subcutaneous tumor models
BALB/c-nu/nu female mice (aged 5–6 weeks; CLEA Japan, Tokyo, Japan) were maintained
under pathogen-free conditions. For the cell line tumor model, mice were inoculated subcuta-
neously with HER3/RH7777 (1 × 106) and RH7777 (1 × 106) cells in the left and right thighs,
respectively, under isoflurane anesthesia. The mice were used for biodistribution and PET
study at about 2 weeks after inoculation, when the tumors were 5–10 mm in diameter. For
CTOS tumor model, approximately 1000 CTOS C45s of diameter 40–100 μmwere suspended
in 50 μL of Matrigel Matrix GFR (BD Biosciences) and transplanted subcutaneously into the
flanks of NOD/SCID mice (NOD.CB17-Prkdc SCID /J, Charles River Japan, Yokohama,
Japan). The CTOS tumor-bearing mice were used for further experiments once the tumor
diameter reached 10–15 mm, which occurred 3–6 weeks after transplantation. General condi-
tions of the mice were monitored at least twice a week.

HER3 protein expression in xenografts
Xenograft tumors of HER3/RH7777, RH7777, and CTOS C45 were excised and fixed in neu-
tralized 10% formalin, embedded in paraffin, and cut into 4-μm-thick sections. The sections
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were incubated with diluted mouse anti-HER3 monoclonal antibody (2.5 μg/mL; erbB3/Her3,
nanoTools, Teningen, Germany) for 1 h at room temperature, washed, and then incubated
with peroxidase-conjugated secondary antibodies (EnVision+ System-HRP Labeled Polymer
Anti-mouse; DAKO, Glostrup, Denmark). The binding of the secondary antibodies was visual-
ized with diaminobenzidine staining (K3465; DAKO) and counterstaining was carried out
with hematoxylin.

Preparation of rat monoclonal antibodies recognizing HER3
Female F344 rats were administered subcutaneously and intraperitoneally with HER3/RH7777
cells in the first immunization, followed by four booster intraperitoneal and intravenous injec-
tions of HER3/RH7777 cells at a 10-day interval. Three days after the final immunization,
spleen cells of immunized rats were isolated and fused with P3X63Ag8.653 mouse myeloma
cells by using 50% polyethylene glycol 1540 (Roche Diagnostics, Tokyo, Japan). After the cell
fusion, hybridoma cells were selected in 7% FBS-containing RPMI1640 medium (Sigma-
Aldrich, Tokyo, Japan) supplemented with hypoxanthine, aminopterin, and thymidine (HAT
supplement; Life Technologies, Tokyo, Japan). Antibodies secreted from hybridoma clones
were selected for their reactivity against HER3/RH7777 cells in a GFP expression-dependent
manner [25, 26]. Anti-HER3 mAb (Mab#58, IgG2a) was also confirmed to show no reactivity
with RH7777 or HEK293 cells expressing HER1, HER2, or HER4 proteins. Anti-mouse CD44v
rat mAb [27, 28] was used as control IgG for Mab#58 in this study.

Radiolabeling of antibodies
Mab#58, and the control antibody were conjugated with p-isothiocyanatobenzyl-desferrioxa-
mine B (DF; Macrocyclics, Dallas, TX, USA) at DF at an antibody molar ratio of 3:1, as previ-
ously described [29]. The conjugation ratio of DF to antibody was estimated to be 2.3:1 to
2.5:1, as determined by size exclusion chromatography using a PD10 column (GE Healthcare,
Buckinghamshire, UK) before purification. Non-conjugated chelate was removed using a
Sephadex G-50 (GE Healthcare) spin column. 89Zr was produced using the NIRS AVF-930
cyclotron, and 89Zr-oxalate (3.7–5.6 GBq/mL in 1 M oxalate, pH 7–8) was prepared as
described previously [29]. The DF-conjugated antibodies (5 mg/mL in PBS) was incubated
with 1/5 volume of 89Zr-oxalate solution for 1 h at room temperature, and radiolabeled anti-
bodies were purified on a Sephadex G-50 spin column. The radiochemical purity was over
90%, and the specific radioactivity was 40–110 kBq/μg, as determined by thin-layer chromatog-
raphy, using 50 mM diethylenetriaminepentaacetic acid, pH 7, as the mobile phase.

In vitro assay of the labeled antibodies
Cell binding, competitive inhibition, and internalization assays were conducted as previously
described [29]. In the cell binding assay, HER3/RH7777 and RH7777 cells in Dulbecco’s phos-
phate-buffered saline (D-PBS(-); WaKo) with 1% BSA (Bovine Serum Albumin, Gibco) were
incubated with the 89Zr labeled Mab#58 ([89Zr]Mab#58) on ice for 60 min. After washing with
cold D-PBS(-) twice, the radioactivity of [89Zr]Mab#58 bound to the cells was measured using
a gamma counter. From the cell binding assay, immunoreactive fraction was calculated by the
method of Lindmo et al [30]. In the competitive inhibition assay, [89Zr]Mab#58 was incubated
with HER3/RH7777 cells in the presence of varying concentrations of the unlabeled Mab#58,
unconjugated or DF-conjugated, for 1 h on ice. After washing, the radioactivity bound to the
cells was measured. The equilibrium dissociation constant was estimated using GraphPad
Prism software (GraphPad Software, La Jolla, CA, USA), and the maximum binding capacity
was calculated through Scatchard plot analysis. In the internalization assay, HER3/RH7777
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cells were preincubated in culture medium with [89Zr]Mab#58 on ice for 60 min. After washing
with cold D-PBS(-) twice, the cells were collected and further incubated at 37°C or on ice in
fresh medium for various periods, and the supernatant and the cells were separated by centrifu-
gation. The supernatant was incubated with trichloroacetic acid for 15 min on ice and then
centrifuged to separate the non-protein-bound (supernatant) and protein-bound (pellet) frac-
tions. The cells were washed with acidic buffer (0.05M glycine-HCl buffer, pH 2.8, containing
0.1M NaCl) and then separated by centrifugation to determine both the membrane-bound
(supernatant) and internalized (pellet) fractions. The in vitro assays were conducted in
duplicate.

Biodistribution studies
Mice bearing both HER3/RH7777 and RH7777 tumors were injected with 148 kBq [89Zr]
Mab#58 (approximately 2.5 μg protein) via the tail vein. At 1, 2, 4, and 6 days post-injection,
five mice at each time point were euthanized by isoflurane inhalation, and their blood was
obtained from the heart. Tumors and major organs were dissected and weighed, and radioac-
tivity was measured using a gamma counter with decay correction. Radioactivity concentration
was expressed as a percentage of the injected dose per g of tissue (%ID/g) normalized to a body
weight of 20 g. Data are expressed as mean ± SD.

PET imaging
Three mice bearing both HER3/RH7777 and RH7777 tumors were injected with approxi-
mately 3.7 MBq of [89Zr]Mab#58 (approximately 60 μg protein) via the tail vein. At 1, 2, 4, and
6 days post-injection, PET data acquisition was conducted for 10–20 min by using a small-ani-
mal PET system (Inveon, Siemens Medical Solutions, Malvern, PA) under isoflurane anesthe-
sia during the entire scanning period. Images were reconstructed using a 3D maximum a
posteriori (MAP) method (18 iterations with 16 subsets, β = 0.2) without attenuation correc-
tion. Image analysis was performed using the ASIPro VMMicro PET Analysis software (Sie-
mens, Knoxville, TN). A lamp and heating pad were used during the PET scan to maintain the
body temperature of the mice. Tracer uptake was expressed as % ID/g. The region of interest
was manually drawn over tumors and tracer uptake was quantified using ASI Pro software (Sie-
mens Medical Solutions). No correction for partial volume effects was performed.

Three mice bearing the CTOS C45 xenograft were injected with 3.7 MBq of [89Zr]Mab#58
or 89Zr labeled control antibody ([89Zr]IgG), and PET data were acquired as mentioned above.

Statistical analysis
Statistical analysis was performed using one-way ANOVA, followed by Bonferroni test and t-
text, using SPSS 12.0 (SPSS Inc., Chicago, IL).

Results

Feasibility of Immuno-PET imaging of HER3 by [89Zr]Mab#58
HER3 protein expression in the xenograft of a HER3 overexpressing cell line. The rep-

resentative immunostaining images of HER3 overexpressing HER3/RH7777 and the parent
RH7777 xenograft tumors are shown in Fig 1A and 1B, respectively. Almost all cells in the
HER3/RH7777 tumor were positively stained for HER3, while few cells were stained in the
RH7777 tumor, confirming the overexpression of HER3 in vivo and the applicability of the
xenograft model for further studies.
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In vitro assay of labeled antibody. As shown in Fig 2A, binding of [89Zr]Mab#58 to
HER3/RH7777 cells increased with cell number, reaching 65% at a cell density of 5 × 106 cells;
however, binding to RH7777 cells was negligible, indicating HER3-specific binding of the
labeled antibody. The immunoreactive fraction of [89Zr]Mab#58 was 73.1%. The dissociation
constants (Kd) of DF-conjugated and unconjugated Mab#58 calculated from the competitive
binding assay were 2.67 and 3.16 nM, respectively (Fig 2B), and the maximum binding capacity
of HER3/RH7777 for DF-conjugated and unconjugated Mab#58 was 3.1 x 105 binding site/cell
and 3.4 x 105 binding site/cell, respectively. Approximately 34% of the [89Zr]Mab#58 that ini-
tially bound to the cell surface was internalized during the 21-h incubation at 37°C, and most
of the internalized radioactivity was retained within the cells during the examination period.
The radioactivity released (protein bound and unbound) was approximately 20% of the total
radioactivity that initially bound to the cells, and 53% of the total radioactivity was bounded to
the cell surface even after a 21-h incubation at 37°C (Fig 2C). When the cells were incubated on
ice, the membrane bound fraction did not internalized or released for up to a minimum of 3 h
(data not shown).

Biodistribution of [89Zr]Mab#58 in mice bearing HER3 overexpressing tumor
Biodistribution of [89Zr]Mab#58 in nude mice bearing both HER3/RH7777 and RH7777 xeno-
graft tumors is shown in Fig 3. The radioactivity (%ID/g) in the HER3/RH7777 xenograft 2–6
days after the injection of the labeled antibody was higher than that on day 1; it tended to
increase from day 1 to day 4, reaching 12.2±4.5%ID/g at day 4. In contrast, radioactivity in
most tissues examined, including the RH7777 xenograft, decreased or remained unchanged
from day 1 to day 6 (Fig 3). The radioactivity in the bone slightly increased with time. The
radioactivity (%ID/g) in HER3/RH7777 xenograft was significantly higher than that in
RH7777 xenograft through day 1 to day 6, indicating specific accumulation of the labeled
antibody.

PET imaging of mice bearing HER3 overexpressing tumor. Representative small animal
PET images of a mouse bearing HER3 overexpressing HER3/RH7777 (right thigh) and parent
RH7777 (left thigh) tumors at 1, 2, 4, and 6 days after [89Zr]Mab#58 administration are shown
in Fig 4. The HER3/RH7777 xenograft was clearly visualized, with the accumulation apparently
higher than that in the RH7777 xenograft, from day1 (13.6% ID/g) to day 6 (15.5% ID/g), with-
out correction for partial volume effects (tumor volume: 130–310 mm3). The radioactivity in
RH7777 tumor and the most of other tissues decreased from day 1 to day 6, confirming the
results of the biodistribution study.

Fig 1. Representative immunohistochemical staining of HER3/RH7777 (A) and RH7777 (B) xenografts
for HER3 expression.

doi:10.1371/journal.pone.0143076.g001
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HER3 in a CRC CTOS and the PET imaging
Effect of HER3 signaling on the growth of CRC CTOSs. Based on our previous observa-

tion that a culture medium for human ES cells is the most suitable for culturing CRC CTOSs
[22], we investigated the growth factors contributing to the growth of C45 CRC CTOSs.
Among the growth factors in the medium, heregulin (HRG) alone was enough to substitute the

Fig 2. In vitro assays of radiolabeled anti-HER3 antibody Mab#58. (A) Cell binding assay for [89Zr]Mab#58 comparing HER3 overexpressing HER3/
RH7777 cells (closed triangles) and parent RH7777 cells (closed circles). (B) Competitive inhibition assay for DF-conjugated (closed circles) and
unconjugated Mab#58 (closed squares). (C) Internalization assay for [89Zr]Mab#58 at 37°C. Changes in the percentage of total radioactivity for each fraction
are plotted against incubation time at 37°C (closed circles, internalized fraction; open triangles, membrane-bound fraction; open circles, protein-bound
fraction in the culture medium; closed triangles, non-protein-bound fraction in the culture medium). These assays were conducted in duplicate. Data
represent the mean.

doi:10.1371/journal.pone.0143076.g002
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full medium, while other growth factors had a much lesser effect on the growth of C45 CTOSs
(Fig 5A and 5B).

Activation of HER3 signaling by its ligand in CTOS. In parallel with growth stimulation,
HER3 signaling was stimulated by a growth factor cocktail of human ES cell medium as well as

Fig 3. In vivo biodistribution study of [89Zr]Mab#58 in nudemice bearing both HER3 overexpressing HER3/RH7777 and parent RH7777 xenografts.
Samples were collected and weighted, and the radioactivity was measured at day 1 (black bars), 2 (patterned bars), 4 (white bars) and 6 (gray bars) after
intravenous injection of 37 kBq each of [89Zr]Mab#58. Data are expressed as mean ± SD (n = 5). *: significantly different from day 1 time points (p<0.05). ‡:
significantly higher than parent RH7777 tumor.

doi:10.1371/journal.pone.0143076.g003

Fig 4. Representative PET images of mice bearing both HER3 overexpressing HER3/RH7777 and
parent RH7777 xenografts. Serial PET images (maximum-intensity-projection (MIP)) of a mouse bearing
HER3/RH7777 (right thigh, white arrow) and RH7777 (left thigh, orange arrow) tumors at days 1, 2, 4, and 6
after an intravenous injection of 3.7 MBq [89Zr]Mab#58.

doi:10.1371/journal.pone.0143076.g004
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Fig 5. CTOS growth in various culture conditions. (A) Growth curve of CTOS cultured in StemPro hESC
(Invitrogen) or basal medium containing one of the growth factors as indicated. (B) Representative images of
CTOS at day 14 in (A).

doi:10.1371/journal.pone.0143076.g005
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HRG alone (Fig 6). While HER3 and downstream molecules including AKT and ERK were
remarkably phosphorylated by both media, EGFR was not phosphorylated. Thus, C45 CTOS
was found to be dependent on HER3 signaling for its growth.

HER3 protein expression in CTOS xenograft. Fig 7 shows the HER3 immunostaining of
the CTOS C45 xenograft. Most cancer cells forming glandular structures in CTOS C45 tumor
were positive for HER3, indicating that the endogenous levels of HER3 were high in the tumor.

PET imaging of CTOS derived tumor-bearing mice. Fig 8 shows the representative PET
images of CTOS C45 xenograft-bearing mice. In the mouse administered [89Zr]Mab#58 (upper
panels), the tumor was clearly visualized, with radioactivity in the tumor increasing from day1
(11.1% ID/g) to day6 (17.8% ID/g), without correction for partial volume effects (tumor volume:
170–350 mm3), while the accumulation of radioactivity in the tumor was low in the mouse
administered [89Zr]IgG (lower panels), with radioactivity in the tumor decreasing from day1
(6.12% ID/g) to day 6 (5.5% ID/g). In the mice administered with [89Zr]IgG, high accumulation
of radioactivity was observed in the kidney, which decreased with time (lower panels).

Discussion
Here, we labeled an anti-HER3 monoclonal antibody Mab#58 with 89Zr (T1/2 = 78.4h) and
evaluated its in vitro and in vivo properties using the HER3 overexpressing cell line HER3/

Fig 6. Western blotting of the signaling molecules in C45 in growth factor free conditions (GF-) or after
stimulation with HRG or StemPro hESCmedium (SP). Antibodies used are indicated. P-: antibodies
against each phosphorylated molecule.

doi:10.1371/journal.pone.0143076.g006
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Fig 7. Representative immunohistochemical staining of CTOS C45 xenograft for HER3 expression.

doi:10.1371/journal.pone.0143076.g007

Fig 8. Representative PET images of mice bearing CTOS C45 xenografts. Serial PET images of mice
bearing C45 xenograft (white arrow) injected with [89Zr]Mab#58 (upper panels) or similarly 89Zr-labeled
control IgG.

doi:10.1371/journal.pone.0143076.g008
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RH7777, its parent cell line RH7777, and the mice bearing their xenografts. Human HER3 was
expressed at a high level in the HER3/RH7777 xenograft, while the RH7777 xenograft was
barely stained with anti-human HER3 antibody, making the mouse bearing the two xenografts
a good model with clear contrast between the two grafts.

In vitro characterization showed that the binding of [89Zr]Mab#58 to HER3-expressing
cells was specific, because its binding to the parent RH7777 cells not expressing human HER3
was found to be negligible, and the affinity of [89Zr]Mab#58 was high (Kd = 3.2 nM). The con-
jugation of DF had little effect on the affinity, despite of the conjugation level (DF/IgG) being
higher than those reported for the same reaction condition earlier [29,31], and the immunore-
active fraction was fairly preserved. This confirmed that the conjugated antibody was suitable
for further studies. The majority of [89Zr] radioactivity was retained with the cells after the
binding of [89Zr]Mab#58 to the cells in vitro, with only 5% of the cell-bound radioactivity
released as protein-free fraction and 10% as a protein-bound fraction in 21 h of incubation at
37°C. Accordingly, less than 20% of total radioactivity initially bound to the cells was released.
The stable binding of [89Zr]Mab#58 to cells provides an advantage in high tumor accumulation
in vivo.

The higher accumulation of [89Zr]Mab#58 in the HER3/RH7777 xenograft than in RH7777
xenograft throughout the time of examination indicated the HER3-specific accumulation. The
PET imaging of the mice with HER3/RH7777 and RH7777 xenografts confirmed the result of
our biodistribution analysis with a clear contrast between the two xenografts. The results, in
vitro and in vivo, demonstrated the feasibility of in vivo imaging specific to HER3 expression
with [89Zr]Mab#58.

Elevated HER3 expression levels in the patient’s pathological samples were suggested to be a
prognostic marker as it is associated with poor prognosis, such as decreased time to disease
progression [14,15]. Furthermore, HER3 gene expression is implicated to be a predictive bio-
marker for indicating the lack of benefit from cetuximab, an anti-EGFR antibody [32]. Heregu-
lin, a ligand of HER3, also mediates cetuximab resistance [16]. Phase I clinical trials for solid
tumors including CRC were accomplished with a monoclonal anti-HER3 antibodies, in which
some of the patients showed stable disease progression [33,34]. Thus imaging of HER3 would
be useful for developing a treatment strategy in a CRC patient.

Importance of HER3 in CRC progression was revealed by a preclinical study that used con-
ventional CRC cell lines [14]. Here, we revealed that a CRC CTOS C45, which is directly
derived from the patient and cultured in 3D conditions, was dependent on HER3 signaling for
growth.

Most cancer cells in the C45 CTOS xenograft were positive for HER3 expression, suggesting
an active role of HER3 in an in vivo setting. In the PET study with C45 xenografts, HER3 speci-
ficity was demonstrated by the differential accumulation pattern of [89Zr]Mab#58 and the
control [89Zr]IgG. While the xenograft was clearly visualized in [89Zr]Mab#58 PET with appar-
ently increasing radioactivity with time, the accumulation of [89Zr]IgG to the xenograft was
low throughout the observed time period. Clear visualization of xenograft of other CTOSs
derived from lung cancer specimen, in which HER3 was expressed, was also possible with
[89Zr] Mab#58 (data not shown). Collectively, we demonstrated HER3 specific accumulation
of [89Zr]Mab#58 in vivo and the potential of [89Zr]Mab#58 as a PET probe for non-invasive
HER3 imaging not only in cancer cell line transplant model but also in more biologically and
clinically relevant CTOS transplant models, in which the critical role of HER3 signaling was
revealed.

When we compared PET images of [89Zr]Mab#58 to the control [89Zr]IgG of CTOS xeno-
graft-bearing mice, focusing on the normal tissues, high kidney accumulation of [89Zr]IgG was
notable. For 89Zr-labeled whole IgG, such a high accumulation in the kidney has rarely been
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reported [19, 29, 31, 35–37]. Because the control IgG and Mab#58 were of the same isotype
and subclass, IgG2a, the difference would be mainly attributable to the characteristics of the
individual antibody.

Among the HER family members, EGFR and HER2 have been very actively pursued as ther-
apeutic targets in cancer. There have been numerous studies published on the development of
EGFR and HER2 targeting molecules, such as antibodies and kinase inhibitors, for therapy as
well as for imaging [38–40]. Compared to these, studies on HER3-targeting molecules have
been few. As for PET or SPECT probes, only a few papers and abstracts have been published.
These typically use antibodies and their fragments, owing mainly to the lack of kinase activity
and, consequently, the lack of kinase inhibitors for HER3. These studies included 99mTc-
labeled affibody [18], 89Zr-labeled whole IgG [19], 64Cu-labeled F(ab0)2 [20] and 64Cu-labeled
whole IgG [21]. They all reported the successful imaging of HER3 expressing tumors. The
radioactivity found in the tumor varied, SUVs of 0.4–0.6 for F(ab)2, 2–4%ID/g for the affibody,
and 10%–20% ID/g for whole IgG, and the non-specific accumulations and excretion routes
were also varied, depending probably on the molecular size and the radioisotope and labeling
method. The preferred combination of the molecule and the radioisotope would depend on the
purpose, namely the assessment of HER3 expression or simulation and monitoring of in vivo
behavior of the therapeutic antibodies, and also the properties of each antibody, especially their
retention and clearance from the tissues. Further studies on non-invasive HER3 imaging, both
in pre-clinical and clinical settings, would help to understand the in vivo properties of HER3,
enabling a more efficient cancer treatment, not only those targeting HER family members but
also chemotherapies through the formation of resistance which involves HER3.

CTOS xenografts have been reported to provide an in vivo model that maintains the proper-
ties of the original tumor of the patient from which the CTOS was prepared [22]. Furthermore,
we previously demonstrated that the behavior of PET probes in CTOS xenograft model can
reflect behavior observed in a clinical study [41]. The successful visualization of HER3 expres-
sion in CTOS xenografts by [89Zr]Mab#58 would support the applicability of antibody-based
HER3-targeting to humans. Demonstration of the capability of the antibody to detect the levels
of endogenous HER3 expression would further strengthen the notion, which would be in the
scope of our future study. The present study, in which the target was found through the exami-
nation of CTOS, in addition to evaluation of the developed molecular probe using CTOS
xenograft, could be perceived as an example of a new system. A system that could be used to
develop pharmaceuticals with stronger relevance to the 3-dimensional nature of solid tumors
and patient tumors than those commonly used with cell lines and cell line-based xenograft
models.
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