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Abstract

The prevalence and specificity of unique fusion oncogenes are high in a number of soft tis-
sue sarcomas (STSs). The close relationship between fusion genes and clinicopathological
features suggests that a correlation may exist between the function of fusion proteins and
cellular context of the cell-of-origin of each tumor. However, most STSs are origin-unknown
tumors and this issue has not yet been investigated in detail. In the present study, we exam-
ined the effects of the cellular context on the function of the synovial sarcoma (SS)-specific
fusion protein, SS18-SSX, using human pluripotent stem cells (hPSCs) containing the drug-
inducible SS78-SSX gene. We selected the neural crest cell (NCC) lineage for the first trial
of this system, induced SS18-SSX at various differentiation stages from PSCs to NCC-
derived mesenchymal stromal cells (MSCs), and compared its biological effects on each
cell type. We found that the expression of FZD10, identified as an SS-specific gene, was
induced by SS18-SSX at the PSC and NCC stages, but not at the MSC stage. This stage-
specific induction of FZD10 correlated with stage-specific changes in histone marks associ-
ated with the FZD10 locus and also with the loss of the BAF47 protein, a member of the
SWI/SNF chromatin-remodeling complex. Furthermore, the global gene expression profile
of hPSC-derived NCCs was the closest to that of SS cell lines after the induction of SS18-
SSX. These results clearly demonstrated that the cellular context is an important factor in
the function of SS18-SSX as an epigenetic modifier.
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Introduction

The biological phenotype of each type of cancer is defined by genomic and epigenomic alter-
ations that exist in cancer cells, some of which are regarded as “driver” mutations based on
their importance in the tumorigenesis of each cancer type [1,2]. One tumor-type-specific driver
mutation is a fusion oncogene produced by chromosomal translocations. The prevalence and
specificity of unique fusion genes is high in a number of soft tissue sarcomas (STSs), and this is
useful for molecular diagnoses and also serves as a tool for identifying therapeutic targets [3,4].
However, in some cases, identical fusion genes have been detected in completely different
tumor types, i.e., EWSRI-ATFI in clear cell sarcoma (CCS) and angiomatoid fibrous histiocy-
toma) [5,6], and ETV6-NTRK3 in congenital fibrosarcoma and acute myeloid leukemia [7,8],
suggesting that the cellular context of the cell-of-origin of tumors plays an important role in
the function of each fusion protein. This issue is also important when suitable therapeutic tar-
gets are being searched for among the downstream genes. However, most STSs are origin-
unknown tumors; therefore, the cellular context of the cell-of-origin of tumors has not yet been
investigated in detail.

Synovial sarcoma (SS) is an origin-unknown STS with a unique fusion gene generated by a
specific chromosomal translocation t(X;18)(p11.2;q11.2), which has been detected in more
than 95% of tumors [9,10]. This translocation results in the fusion of the SS18 (also known as
SYT) gene on chromosome 18 to the SSX1, SSX2, or S§X4 gene on the X chromosome, thereby
creating the S§18-SSX fusion gene [10,11]. Previous studies reported that the SS18-SSX fusion
protein functioned as an oncoprotein and played a critical role in the development of SS
[12,13]. SS18-SSX consists of the domain for Trithorax group (TrxG) proteins in a part of SS18
and that for polycomb-group (PcG) proteins in a part of SSX; therefore, SS18-SSX may func-
tion as a transcriptional regulator even though it has no apparent DNA-binding domain [14-
16]. Previous studies have shown that SS18-SSX is involved in chromatin remodeling through
associations with TrxG and PcG complexes [17-19].

We previously analyzed the gene expression profiles of SSs along with other types of sarco-
mas using a genome-wide microarray and found that SS shared an expression profile with the
malignant peripheral nerve sheath tumor (MPNST) [20], the cell-of-origin of which is a
Schwann cell, a derivative of neural crest cells (NCCs) [21]. Furthermore, proteome analyses of
STS revealed that SSs were clustered with MPNST and also with CCS [22], which is another
NCC-derived tumor [23]. Although these findings are not conclusive for the neural crest origin
of SS, and other cellular lineages may be candidates for its origin, since this is the first study to
investigate the effects of the cellular context, we selected the neural crest lineage for further
analyses.

The expression of direct-downstream genes may serve as a useful marker for monitoring
the function of SS18-SSX in various types of cells. Our genome-wide microarray analysis also
identified the Frizzled homologue 10 (FZD10) gene, which is a member of the Frizzled family
and encodes a putative Wnt receptor, as a gene specifically up-regulated in SS [20]. FZD10 was
previously shown to be expressed at very high levels in nearly all SS tumors and cell lines, but
was absent in most normal organs, except for the placenta, or in some cancers arising in other
tissues [24]. Additionally, knockdown experiments using siRNA showed that FZD10 was sig-
nificantly involved in the tumor growth of SS [24]. These findings suggest that FZDI0is a
direct target of SS18-SSX and a suitable indicator for monitoring the function of SS18-SSX in
the expression of its target genes.

We herein investigated the role of the cellular context in the function of S518-SSX. Using
human pluripotent stem cells (hPSCs) containing the drug-inducible S§18-SSX2 gene [25], we
performed serial expression analyses of SS18-SSX2 at various differentiation stages from PSCs
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to NCC-derived mesenchymal stromal cells (MSCs), and showed the cellular context-depen-
dent effects of SS18-SSX on the regulation of its target genes. These results demonstrated the
importance of the cellular context for the function of SS18-SSX.

Materials and Methods
Ethics statement

Experimental protocols involving human subjects were approved by the Ethics Committee of
the Department of Medicine and Graduate School of Medicine, Kyoto University. Written
informed consent was provided by each donor.

Cells and reagents

The human SS cell lines used in this study have been described previously [26]. U20S and
293T cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA,
USA). Human dermal fibroblasts (hDFs) and bone marrow stromal cells (BMSCs) were iso-
lated from donors and maintained in DMEM (4.5 g/l glucose) (Nacalai Tesque, Kyoto, Japan)
and MEM Alpha+GlutaMAX (Life Technologies, Carlsbad, CA) supplemented with 10% FBS,
respectively. Human embryonic stem cell (hESC) (KhES1) and human induced pluripotent
stem cell (hiPSC) (414C2) lines were maintained on SNL feeder cells under previously
described culture conditions [25]. mTeSR1 medium (STEMCELL Technology, Vancouver,
Canada) was used for the feeder-free culture of hPSCs.

Establishment of drug-inducible hPSC lines by the PB transposon
system

KhES]I, the hESC line, containing the FLAG-tagged inducible SS18-SSX2 gene was established
from KhES1 [25] and designated KhES1-FL in this study. KhES1 cells harboring the
KW111-Stuffer vector, which express mCherry when treated with doxycycline (DOX) [25],
were used as a control cell line and designated KhES1-Control. The hiPSC line 414C2, contain-
ing FLAG-tagged inducible SS18-SSX2, was also used [25]. We established KhES1 containing
3xHA-tagged SS18-SSX2, which was designated KhES1-HA. The entire coding region of the
SS18-S8X2 gene with the 3xHA tag was cloned into the pCR8/GW/TOPO/TA vector (Life
Technologies) and transferred into KW111/GW, a derivative of PB-TET containing the rtTA
transactivator [27], via the LR clonase reaction, resulting in KW111-3xHA-SS18-SSX2, which
was then transfected into KhES] cells, as previously described [25,27]. After expansion, we vali-
dated the expression of S518-SSX2 at the mRNA and protein levels following the administra-
tion of DOX (LKT Laboratory, Inc., St. Paul, USA). In order to observe the expression of
mCherry in DOX-inducible hPSCs, cells were cultured under feeder-free conditions.

Induction of hANCCs from hPSCs

Human NCCs (hNCCs) was induced from KhESI or 414C2 cells as previously described [28].
The efficiency of the induction of hNCCs was evaluated by the fraction of p75™&"
expression of hNCC markers. Drug-inducible hNCCs were maintained in CDM supplemented
with SB (Sigma, St. Louis, MO, USA), EGF (R&D System, Minneapolis, USA),) and bFGF
(WAKO, Osaka, Japan) on a fibronectin (Millipore, Bedford, CA, USA)-coated dish. The
expression of SS18-SSX2 at the mRNA and protein levels was validated 24 h after the DOX
treatment at the indicated concentrations.

cells and
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Induction of hMSCs from hNCCs

The induction of human MSCs (hMSCs) from hNCC was performed as previously described
[28]. The efficiency of the hMSC induction was evaluated based on the expression of h(MSC
markers (CD73, CD44, CD45, and CD105) and differentiation properties toward osteogenic,
chondrogenic, and adipogenic lineages. The expression of SS18-SSX2 at the mRNA and protein
levels was validated at each time point after the DOX treatment at the indicated
concentrations.

RNA interference

An siRNA duplex was transfected into SS cells (3 x10° cells) using Lipofectamine 2000 (Life
Technologies) at a concentration of 20 nM according to the manufacturer’s instructions. RNA
and protein were extracted 72 h after transfection. Two different siRNAs (siSS18-SSX2 #1 and
siSS18-SSX2 #2) were used to rule out the possibility of an off-target effect. siSS18-SSX2 #1 was
customarily synthesized by Thermo Fisher Scientific (sequences listed in S1 Table) and
siSS18-SSX2 #2 was purchased from Life Technologies (s13506).

Luciferase assay

DNA fragments of the 5 flanking regulatory region of the FZD10 gene were amplified by PCR
with Prime STAR DNA polymerase (Takara, Shiga, Japan) and cloned into the luciferase
reporter plasmid, PGV-basic (Toyo Ink, Tokyo, Japan). The primers used to amplify each frag-
ment are listed in S1 Table. SYO-1 cells were transfected with each reporter plasmid and
PhRL-CMYV Renilla-Luciferase vector (Promega, Madison, WI, USA) using Lipofectamine
LTX (Life Technologies) according to the manufacturer’s instructions. Cells were harvested 24
h after transfection and the luciferase assay was performed with the Dual Luciferase Assay
Reporter System (Promega) as described previously [29].

Forced expression of SS18-SSX2

U20S cells were transfected with pLenti6/V5-DEST/3xHA-SS18-SSX2 using Lipofectamine
LTX according to the manufacturer’s instructions. The pLenti6/V5-DEST/FLAG-SS18-SSX1 or
-8518-SSX2 vector was used for lentiviral infection. The lentivirus was produced with Vira-
Power™ Lentiviral Expression Systems (Life Technologies) according to the manufacturer’s
instructions. hDFs and hBMSCs were infected with the viral supernatant containing either the
SS18-SSX1 or SS18-SSX2 gene.

Reverse transcription (RT)-PCR and gPCR

Total RNA was isolated from cells using an RNeasy Mini Kit (QIAGEN, Valencia, CA, USA)
and the RT reaction was performed using 1 to 2 pg of total RNA with the SuperScript III first-
strand synthesis system (Life Technologies) according to the manufacturer’s instructions. The
sets of primers used for conventional PCR and qPCR are listed in S1 Table. qPCR was per-
formed in triplicate using SYBR Green reagent (Applied Biosystems, Forester City, CA, USA).

Western blotting

The preparation of cell lysates and procedures used for SDS-PAGE and blotting were described
previously [26]. Immunoreactive bands were detected with Amercham™ ECL™ Prime Western
Blotting Detection Reagent (GE Healthcare, Tokyo, Japan) and visualized using BIO-RAD
Molecularimager® Chemi-Doc™ XRS+ with Image Lab"™ software. The antibodies used in
Western blotting are listed in S2 Table.
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Chromatin immunoprecipitation (ChlIP) assay

The ChIP assay was performed as previously described [30]. Briefly, cells were incubated with
formaldehyde at a final concentration of 1% for 10 min at room temperature to cross-link pro-
tein with DNA. The protein-DNA complex was then extracted by lysis buffer (1% SDS; 10 mM
EDTA; 50 mM Tris-HCI) and sheared into 300-500 bp fragments using a sonicator. After cen-
trifugation, the supernatants were incubated with antibodies (listed in S2 Table) at 4°C over-
night. The next day, Protein G beads (Millipore) were added and centrifuged at 8000 rpm for 1
min to precipitate the complex. After several washing steps, the chromatin-antibody complex
was eluted with elution buffer (1% SDS, 0.1 M CH3CO,Na, 10 mM DTT), and the cross-link
between protein and DNA was reversed with 200 mM of NaCl at 65°C overnight. The mixture
was treated with 50 ug/ml proteinase K, extracted with phenol/chloroform, and precipitated
with ethanol. A qPCR analysis was performed with SYBR Green using primer sets (listed in S1
Table).

WST-8 assay

Cell viability was measured using the AlamarBlue assay kit (Life Technologies) according to
the manufacturer’s protocol. Briefly, cells (5.0 x10°/well) were seeded onto a 96-well plate and,
after 48 h, 10% AlamarBlue dye was added to each well, followed by a 3-h incubation at 37°C.
AlamarBlue fluorescence was assayed at 530 nm and 590 nm using the 2104 EnVision® Xcite
Multilabel Reader.

Fluorescence-activated cell sorting (FACS)

FACS was performed by Ariall (BD, Bedford, MA, USA) according to the manufacturer’s pro-
tocol. The antibodies used in FACS were listed in S2 Table.

cDNA microarray

A microarray analysis was performed according to standard procedures as previously described
[25]. Total RNA was prepared using the RNeasy Mini Kit (QTAGEN). cDNA was synthesized
using the GeneChip WT (Whole Transcript) Sense Target Labeling and Control Reagents kit
as described by the manufacturer (Affymetrix, Santa Clara, CA, USA). Hybridization to Gene-
Chip Human Gene 1.0 ST expression arrays, washing, and scanning were performed according
to the manufacturer’s protocol (Affymetrix). Expression values were calculated using the RMA
summarization method and the data obtained were analyzed by GeneSpring GX 11.6 (Agilent
Technologies, Santa Clara, CA, USA) for a Principle Component Analysis (PCA) and Gene
Ontology (GO) analysis. Differentially expressed genes were identified by fold changes. Micro-
array data have been submitted to the Gene Expression Omnibus (GEO) public database at
NCBI with the accession number GSE63895. Data for SS18-SSX2-inducible hPSCs (KhES1 and
414C2) were previously described [25].

Differentiation of ANCC-derived hMSCs

Osteogenic differentiation. Osteogenic differentiation was performed in growth medium
supplemented with 0.1 M dexamethasone (WAKO), 50 uM ascorbic acid (Nacalai Tesque),
and 10 mM B-glycerophosphate (Sigma) as previously described [31]. After a 14-day induction,
calcium deposits were visualized by Alizarin Red staining.

Chondrogenic differentiation. Two-dimensional chondrogenic induction was performed
as previously described [32]. Briefly, cells (1.5 x10°) were suspended in 5 pl of chondrogenic
medium (DMEM/F12 (Life Technologies), 1% (v/v) ITS1 mix (BD), 0.17 mM AA2P (Sigma),
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0.35 mM Proline (Sigma), 0.1 uM dexamethasone (WAKO), 0.15% (v/v) glucose (Sigma), 1
mM Na-pyruvate (Sigma), and 2 mM GlutaMax (Life Technologies) supplemented with 40 ng/
ml PDGF-BB (R&D System) and 1% (v/v) FBS (Nichirei, Inc., Tokyo, Japan)). They were sub-
sequently transferred to fibronectin-coated 24-well plates (Corning, Inc., NY, USA). One milli-
liter of the chondrogenic medium was added after 1 h. TGFb3 (R&D System) was subsequently
added at 10 ng/ml on days 6 to 10. Differentiation was confirmed on day 10 using Alcian Blue
staining.

Adipogenic induction. Cells were seeded on 6-well tissue culture dishes at a density of 1.0
x10° cells/well, and adipogenic differentiation was initiated by three cycles of an induction/
maintenance culture as previously described [33]. Each cycle consisted of a 3-day culture in
induction medium (DMEM (Nacalai Tesque) containing 10% FBS (GE Healthcare), 1 pM
dexamethasone (WAKO), 10 pg/ml insulin (Nacalai Tesque), 0.2 mM indomethacin (Nacalai
Tesque), and 0.5 mM IBMX (Sigma)), followed by a 3-day culture in maintenance medium
(DMEM containing 10% FBS and 10 ug/ml insulin). After an 18-day induction, lipid vacuoles
were visualized using Oil Red O staining.

Results
Direct regulation of the FZD10 gene by the SS18-SSX2 fusion protein

The FZD10 gene has been identified as a downstream gene of SS18-SSX by microarray analyses
[20], and siRNA knockdown experiments also showed that the expression of the FZD10 gene
was regulated by SS18-SSX2 (S1A and S1B Fig). We performed a luciferase assay using reporter
constructs containing the FZD10 upstream region in the FZD10-positive SS cell line (SYO-1)
in order to identify the transcriptional regulatory region in the FZD10 gene (Fig 1A). Although
transcriptional activity was decreased by the truncation of the -1305 to -336 fragment, it disap-
peared when the region between -91 and -40 was truncated (Fig 1A), indicating that this region
was important for the basal transcriptional activity of FZDI0.

An expression vector containing the $§18-SSX2 gene was introduced into several
FZD10-negative cells in order to determine whether SS18-SSX2 induced the expression of the
FZD10 gene. In U20S, the expression of transfected SS18-SSX2 was confirmed at the protein
level (Fig 1B), which showed values higher than those in SYO-1. The expression of the FZD10
gene was induced by SS18-SSX2 at the same time in U20S (Fig 1C), and ChIP analyses showed
the binding of SS18-SSX2 to the core promoter region of the FZD10 gene identified by the
reporter assay (Fig 1A and 1D). These results indicated that SS18-SSX2 regulated the expres-
sion of the FZD10 gene by binding to this region. However, the introduction of SS18-SSX2
failed to induce the FZD10 gene in other types of cells, such as hDFs or hBMSCs (S1C Fig).
These results suggested that the regulation of FZD10 by SS18-SSX required an appropriate cel-
lular context.

Cell type-dependent effects of SS18-SSX on the expression of FZD10

In order to investigate the cell type-dependent effects of SS18-SSX in more detail, we induced
SS18-SSX2 at various differentiation stages, and compared its effects on the expression of the
FZD10 gene. KhES1-FL as well as KhES1-Control cells differentiated into hNCCs
(KhES1-NCC-FL and KhES1-NCC-Control) and then into hMSCs (KhES1-MSC-FL and
KhES1-MSC-Control) as previously described [28]. The properties of these differentiated cells
were confirmed by the expression of ANCC markers (S2A and S2B Fig) or hMSC markers (pos-
itive for CD73, 105, and 44, and negative for CD45) (S2C and S2D Fig). Identical experiments
were performed starting from KhES1-HA cells, and the properties of KhES1-MSC-HA cells
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Fig 1. Direct regulation of the FZD10 gene by the SS18-SSX2 fusion protein. A) Promoter activity in the
regulatory region of the FZD10 gene. The upper panel indicated the 5’ region of the FZD 10 gene with
amplified regions in the ChIP-qPCR analysis. The number indicates relative to the transcription start site, and
the positions of the amplified region are: -1206 to -955 bp; -825 to -569 bp; -93 to +47 bp; +621 to +869 bp.
The lower panel showed the promoter activities of fragments derived from this 5’ region in SYO-1. Error bars
reflect SD in 3 experiments. B) Induction of SS18-SSX2 in U20S. U20S was transfected with an empty
vector (EV) or 3xHA-tagged SS78-SSX2, and 48 h after the transfection, the expression of SS18-SSX2 was
analyzed by Western blotting. The SS18-SSX2 and SS18 proteins were detected by an anti-SS18 antibody
(top panel), and the 3xHA-SS18-SSX2 protein was detected by an anti-HA antibody (middle panel). C)
Induction of FZD10 expression by SS18-SSX2 in U20S. The expression of FZD10 was analyzed by RT-
gPCR. Expression levels were normalized to those of human ACTB and calculated as fold changes relative
to SYO-1. Error bars reflect SD in 3 experiments. **, p<0.01 by the t-test. D) Binding of SS18-SSX2 to the

EV SS18-SSX2
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FZD10 locus. A ChIP assay with an anti-HA antibody and RT-gPCR were performed. The values indicate
relative to rabbit IgG. Error bars reflect SD in 3 experiments.

doi:10.1371/journal.pone.0142991.g001

were also confirmed (S2E Fig). Furthermore, the induced hMSCs successfully differentiated
into osteogenic, chondrogenic, and adipogenic lineages (S3A-S3C Fig).

The DOX treatment successfully induced SS18-SSX2 at the mRNA and protein levels in a
dose-dependent manner in three types of cells (Figs 2A-2C and S4A). However, the induction
level of SS18-SSX2 was lower in KhES1-MSC-FL cells than in KhES1-HA or KhES1-NCC-FL
cells even at a high concentration of DOX (Figs 2A-2C and S4A). In order to accurately com-
pare the effects of SS18-SSX among cell lines, the levels of the SS18-SSX2 protein induced in
each cell line was expected to be similar to that induced in the human SS cell line. Therefore,
we compared the SS18-SSX2 protein levels induced in KhES1 cells, KhES1-NCCs, and
KhES1-MSCs with those in SYO-1 cells, and then determined the concentration of DOX for
each cell type (0.1, 0.3, and 1.0 pg/ml for KhES1-HA, KhES1-NCC-FL, and KhES1-MSC-FL
cells, respectively) (S4B Fig).

SS18-SSX2-expressing hESCs exhibited morphological changes from the edges of the colo-
nies 24 h after being induced and gradually died (Fig 2D and 2E), whereas no morphological
changes were observed in KhES1-NCCs or KhES1-MSCs after the DOX treatment. The WST-8
assay revealed that SS18-SSX2 did not affect the cell viability of these cells, at least 48 h after the
induction (Fig 2F). Regarding the induction of FZDI0, the ectopic expression of SS18-SSX2 sig-
nificantly induced the expression of FZD10 in KhES1-HA and KhES1-NCC-FL cells, but not in
KhES1-MSC-FL cells (Fig 2G). The prolonged treatment of KhES1-MSC-FL cells with DOX
increased the level of the SS18-SSX2 in a time-dependent manner (S4C and S4D Fig), whereas
it failed to induce the FZD10 gene (S4E Fig).

Taken together, our serial expression analyses of SS18-SSX2 in different types of cells from
the pluripotent stage to hANCC-derived MSCs clearly demonstrated that SS18-SSX had cell
type-dependent effects, and the cellular context of hRESC-derived NCCs appeared to be permis-
sive for the expression of SS18-SSX in terms of cell viability and induction of the FZDI0 gene.

Cell type-dependent effects of SS18-SSX on global gene expression
profiles

In order to determine whether the cell type-dependent effects of SS18-SSX were specific to the
FZDI0 gene, we analyzed genome-wide expression profiles in hPSCs, hPSC-NCCs, and
hPSC-MSCs with or without the induction of SS18-SSX2 (S3 Table). Genes that were up- or
down-regulated more than two-fold by SS18-SSX2 in each type of cell were identified and cate-
gorized into several groups based on their specificities (Fig 3A and 3B). As expected, FZD10
was categorized into genes up-regulated in hPSCs and hPSC-NCCs, but not into those in
hPSC-MSCs (S4 Table). Among the 552 genes up-regulated in hPSC-NCCs, 139 (25.2%) were
categorized into this group (Fig 3A and S4 Table), suggesting that a large number of genes
behaved in a similar manner to FZD10. GO term analyses identified “sequence-specific DNA
binding transcription factor activity” as the top-ranking feature of these genes and also sug-
gested involvement in the developmental process such as “multicellular organismal develop-
ment” and “nervous system development” (S5 Table). A number of one-stage-specific genes
were also identified. A total of 134/351 (38.2%), 270/552 (48.9%), and 242/401 (60.3%) genes
were up-regulated in hPSCs, hPSC-NCCs, and hPSC-MSCs, respectively (Fig 3A and S6-S8
Tables). Genes that were down-regulated by SS18-SSX2 showed greater cell-type specificity
than up-regulated genes. Cell type-specific down-regulated genes were 42/53 (79.2%) in
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Fig 2. Induction of SS18-SSX2 in hESCs, hNCCs, and hNCC-derived MSCs. A-C) DOX dose-
dependently induced the SS18-SSX2 protein in KhES1-HA (A), KhES1-NCC-FL (B), and KhES1-MSC-FL
(C) cells. Cells with Stuffer (-Control) and SS18-SSX2 were treated with the indicated concentrations of DOX
for 24 h, and the expression of SS18-SSX2 was analyzed by Western blotting. The SS18-SSX2 and SS18
proteins were detected using an anti-SS18 antibody (top panel), and the 3xHA-SS18-SSX2 or
FLAG-SS18-SSX2 protein was detected by an anti-HA or anti-FLAG antibody (middle panel). D and E)
Morphology (left panels) and expression of mCherry (right panels) in KhES1-HA cells treated with 0 (D) or 0.3
(E) pg/ml of DOX for 24 and 96 h. Scale bar, 200 um. F) Effects of SS18-SSX2 on the cell viability of
KhES1-NCC-FL and KhES1-MSC-FL cells. Cells with Stuffer (-Control) or SS18-SSX2 were treated with the
indicated concentrations of DOX for 48 h, and cell viability was measured using the AlamarBlue assay. n.s.
means not significant. Error bars reflect SD in 4 experiments. G) Induction of FZD10 expression by
SS18-SSX2 in KhES1-HA, KhES1-NCC-FL, and KhES1-MSC-FL cells. Cells with Stuffer (-Control) or
SS18-SSX2 were treated with the indicated concentrations of DOX for 24 h, and the expression of FZD10
was analyzed by RT-gPCR. Expression levels were normalized to those of human ACTB and calculated as
fold changes relative to SYO-1. Error bars reflect SD in 3 experiments. **, p<0.01 by the t-test.

doi:10.1371/journal.pone.0142991.g002
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and conditions used in this experiment are described in S3 Table. mMRNA was extracted from each cell line 12
h after the DOX treatment.

doi:10.1371/journal.pone.0142991.g003

hPSCs, 133/178 (74.7%) in hPSC-NCCs, and 353/397 (88.9%) in hPSC-MSCs (Fig 3B and S9-
S11 Tables). These results clearly showed that SS18-SSX regulated different downstream genes
depending on the cell type, suggesting that the cell context is an important determinant for its
function.

Furthermore, PCA revealed that hPSCs, hPSC-NCCs, and hPSC-MSCs showed clearly dis-
tinct expression profiles, which were also different from those of SS cell lines (Fig 3C). The pro-
file of hPSC-NCCs, but not that of hPSCs or hPSC-MSCs, became closer to that of SS cell lines
with the induction of SS18-SSX2 (Fig 3C).
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Cell type-dependent function of SS18-SSX2 as an epigenetic modifier

Recent studies showed the involvement of SS18-SSX in chromatin remodeling [17,34,35], and
these findings prompted us to investigate the cell type-dependent function of SS18-SSX as an
epigenetic modifier. Modifications of histones associated with the regulatory region of the
FZD10 locus in endogenous FZD10 negative-hDFs and -positive SYO-1 cells were initially ana-
lyzed (S5A and S5B Fig). Histone modifications of hDFs showed a high level of repressive
mark (H3K27me3) through the analyzed region (S5A Fig), whereas the level of active marks
(H3K4me3 and H3Ac) was high in SYO-1 (S5B Fig). These results indicated that the status of
histones in the analyzed region correlated with the expression of FZD10. Each type of histone
modification at the FZD10 locus was then analyzed in KhES1 cells, KhES1-NCCs, and
KhES1-MSCs with and without the induction of SS18-SSX2.

In the case of H3Ac, SS18-SSX2 clearly increased this modification in khES1-HA and
KhES1-NCC-FL cells, whereas the amount of H3Ac appeared to be same even after the induc-
tion of SS18-SSX2 in KhES1-MSC-FL cells (Fig 4A). The modification of H3K4me3 was also
clearly enhanced by SS18-SSX2 in KhESI cells (Fig 4B). This enhancement was limited, but
still observed in KhES1-NCCs, whereas no marked change was observed in KhES1-MSCs (Fig
4B). The amount of the repressive modification, H3K27me3, was reduced by SS18-SSX in
KhESI cells and KhES1-NCCs, but remained at a higher level in KhES1-MSCs (Fig 4C). Since
the level of SS18-SSX2 induced was similar, the difference observed in histone modifications by
SS18-SSX2 may have been due to the different cellular context in each cell type.

Relationship between BAF47 levels and the induction of FZD10

A recent study demonstrated that SS18-SSX participated in the protein complex consisting of
Brgl and multiple Brgl-associated factors (BAF) by replacing SS18 [18]. As a result, BAF47,
one of the core members of the BAF complex, was eliminated from the complex and subse-
quently degenerated by proteasomes. In order to investigate the involvement of BAF47 in our
system, the effects of SS18-SSX2 on the expression of BAF47 were analyzed. The expression
level of the BAF47 gene was higher in KhES1-NCC-FL cells than in KhES1-HA cells and signif-
icantly lower in KhES1-MSC-FL cells (Fig 5A, under the no DOX condition). The induction of
SS18-SSX2 in these cell lines had negligible effects on the mRNA expression of BAF47 (Fig
5A). However, protein expression was markedly decreased in KhES1-HA in a DOX-dose
dependent manner, namely, a SS18-SSX2-dose dependent manner (Fig 5B). Since mRNA levels
were stable (Fig 5A), this decrease may have been due to enhancements in the degradation pro-
cess. Similar reductions were observed in the BAF47 protein in KhES1-NCC-FL, whereas no
marked change was noted in KhES1-MSC-FL (Fig 5B). Identical stage-dependent data were
obtained in cell lines with a different tag (S6A Fig), which supported this stage-dependent dif-
ference being caused by the stage-dependent function of SS18-SSX.

We also examined the recruitment of SS18-SSX2 to the FZDI10 core promoter in the three
types of cells. Although no significant differences were noted, the binding affinity of SS18-SSX2
was lower in KhES1-MSC-HA cells than in KhES1-HA and KhES1-NCC-FL cells, which was
related to the stage-specific induction of FZD10 (Figs 5C and S6B and S6C). These results sug-
gested that a difference in the transcriptional regulatory complex in each cell type was an
important cellular context determining the function of SS18-SSX as an epigenetic modifier.

Discussion

Recent in vivo and in vitro studies have elucidated the molecular mechanisms underlying SS
development, particularly concerning the involvement of SS18-SSX. Although the SS18-SSX
fusion protein has no apparent DNA-binding domain, it has been suggested to play a role in
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Fig 4. Cell type-dependent effects of SS18-SSX2 on histone modifications at the FZD10 locus. A-C)
Changes in histone modifications at the FZD10 locus by SS18-SSX2 in KhES1-HA, KhES1-NCC-FL, and
KhES1-MSC-FL cells. Cells with Stuffer (-Control) and SS18-SSX2 were treated for 24 h with DOX (0.1, 0.3,
and 1.0 yg/ml for KhES1-HA, KhES1-NCC-FL, and KhES1-MSC-FL cells, respectively). The levels of H3Ac
(A), H3K4me3 (B), and H3K27me3 (C) were analyzed by ChIP-qPCR. The values indicate relative to the
input. Error bars reflect SD in 3 experiments. **, p<0.01 by the t-test.

doi:10.1371/journal.pone.0142991.g004

chromatin remodeling through an association with TrxG and/or PcG complexes
[12,17,18,34,35]. Su et al. revealed that SS18-SSX2 bridged ATF2 and TLE1, which is a member
of the TLE family of proteins with co-repressor activity, and generated a suppressive complex
on ATF2 target genes [17]. On the other hand, Kadoch and Crabtree proposed a model for
transcriptional activation, in which SS18-SSX disrupts the normal architecture of the BAF
complex by replacing SS18 and eliminating BAF47 from the complex, thereby reversing the
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blotting. The BAF47 protein was detected using an anti-BAF47 antibody. 293T cells were used as a positive
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control. C) Recruitment of SS18-SSX2 to the FZD10 core promoter region (from -93 to +47 bp) in KhES1-HA,
KhES1-NCC-HA, and KhES1-MSC-HA cells. Cells were treated with DOX (0.1, 1.0, and 3.0 pg/ml for
KhES1-HA, KhES1-NCC-HA, and KhES1-MSC-HA cells, respectively) for 24 h. A ChIP assay with an anti-
HA antibody and RT-qPCR were performed. The values indicate relative to rabbit IgG. Error bars reflect SD in
3 experiments.

doi:10.1371/journal.pone.0142991.g005

polycomb-mediated repression of the SOX2 gene [18]. In both mechanisms, SS18-SSX requires
partners to exert its function, which may differ in each gene and also in each cell type.

Loss-of-function experiments using SS cell lines and gain-of-function approaches using nor-
mal cells identified several target genes of SS18-SSX, such as IGF2 and EGR1, and showed the
important role of SS18-SSX in cell growth and focal adhesion [35-40]. However, the gene set
identified in these in vitro experiments did not necessarily match those found by the expression
profiles of SS tumors [13,41,42]. These findings implied that the contexts of cells used in previ-
ous experiments were not fully appropriate for understanding the function of SS18-SSX. There-
fore, we herein investigated the impact of the cellular context on the function of SS18-SSX.
Based on our and others’ previous studies, we selected cells in the neural crest lineage as tenta-
tive target cells of SS18-SSX, and induced SS18-SSX2 at the PSC, NCC, and NCC-derived MSC
stages. As a result, the expression of FZD10, a direct target of SS18-SSX2, was detected in
hPSCs and hPSC-NCCs, but not in hPSC-MSCs with the induction of SS18-SSX2. Further-
more, SS18-SSX2 had cell type-dependent effects on cell viability, which was consistent with
previous findings showing growth-suppressive effects in certain cell types. Nagai et al. reported
differences in the transforming activity of SS18-SSX1 between 3Y1 rat fibroblasts and NIH 3T3
mouse fibroblasts [12], which may be related to the up-regulation of p21 by SS18-SSX1 in the
latter, but not in the former cells [43].

We observed a similar cell type-related induction of the FZD10 gene by S518-SSX2, and,
importantly, this stage-specific induction correlated with the stage- specific change in histone
modifications. SS18-SSX2 changed the histone marks of the FZD10 locus into an active state by
reducing H3K27me3, and increasing H3K4me3 and H3Ac in hESCs and hNCCs, but not in
hNCC-derived MSCs. In other words, the cellular context had a prominent impact on the func-
tion of SS18-SSX as an epigenetic modifier.

The responsible factors of the cellular context for determining the effects of oncogenic
events currently remain unclear. In the case of the EWSRI-ATFI fusion gene, the context of
the target cells of CCS determined the expression of the MITF gene, which is the key transcrip-
tion factor for the melanocytic phenotype of CCS [6,44]. Although we have not yet elucidated
the underlying mechanism in SS, the presence of BAF47 appeared to be an important factor for
determining the effects of SS18-SSX. In the present study, we demonstrated that SS18-SSX2
decreased the expression level of the BAF47 protein in hESCs and hESC-NCCs, which is con-
sistent with previous findings [18]. However, the endogenous expression of BAF47 was
markedly lower in hRESC-MSCs than in hESCs or hESC-NCCs. BAF47 is a member of the
ATP-dependent SWI/SNF chromatin-remodeling complex and its expression was previously
shown to be reduced in SS tissues [45]. Mammalian BAF complexes are considered to be com-
binationally assembled from several subunits during development and acquire specific func-
tions in biological processes, including the maintenance of pluripotency and neuronal
differentiation [46,47]. Therefore, the content of the BAF complex associated with the FZD10
gene may vary in cell stages, which may cause the cellular context-dependent regulation of this
gene by SS18-SSX. Precise biochemical analyses of the members of the complex associated with
the promoter of FZD10 in each cell type will provide more concrete evidence for this cellular
context specificity, and we are currently investigating this issue.
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Although recent studies have advocated several possible cellular origins of SS, including
multipotent stem cells and precursors of a muscle lineage, the cell-of-origin of SS still remains
controversial [13,48-50]. Our results showed that the induction of SS18-SSX2 altered the
global gene expression of hNCCs to be closer to those of SS cell lines; therefore, ANCC may
serve as the origin of SS. Although we employed the neural crest lineage in this study, our
inducible system is applicable to other lineages in order to identify the cells-of-origin of SS. In
addition, the cellular context-specific function of fusion proteins represents an important issue
in the search for target molecules for the treatment of SS, and our inducible system will be a
powerful tool for investigating this issue.

Supporting Information

S1 Fig. Direct regulation of the FZD10 gene by the SS18-SSX2 fusion protein. A) Effects of
siRNA against SS18-SSX2. SS cell lines (SYO-1 and 1273/99) were transfected with control
siRNA (si-Ctrl), si-SS18-SSX2 #1, or si-SS18-SSX2 #2, and the expression of the S518-SSX2 pro-
tein was analyzed 72 h after the transfection by Western blotting using an anti-SS18 antibody.
B) Downregulation of FZD10 expression by the knockdown of S518-SSX2. The expression of
FZD10 was analyzed by RT-qPCR. Expression levels were normalized to those of human
ACTB and calculated as fold changes relative to cells transfected with si-Ctrl. Error bars reflect
SD in 3 experiments. *, p<0.05 by the t-test. C) Induction of FZD10 by SS18-SSX in hDFs and
hBMSCs. Cells were infected with pLenti6/V5-DEST-EV, -SS§18-SSX1, or -S§18-S5X2, and
RNA was extracted 48 and 96 h after the infection. The mRNA expression of SS18-SSX1 and
$818-S§X2, and FZD10 was analyzed by RT-qPCR. NT; non-treated.

(PDF)

S2 Fig. Characterization of KhES1-NCCs and KhES1-MSCs. A) Induction efficiency of
NCCs from KhESI-FL cells. After the neural crest induction, cells were stained with an anti-
p75 antibody and the p75"€"-positive population was analyzed by FACS. B) Expression of neu-
ral crest-specific markers in KhES1-FL and KhES1-NCC-FL cells. The mRNA expression of
hNCC markers (SOX10, TFAP2A, PAX3, and NGFR) was analyzed by RT-qPCR in cells with
SS18-SSX2 without the DOX treatment. Expression levels were normalized to those of human
ACTB and calculated as fold changes relative to KhES1-FL cells. Error bars reflect SD in 3
experiments. C-E) Expression of surface markers in hMSC cells. After the induction of hMSCs,
the expression of each CD antigen in KhES1-MSC-Control (C), KhES1-MSC-FL (D), and
KhES1-MSC-HA (E) cells was analyzed by FACS.

(PDF)

S3 Fig. Differentiation properties of KhES1-MSCs toward osteogenic, chondrogenic, and
adipogenic lineages. A-C) KhES-MSC-Control, KhES1-MSC-FL, and KhES1-MSC-HA cells
were induced toward osteogenic (A), chondrogenic (B), or adipogenic (C) lineages. Osteogenic
induction (OI), chondrogenic induction (CI), and adipogenic induction (AI) were performed
as described in the Materials and Methods section, and were evaluated by Alizarin Red staining
on day 14, Alcian Blue staining on day 10, and Oil Red O staining on day 18, respectively.
hMSCs were cultured during the induction periods in hMSC medium as a negative control
(CT). Scale bar, 200 pm in OI and 50 pm in Al

(PDF)

$4 Fig. Induction of SS18-SSX2 in hESCs, hNCCs, and hNCC-derived MSCs. A) DOX dose-
dependently induced SS18-SSX2 mRNA in KhES1-HA, KhES1-NCC-FL, and KhES1-MSC-FL
cells. Cells with Stuffer (-Control) and SS18-SSX2 were treated with the indicated concentra-
tions of DOX for 24 h, and the expression of $§18-SSX2 was analyzed by RT-qPCR. Expression

PLOS ONE | DOI:10.1371/journal.pone.0142991 November 16,2015 15/20


http://www.ncbi.nlm.nih.gov/pubmed/22739505
http://dx.doi.org/10.1126/scitranslmed.3005211
http://www.ncbi.nlm.nih.gov/pubmed/23345608
http://www.ncbi.nlm.nih.gov/pubmed/8203453

@’PLOS ‘ ONE

Cellular Context-Dependent Function of SS18-SSX

levels were normalized to those of human ACTB and calculated as fold changes relative to
SYO-1. Error bars reflect SD in 3 experiments. B) Comparison of SS18-SSX2 expression levels
among KhES1-HA, KhES1-NCC-FL, and KhES1-MSC-FL cells. Cells with Stuffer (-Control)
and SS18-SSX2 were treated with the indicated concentrations of DOX for 24 h, and the
expression of SS18-SSX2 was analyzed by Western blotting. The SS18-SSX2 and SS18 proteins
were detected using an anti-SS18 antibody. C and D) The time-dependent induction of
SS18-SSX2 at mRNA (C) and protein (D) levels in KhES1-MSC-FL cells. Cells with Stuffer
(-Control) and SS18-SSX2 were treated with 1.0 pg/ml of DOX for the indicated periods. C)
RT-qPCR; Expression levels were normalized to those of human ACTB and calculated as fold
changes relative to SYO-1. Error bars reflect SD in 3 experiments. D) Western blotting; The
SS18-SSX2 and SS18 proteins were detected by an anti-SS18 antibody (top panel), and the
FLAG-SS18-SSX2 protein was detected using an anti-FLAG antibody (middle panel). E) Induc-
tion of FZD10 expression by S518-SSX2 in KhES1-MSC-FL cells. Cells with Stuffer (-Control)
and SS18-SSX2 were treated with 1.0 pg/ml of DOX for the indicated periods. The expression
of FZD10 was analyzed by RT-qPCR. Expression levels were normalized to those of human
ACTB and calculated as fold changes relative to SYO-1. Error bars reflect SD in 3 experiments.
(PDF)

S5 Fig. Histone modifications at the FZD10 locus in fibroblasts and SS cells. A and B) Mod-
ifications of histones associated with 5’ regions in the FZD10 locus of hDF (A) and SYO-1 (B)
cells. H3K4me3, H3Ac, and H3K27me3 levels were analyzed by ChIP-qPCR. The values indi-
cate relative to the input. Error bars reflect SD in 3 experiments.

(PDF)

S6 Fig. Relationship between BAF47 levels and the induction of FZD10. A) Effects of
SS18-SSX2 on BAF47 expression levels. KhES1-FL, KhES1-NCC-HA, and KhES1-MSC-HA
cells were treated with the indicated concentrations of DOX for 24 h, and the expression of
BAF47 was analyzed by Western blotting. The BAF47 protein was detected using an anti-
BAF47 antibody. B and C) Induction of $S18-SSX2 (B) and FZD10 (C) mRNA in KhES1-NC-
C-HA and KhES1-MSC-HA cells. Cells with Stuffer (-Control) and SS18-SSX2 were treated
with the indicated concentrations of DOX for 24 h, and the expression of $§18-SSX2 (B) and
FZD10 (C) was analyzed by RT-qPCR. Expression levels were normalized to those of human
ACTB and calculated as fold changes relative to SYO-1. Error bars reflect SD in 3 experiments.
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