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Abstract
Staphylococcus aureus is the number one cause of hospital-acquired infections. Under-

standing host pathogen interactions is paramount to the development of more effective treat-

ment and prevention strategies. Therefore, whole exome sequence and chip-based

genotype data were used to conduct rare variant and genome-wide association analyses in a

Mexican-American cohort from Starr County, Texas to identify genes and variants associated

with S. aureus nasal carriage. Unlike most studies of S. aureus that are based on hospitalized

populations, this study used a representative community sample. Two nasal swabs were col-

lected from participants (n = 858) 11–17 days apart between October 2009 and December

2013, screened for the presence of S. aureus, and then classified as either persistent, inter-

mittent, or non-carriers. The chip-based and exome sequence-based single variant associa-

tion analyses identified 1 genome-wide significant region (KAT2B) for intermittent and 11

regions suggestively associated with persistent or intermittent S. aureus carriage. We also

report top findings from gene-based burden analyses of rare functional variation. Notably, we

observed marked differences between signals associated with persistent and intermittent

carriage. In single variant analyses of persistent carriage, 7 of 9 genes in suggestively associ-

ated regions and all 5 top gene-based findings are associated with cell growth or tight junction

integrity or are structural constituents of the cytoskeleton, suggesting that variation in genes

associated with persistent carriage impact cellular integrity and morphology.
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Introduction
Infectious diseases result from complex interactions between the microorganism, the host, and
the environment. Host genetic factors play a major role in determining differential susceptibil-
ity to major infectious diseases of humans, including malaria [1], HIV/AIDS [2], tuberculosis
[3], hepatitis B [4], Norovirus diarrhea [5], prion disease [6], Cholera [7], and Helicobacter
pylori infections [8]. The first evidence that genetic factors could impact infectious disease out-
comes was derived from epidemiological studies that identified differences between human
populations exposed to the same infectious organism [9]. This is equally true for S. aureus [10–
12], but this pathogen represents a special case because it is an opportunistic pathogen that can
colonize humans without causing overt disease [13]. It is therefore an ideal system for examin-
ing host pathogen interactions.

Even though humans are exposed to S. aureus at birth, not all are equally susceptible to colo-
nization [9]. Many body sites can be colonized by S. aureus, but nasal decolonization has been
shown to be effective in reducing colonization at other body sites, suggesting that the anterior
nares is one of the primary S. aureus reservoirs [14, 15]. Human carriage has been classified as
either persistent, intermittent, or non-carriage with rates of carriage ranging from 10–35%, 20–
75%, and 5–70%, respectively, depending on race, age, gender, and whether the population
examined was hospital- or community-based [9, 16–18]. Carriage is not representative of infec-
tion, per se. Rather, carriage impacts the risk of acquiring infection, disease presentation, and
disease severity [13]. Furthermore, the genotype of the colonizing S. aureus strain, the nature
of the immune response elicited following exposure, and underlying host genetic factors may
all play a role in susceptibility to colonization and/or infection [9, 19–24]. Like other complex
conditions, susceptibility to infectious agents does not typically follow a simple Mendelian pat-
tern of inheritance, largely due to the fact that human immune responses are controlled by
complex genetic mechanisms and modifying environmental influences [25, 26].

Candidate gene studies have uncovered associations between specific genes and carriage sta-
tus [20–23, 27–29]. For example, IL4 and C-reactive protein have been shown to be associated
with carriage in the Rotterdam Study [20, 22]. In the same study, a 68% reduction in risk of
persistent carriage was observed related to the glucocorticoid receptor gene [30] (S1 Table).
Polymorphisms in genes encoding different defensins and MBL (manose binding lectin) have
also been associated with S. aureus persistent carriage [20, 31, 32] (S1 Table). The toll-like
receptors have also been associated with increased risk of streptococci and enterococci skin
and soft tissue infections [21, 33] suggesting that there may be some commonalities in the
genetics of susceptibility to infection with different pathogens. No community-based genome-
wide association or whole exome sequencing studies have previously been performed in the
context of S. aureus carriage, but recently, 2 hospital-based genome-wide association studies of
S. aureus infections were conducted [34, 35]. That these studies failed to identify targets with
genome wide significance is not necessarily surprising since hospital environments themselves
are a significant risk factor for acquiring S. aureus infections and these effects may overwhelm
modest genetic influences on risk [36].

The present study was designed to identify genes/markers associated with persistent and
intermittent carriage of S. aureus in a community-based sample of 858 Mexican-Americans
from Starr County, Texas. Single nucleotide polymorphism (SNP) data from the Affymetrix
Genome-Wide SNPArray 6.0 assay imputed out to the complete SNP set in the 1000 Genomes
Project [37] and whole exome sequence data were used to conduct single variant and gene-
based burden tests. The single variant analyses identified the KAT2B (lysine acetyltransferase
2B) region as significantly associated with intermittent S. aureus carriage. All 5 top genes iden-
tified in the gene-based burden test and at least 1 gene in each region suggestively associated
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with persistent carriage in the single variant analysis are associated in some fashion with main-
tenance of cellular integrity, the cytoskeleton, or the cell cycle. On the other hand, genes associ-
ated with intermittent carriage were largely associated with immune function, adipogeneisis, or
inflammation. These analyses identified little evidence of overlap between genes or regions cor-
responding to different carriage phenotypes suggesting that each carrier state may be distinct.

Materials and Methods

Human subjects
This study and the consenting procedures were approved by the University of Texas Health
Science Center Institutional Review Board (HSC-SPH-06-0225). Written informed consent
was obtained from all participants before they were enrolled in the study.

Microbiologic testing
Specimens were collected from the nares using dry, unmoistened sterile BBL™ CultureSwabs™
Liquid Stuart swabs. Swabs were inserted into the patient’s nostril approximately 1 inch from
the edge from the anterior nares placing the swab in proximity with the inferior and middle
concha and rolled several times. Bar-coded specimen tubes were stored and shipped at 4°C to
the University of Texas Health Science Center at Houston School of Public Health for
processing.

To identify and characterize S. aureus from specimens containing mixed flora, nasal swabs
were inoculated on manitol salt agar (MSA) plates (Remel Inc., Lenexa, KS) as described [38].
Following inoculation of primary plates, swabs were broken off into tryptic soy broth for
enrichment (TSB) (Remel Inc.). The enrichment broths were vortexed for 10 seconds to ensure
that any bacteria still attached to the swab were released into the media and the samples subse-
quently incubated at 37°C for 48 hours and re-plated on secondary MSA plates. Gram staining
of respective colonies that turned MSA plates yellow were used to ensure that selected colonies
possessed S. aureusmorphology. Presumptive S. aureus colonies were streaked on blood agar
(BA) (Quad Five, Ryegate, MT) and TSB agar and incubated at 37°C for 24 h.

Following incubations on BA and TSB agar from the primary and secondary MSA plates,
colonies were subjected to catalase (Sigma, St. Louis, MO) and coagulase testing (BactiStaph1

Latex 450, Remel Inc.). Positive tests were considered diagnostic for S. aureus. The identifica-
tion of S. aureus was also confirmed genetically by PCR amplification and sequencing of a frag-
ment of the spa gene for 1598/1662 (96%) of the isolates as done previously [38]. The second
MSA plates streaked from the overnight liquid broth cultures were examined for additional
growth, and colonies with S. aureusmorphology were isolated and tested as above. Once iso-
lates were defined as S. aureus, their respective susceptibilities to methicillin were determined
using the E-test1 (AB Biodisk, Biomerieux, I’Etoile, France). Methicillin resistance was defined
by growth at antibiotic concentrations�4 μg/ml. All confirmed S. aureus isolates were stored
at -80°C [38].

Definition of the S. aureus carriage phenotypes
Carriage status was determined for individuals from whom nasal swabs were collected at two
time points, 2 weeks apart (14±3 days) as described previously [39]. Carriers were defined by S.
aureus positive cultures at either visit, and intermittent carriers were S. aureus positive at either
the first or second visit but not both. Non carriers were negative for S. aureus at both visits
[39].
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Genome-wide association studies and generation of whole genome
imputation data
Subjects (n = 858) were eligible for this study because of prior participation in genome-wide
association studies for diabetes [40]. Genotyping was performed at the Center for Inherited
Disease Research using the Affymetrix Genome-wide SNPArray 6.0 assay with sample- and
SNP-level genotyping quality control performed as described in Below et al. [40]. Imputa-
tions were carried out in the full Starr County sample, cleaned of ethnic outliers and includ-
ing 1,616 unrelated (pairwise identity by descent� 0.3) [41] individuals of which 858 met
inclusion criteria in the present study. A set of autosomal scaffold SNPs were selected to drive
imputation by excluding those with: 1) minor allele frequency<1%, 2) Hardy-Weinberg p-
values< 10−4 in the full sample 3) missingness >10% in the full sample and 4) all ambiguous
strand (AT/CG) SNPs. Individual-level missingness is<5% in all samples. 603,042 scaffold
SNPs were carried forward into a two-step imputation strategy: i) pre-phasing using the pro-
gram SHAPEIT [42] and ii) Imputation from the reference panel into the estimated haplo-
types with IMPUTE v2 [43–45]. Imputations were done in conjunction with the
T2D-GENES consortium as part of a larger set of some 13,000 multiethnic samples. SNPs
with imputation quality� 0.8 and minor allele frequency > 0.05 were carried forward for
single variant analyses. Population stratification was evaluated using EIGENSOFT on a sub-
set of directly genotyped SNPs pruned for local and long distance linkage disequilibrium as
described in Patterson et al. [46].

Analyses were conducted by comparing persistent S. aureus carriers to noncarriers or inter-
mittent carriers to noncarriers. Persistent carriers were defined as unrelated [41] individuals
passing genotyping quality control and testing positive for colonization of S. aureus at both of
two time points, 11 to 17 days apart (n = 141). Genes located within 50 kilobases of signals
comprised of at least 4 SNPs and study-based minor allele frequency> 0.05 with a p value
<10−5 were considered suggestively significant. For each region showing association, we identi-
fied a sentinel marker, defined as the most significant SNP meeting all quality control thresh-
olds (locus zoom plots, Figs A-L, in S1 File).

Associations of the imputed genetic markers with S. aureus carrier status were tested with
the program SNPTEST v2 [44] using frequentist association tests, based on an additive model.
To control for genotype uncertainty, we used the missing data likelihood score test (the score
method). All association analyses corrected for ancestry using the first and second principal
components from EIGENSOFT as covariates, and all analyses were run once including diabetes
status as a covariate and once excluding diabetes status in the model.

Generation and analysis of whole exome single variants
Whole exome sequence data were available for a subset of 792 participants (131 persistent car-
riers, 88 intermittent carriers, and 573 non-carriers, as defined above). These were part of a
larger group sequenced as part of the T2D-GENES Consortium at the Broad Institute using
Agilent Truseq capture reagents on Illumina HiSeq2000 instruments.

Association tests of the 1,011 common (minor allele frequency> 0.05) single variants pres-
ent in the exome sequence data were performed using logistic regression in the program
PLINK v2 [47]. As above, association analyses were corrected for ancestry using the first and
second principal components, and all analyses were run including and excluding diabetes sta-
tus as a covariate in the model. These results were combined with the imputed data results in
common Manhattan plots (Figs 1 and 2 and Figs M-N in S1 File).
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Gene-based analysis of whole exome sequence data
We used the Variant Annotation Analysis and Search Tool (VAAST) to identify genes associ-
ated with increased risk of S. aureus colonization [48, 49]. For quality-control purposes, we
removed sites with missingness>10% in the full sample. We also used the rate option to set
the maximum expected disease allele frequency to 0.05, as we expect to be powered to detect
effects of common variants in single variant tests. The top two principle components from

Fig 1. Manhattan (a) and QQ plots (b) of results of single variant logistic regression of persistent S.
aureus carriage versus non-carrier, including PC1 and PC2 as covariates. The x-axis represents the
chromosome number and each dot represents a single polymorphic variant with minor allele frequency
greater than 0.05. QQ plot shows the observed versus expected p-values for the same variants shown in (a).
Grey shading indicates the 95% confidence interval, the solid line indicates the expected null distribution, and
the dotted line indicates the slope after lambda correction for genomic control. The 1,011 common variants
identified by whole exome sequencing are shown as x’s in the Manhattan plots.

doi:10.1371/journal.pone.0142130.g001
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EIGENSOFT were used as covariates in all VAAST analyses, and analyses were performed
with and without diabetes status as a covariate, as above. Statistical significance was assessed
using a covariate-adjusted randomization test as previously described [50, 51]; p-value confi-
dence intervals were calculated using a Poisson approximation based on the number of suc-
cesses in the randomization test. Genome-wide significance thresholds for the gene-based tests
were calculated from the number of genes tested (0.05/18665 = 2.68×10−6).

Fig 2. Manhattan (a) and QQ plots (b) of results of single variant logistic regression of intermittent S.
aureus carriage versus non-carrier, including PC1 and PC2 as covariates. The x-axis represents the
chromosome number and each dot represents a single polymorphic variant with minor allele frequency
greater than 0.05. QQ plot shows the observed versus expected p-values for the same variants shown in (a).
Grey shading indicates the 95% confidence interval, the solid line indicates the expected null distribution, and
the dotted line indicates the slope after lambda correction for genomic control. The 1,011 common variants
identified by whole exome sequencing are shown as x’s in the Manhattan plots.

doi:10.1371/journal.pone.0142130.g002
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Results

Population demographics and S. aureus carriage determination
Carriage status was established by collecting and analyzing swabs for the presence of S. aureus
on 2 occasions from a single nostril 11–17 days apart on 858 Mexican Americans from Starr
County, TX, USA [39]. A summary of demographic information for these individuals, who
were eligible due to prior participation in a genome-wide association study for type 2 diabetes,
are presented in Table 1 [40]. Participants testing positive for S. aureus on 2 separate occasions
were defined as persistent carriers (n = 141), participants testing positive once were defined as
intermittent carriers (n = 97), and participants testing negative on both occasions were defined
as non-carriers (n = 620) as previously described [38, 39].

Single variant association tests
Single variant association tests of persistent S. aureus carriage identified 5 loci as suggestively sig-
nificant (p value� 10−5, as defined in the Methods) are summarized in Fig 1 and Table 2, namely
MKLN1 (muskelin 1), SORBS1 (sorbin and SH3 domain containing 1), SLC1A2 (solute carrier
family 1) SORBS1, a region intergenic between EPB41L4B (erythrocyte membrane protein band
4.1 like 4B) and PTPN3 (cytoskeletal-associated protein tyrosine phosphatase), and a region
downstream of FGF3 (fibroblast growth factor 3).MKLN1 encodes an intracellular mediator of
cell morphology and cytoskeletal responses [52, 53]. SORBS1 is involved in insulin signaling and
SLC1A2 is a member of the solute transporter family. EPB41L4B and PTPN3 are involved in
membrane-cytoskeletal interactions while FGF3 is a member of the fibroblast growth factor fam-
ily of genes.MKLN1 has been previously associated with childhood asthma [54], SORBS1 with
suicide risk (46) and childhood obesity in Hispanics [55], SLC1A2 with fatty acid levels [56],
essential tremor [57–59], and other traits [58, 59], EPB41L4B with wound healing [60], PTPN3
with cancer [61], and FGF3with breast cancer [62] and deafness [63, 64]. Whole exome sequenc-
ing identified 1,011 common variants (minor allele frequency> 0.05). These are shown as x’s in
the Manhattan plots. In no case did any of these variants reach a suggestive level indicating that
it is unlikely that there are common protein-coding variants of substantial effect. LocusZoom
[65] plots for each top locus highlight LD (linkage disequilibrium) patterns among the top SNPs
and show multiple SNPs in LD blocks being associated (Figs A-E in S1 File).

In addition, we carried out single variant association tests of intermittent carriage of S.
aureus, defined as individuals testing positive for S. aureus colonization at either visit compared
to non S. aureus carriers (Fig 2, Table 2). The 7 regions suggestively associated (as defined
above) with intermittent carriage include a genome-wide significant finding on chromosome 3
at rs61440199 (p value 8.68 x 10−9) that is intronic to KAT2B (lysine acetyltransferase 2B) (also

Table 1. Demographic information for study participants by S. aureus carriage phenotype.

Persistent Carrier Intermittent Carrier Non Carrier Total

Total 141 (131)A 97 (88) 620 (573) 858 (792)

% Female 70.9 76.3 69.2 70.3

% Diabetes 52.5 62.9 48.7 50.9

Mean BMI 32.7 ±9.5 33.5 ±11.7 32.4 ±10.5 32.4 ±10.5

Mean Age 53.7 ±12.8 56.5 ±14.8 54.2 ±13.2 54.4 ±13.3

Mean hbA1C 6.8 ±2.4 7.2 ±2.7 6.6 ±2.3 6.7 ±2.4

ANumber of individuals with available exome data.

doi:10.1371/journal.pone.0142130.t001
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known as PCAF; p300/CBP-associated factor), a gene associated with post-traumatic stress dis-
order [66], mean arterial blood pressure [67], adipogenesis [68], development of T regulatory
cells [69], and recently shown to be a potential regulator of inflammatory responses following
infection with S. aureus in a mouse model of disease (Table 2) [70]. Other signals were at or
near UBE2E2 (ubiquitin-conjugating enzyme E2E 2), a gene that has been associated with risk
to gestational and type 2 diabetes [71–73], ICK (intestinal cell [MAK-like] kinase), and ROBO1
(roundabout, axon guidance receptor, homolog 1), which encodes a member of the immuno-
globulin gene superfamily and plays a role in axon guidance and neuronal precursor cell migra-
tion (Table 2). A SNP highly correlated with ROBO1 expression in the brain has been
reproducibly associated with reading disabilities [74, 75], and SNPs mapped to ROBO1 have
been associated with levels of liver enzymes [76] and other pQTLs [77]. Three sentinel SNPs
were intergenic between (RELT-like 1) and PGM2 (phosphoglucomutase 2), between genes
LOC283585 and GALC, and between ZNF532 (zinc finger protein 532) andMALT1 (mucosa
associated lymphoid tissue lymphoma translocation gene 1) (Table 2). GALC encodes the
enzyme β-galactocerebrosidase, mutations in which are responsible for Krabbe disease [78, 79].
Homozygous mutations inMALT1 have been associated with immunodeficiency [80–82]
(Table 2).MALT1 has also been associated with multiple-sclerosis [83]. No common (minor
allele frequency>0.05) variants in the whole exome sequencing data reached p value< 10−5

(shown as x’s in the Manhattan plot, Fig 2). LocusZoom plots for each top locus highlight LD
patterns among top SNPs (Figs F-L in S1 File). It is notable that the signals for persistent car-
riage of S. aureus appear to be largely independent of signals for intermittent carriage of S.
aureus. Of all top findings, only rs61440199 (KAT2B) and rs16993852 (RELL1) show nominal
evidence of association in both persistent and intermittent carriage of S. aureus. Diabetes strati-
fied and non-stratified analyses of both persistent and intermittent carriage gave highly concor-
dant results across all analyses (Figs M-N in S1 File).

Gene-based tests of functional variants
The program VAAST [49, 50] was used to identify genes enriched for functional rare variation
in cases based on next generation whole exome sequence data. In the analysis of persistent car-
riers (131 cases, Table 1) versus non-carriers (573 controls, Table 1) of S. aureus, one gene,
FAM123C (APC membrane recruitment protein 3), approached genome-wide significance (p
value 6.50 x 10−6) (Table 3). Other top gene-based findings include NGEF (neuronal guanine
nucleotide exchange factor, p value 1.22 x 10−5), CCDC69 (coiled-coil domain containing 69, p
value 1.40 x 10−5), ERP29 (endoplasmic reticulum protein 29, p value 3.72 x 10−5), and
TSGA10IP (testis-specific protein 10-interacting protein, p value 7.45 x 10−5 (Table 3 and Fig O
in S1 File). In the analysis of intermittent carriers (88 cases, Table 1) versus non-carriers (573
controls, Table 1) top gene-based findings included SLC4A4 (bicarbonate cotransporter, mem-
ber 4, p value 2.27 x 10−4), TSPAN11 (tetraspanin 11, p value 1.98 x 10−4), TPO (thyroid peroxi-
dase, p value 4.05 x 10−4), ZNF280D (zinc finger protein 280D, p value 3.76 x 10−4), and
CSF2RB (colony stimulating factor 2 receptor, beta, low-affinity, p value 4.15 x 10−4) (Table 3
and Fig P in S1 File). Specific variant enrichment and predicted function of variants driving
top gene-based findings are shown in Table 3 and gene functions are discussed below.

As in the single variant analysis of 1000 Genomes imputed data and common variants from
the exome sequence data, the gene-based findings in analyses of intermittent carriers of S.
aureus appear to be largely independent between analyses of persistent versus intermittent car-
riage groups (Table 3). Only genes CCDC69 and ZNF280D reach nominal levels of significance
(p value< 0.05) in both tests. CSF2RB shows suggestive enrichment of missense variation in
both analyses, and may constitute a gene involved in general S. aureus carriage susceptibility
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Table 3. Top findings from gene-based burden tests of rare functional variation in VAAST for persistent S. aureus carriers versus non-carriers
(top) and intermittent S. aureus carriers versus non-carriers (bottom); including PC1, and PC2 as covariates.

Gene ID p value,
Persistent Carrier

(PC) vs. Non
Carrier

(Eigenscore 1,2)

p value,
Intermittent

Carrier (INT) vs.
Non Carrier

(Eigenscore 1,2)

Variant Location Mutation Count
(PC)

Count
(INT)

Count
(control)

PC vs
Non
OR
(95%
CI)

INT vs
Non OR
(95% CI)

Mutation
Taster

Prediction

FAM123C 6.5x10−6

(4.93x10−6,
8.17x10−6)

0.156 (0.112,
0.205)

chr2:131520672 p.D343H 3/253 0/176 0/1124 - - polymorphism

chr2:131520276–
131520278

p.211_211del 2/258 0/174 0/1130 - - polymorphism

chr2:131520231 p.R196W 0/256 1/173 0/1098 - - polymorphism

chr2:131520255 P204A 2/256 0/170 0/1108 - - polymorphism

NGEF 1.22x10−5

(9.54x10−6,
1.5x10−5)

0.123 (0.084,
0.166)

chr2:233744262 p.M690I 3/259 1/175 0/1146 - - polymorphism

chr2:233756151 p.D397N 2/258 0/176 0/1146 - - damaging

chr2:233757708 p.V348M 1/261 0/176 0/1146 - - damaging

CCDC69 1.4x10−5

(1.12x10−5,
1.7x10−5)

0.0399 (0.0254,
0.0561)

chr5:150565006 p.R198W 3/259 0/176 0/1146 - - polymorphism

chr5:150567017 p.L108P 12/240 6/166 13/1109 4.27
(1.92,
9.46)

3.08
(1.16,
8.22)

damagingA

ERP29 3.72x10−5

(2.79x10−5,
4.71x10−5)

0.0193 (0.0124,
0.027)

chr12:112460215 p.K182R 7/249 2/174 5/1129 6.35
(2.00,
20.16)

2.60
(0.50,
13.48)

polymorphism

chr12:112460316 p.F216L 1/261 0/176 0/1146 - - damaging

chr12:112459997 p.K109N 1/261 1/175 0/1146 - - damaging

chr12:112460195 p.E175D 1/257 1/173 0/1132 - - damaging

TSGA10IP 7.45E-05
(5.59x10−5,
9.43x10−5)

1 (1, 1) chr11:65714925 p.A210V 30/214 9/155 56/1008 2.52
(1.58,
4.03)

1.05
(0.51,
2.16)

NA

chr11:65715005 p.R237S 1/257 0/176 0/1140 - - NA

SLC4A4 0.236 (0.182,
0.295)

2.27x10-4
(1.81x10-4,
2.76x10-4)

chr4:72205078 p.T38I 0/262 1/175 0/1146 - - damaging

chr4:72215759 p.R130W 1/261 2/174 1/1145 4.39
(0.27,
70.37)

13.16
(1.19,
145.92)

damaging

chr4:72316967 p.G380D 1/257 4/172 4/1140 1.11
(0.12,
9.96)

6.63
(1.64,
26.75)

damaging

chr4:72319250 p.A410V 0/262 1/175 0/1146 - - damaging

chr4:72363275 p.G634R 0/260 1/171 0/1136 - - damaging

TSPAN11 0.113 (0.0757,
0.154)

1.98x10-4
(1.55x10-4,
2.43x10-4)

chr12:31132507 p.D120N 0/262 1/175 0/1146 - - damaging

chr12:31135497 p.D163N 1/257 4/172 1/1145 4.46
(0.28,
71.47)

26.63
(2.96,
239.65)

damaging

TPO 1 (1, 1) 4.05x10-4
(3.19x10-4,
4.97x10-4)

chr2:1488616 p.L356F 1/261 2/174 6/1140 0.73
(0.09,
6.07)

2.18
(0.44,
10.91)

damaging

chr2:1497657 p.V445M 0/256 7/169 5/1135 - 9.40
(2.95,
29.96)

polymorphism

chr2:1499870 p.M533V 0/250 7/161 4/1110 - 12.07
(3.49,
41.67)

polymorphism

chr2:1544436 p.G853R 1/261 2/174 4/1142 1.09
(0.12,
9.83)

3.28
(0.60,
18.05)

polymorphism

(Continued)
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(Table 3). Shared signals should be interpreted with caution given that the non-carriage control
group is the same in both tests, and thus the two tests are not strictly independent. As observed
for the single variant association tests, diabetes stratified and non-stratified analyses gave
highly concordant results across all analyses (Figs Q-R in S1 File). Manhattan and QQ plots
suggest the type 1 error for both single variant and gene-based tests are well controlled (Figs
M-R in S1 File).

We used the Disease Association Protein-Protein Link Evaluator (DAPPLE) [84] to identify
interactions between proteins encoded by the top 5 candidate genes in the persistent versus
non-carrier and intermittent versus non-carrier VAAST runs. DAPPLE searches for protein-
protein interactions among a candidate gene list; a significant number of protein-protein inter-
action may indicate a shared molecular pathway relevant to S. aureus susceptibility. In the anal-
ysis of persistent carriers versus non-carriers we did not detect any direct protein-protein
interactions. However, among the top 5 genes identified from the intermittent carriers versus
non-carriers run, we found that TPO is directly interacting with CSF2RB (Fig S in S1 File). The
p-value for observing at least one interaction among the top 5 genes is 0.008; the p-values for
observing at least one interacting protein for TPO and CSF2RB are 0.015 and 0.014, respectively.

Table 3. (Continued)

Gene ID p value,
Persistent Carrier

(PC) vs. Non
Carrier

(Eigenscore 1,2)

p value,
Intermittent

Carrier (INT) vs.
Non Carrier

(Eigenscore 1,2)

Variant Location Mutation Count
(PC)

Count
(INT)

Count
(control)

PC vs
Non
OR
(95%
CI)

INT vs
Non OR
(95% CI)

Mutation
Taster

Prediction

ZNF280D 0.0342 (0.0208,
0.0493)

3.76x10-4
(2.93x10-4,
4.65x10-4)

chr15:56923895 p.G901V 1/261 3/173 13/1133 0.33
(0.04,
2.56)

1.51
(0.43,
5.36)

damaging

chr15:56974513 p.Q302K 0/254 1/171 0/1116 - - polymorphism

chr15:56981270 p.N237I 0/260 2/174 0/1144 - - damaging

chr15:56981286 p.C232R 0/260 1/175 0/1144 - - damaging

chr15:56923952 p.Q882R 1/259 0/176 0/1146 - - damaging

chr15:56924054 p.I848T 1/261 0/176 0/1146 - - polymorphism

chr15:56958707 p.I614T 1/261 0/176 0/1146 - - damaging

chr15:56993196 p.I93V 1/259 0/174 0/1142 - - damaging

CSF2RB 7.04x10−4

(4,77x10−4,
9.53xx10−4)

4.15x10-4
(3.27x10-4,
5.08x10-4)

chr22:37326443 p.E249Q 14/246 21/153 65/1077 0.94
(0.52,
1.71)

2.27
(1.35,
3.83)

polymorphism

chr22:37326794 p.D312N 4/258 3/173 2/1144 8.87
(1.62,
48.68)

9.92
(1.65,
59.79)

polymorphism

chr22:37328885 p.R364L 1/255 1/173 0/1128 - - polymorphism

chr22:37331407 p.V444M 0/262 1/175 0/1144 - - polymorphism

chr22:37319324 p.Y39H 1/261 0/176 0/1144 - - damaging

chr22:37326794 p.D312N 4/258 3/173 2/1144 8.87
(1.62,
48.68)

9.92
(1.65,
59.79)

polymorphism

chr22:37328885 p.R364L 1/255 1/173 0/1128 - - polymorphism

chr22:37329979 p.G420S 2/254 0/176 1/1141 8.98
(0.81,
99.47)

- polymorphism

chr22:37334510 p.P887R 1/257 0/176 0/1140 - - polymorphism

APredicted to be a disease causing polymorphism by CASM (Conservation-Controlled Amino Acid Substitution Matrix Prediction)(72).

doi:10.1371/journal.pone.0142130.t003
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Replication of previously identified loci
We compared our persistent carriage single variant and gene-based test results to all sites previ-
ously reported in genetic analyses of S. aureus (S1 Table) [20–23, 27, 30–32, 34, 35, 85]. When
the variant in question was not present in our post-quality control imputed or exome
sequenced variant lists, and therefore not analyzed in this study, we identified the best proxy
variant by assessing linkage disequilibrium patterns in the Mexican-American (MEX) reference
population within the 1000 Genomes Project data (release 27). In these cases, statistics for the
variant with the highest linkage disequilibrium r2 are provided in S1 Table.

With the exception of CDK7 (discussed below) our findings do not replicate the genes and
variants described in 2 previously conducted genome wide association studies, possibly because
of several differences between these prior studies and the current study (described in the Dis-
cussion)[34, 35]. We found suggestive evidence of association at rs4918120 (p value 0.034) a
SNP previously identified by Nelson et al. [34] in Caucasian inpatients; however, we observed
the opposite direction of effect of the T allele (odds ratio 0.70 versus 1.68, see S1 Table). Inter-
rogation of our single variant test results for intermittent carriage at previously reported loci
yielded replication at three loci identified by Ye et al. [35]: rs12696090 (p value 0.0214),
rs7643377 (p value 0.0081), and rs9867210 (p value 0.0079), however as before; we find oppo-
site direction of effect at each of these loci (S1 Table).

We also examined our gene-based test results for replication of previous findings at genes
near previously associated SNPs and genes. CDK7 (cyclin-dependent kinase) (gene-based p
value 0.040) replicates findings by Ye et al. [35] who studied genetic risk of hospital-based S.
aureus infection in Caucasians and identified CDK7 using gene-based tests in the program
VEGAS (S1 Table).

Discussion
This was the first genome-wide association study of S. aureus carriage states in a community-
based representative population. This approach is significantly different from previously
described genome-wide association studies that were carried out in the context of S. aureus
infections [34, 35]. We found genome-wide significance at 1 gene region and 11 other regions
meeting suggestive levels of significance for association with persistent and intermittent car-
riage states by single variant analysis. We also reported the 5 top findings from gene-based
tests of persistent and intermittent carriage. The lack of overlap in signals between gene-based
tests of rare functional variation and single-variant tests suggested that genome-wide associa-
tion signals were not driven by coding sequence variation. Non-genic regulatory factors affect-
ing gene expression levels or post-translational modifications may also affect carriage
phenotypes.

We found that top signals associated with persistent and intermittent carriage captured
genes of different cellular functions. Genome-wide single variant analysis identified 5 gene
regions suggestively associated with persistent carriage. Gene-based rare variant analysis iden-
tified 5 genes in association with persistent carriage. Near genome-wide significance was
observed only for FAM123C (p value< 6.50 x 10−6). Each of these genes (except for TSGA10IP,
which has not been previously described to our knowledge) was involved with cellular growth,
tissue homeostasis, and/or cancer [86–92]. It should be noted however, that TSGA10IP
(TSGA10 interacting protein) interacts with TSGA10, a protein also associated with cancer
and that binds cytoskeletal proteins (e.g., vimentin and actin-γ1) [93, 94].

In analyses of persistent S. aureus carriage, all of the top 5 findings from gene-based tests
and all regions identified in the single variant analysis harbored at least 1 gene associated with
either regulation of cell growth or maintenance of cellular integrity (e.g., tight junctions) [95,
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96]. Conversely, a minority of genes identified in previous genome-wide association studies of
S. aureus infection were involved in cell cycle, cellular growth, or cellular integrity (S1 Table)
[34, 35]. These differences are important for 2 reasons: i) carriage and infection are not mutu-
ally exclusive i.e., the S. aureus carriage status of individuals was not established in relation to
the infections described in the previous genome-wide association studies, and ii) susceptibility
to infections in hospital environments may not accurately reflect an individual's susceptibility
to an infectious agent. Hospital environments in and of themselves place patients at increased
risk for infections with numerous pathogens including S. aureus, an agent responsible for more
healthcare-associated infections and surgical site infections than any other pathogen [97].

Genome-wide association analysis of intermittent carriage identified a different set of genes
from those identified in association with persistent carriage. This analysis identified 7 gene
regions. The top signal (rs61440199) was genome-wide significant (p value 8.68 x 10−9) and
intronic to KAT2B. This gene was of particular interest since its expression in mice was affected
by the nature of the infecting S. aureus strain [70]. In addition, KAT2B has been linked to
immune function, cancer progression, and adipogenesis [68, 98–100]. The association of
KAT2B with cancer progression/cell cycle was also shared by SGOL, ROBO1, and ICK, and rep-
resents the only functional overlap with genes identified with persistent and intermittent car-
riage of S. aureus [101–107]. The other themes observed in the context of genes associated with
intermittent carriage were genes associated with both adipogenesis and inflammation/immu-
nity (KAT2B, ZNF532, RELL1, FOXO9,MALT1) [68, 80, 98, 100, 101, 103, 108–112]. In light
of sample ascertainment for diabetes in this cohort [40], a gene in 1 region, UBE2E2, was of
interest because of prior associations with diabetes risk [71–73], however, stratification for dia-
betes provided highly concordant results with the unstratified analysis (data not shown). Our
gene-based analyses did not model complications that present in diabetic patients (e.g., obesity,
immune function, elevated blood glucose levels) that may alter susceptibility to intermittent
carriage. The number of adipogenesis genes linked to intermittent carriage may be of signifi-
cance in light of recent studies that identified a protective role for adipose tissue in a murine
model of S. aureus skin infection, suggesting that immune factors produced by adipose tissues
(e.g., antimicrobial peptides) may play a role in intermittent carriage [112].

Although gene-based analyses of rare functional variants failed to identify any genome-wide
significant differences in association with intermittent carriage, a top signal, CSF2RB, demon-
strated concordance of burden in both persistent and intermittent carriers (p value 7.04 x 10−4

and p value< 4.15 x 10−4, respectively). CSF2RB codes for CD131, the common β receptor sub-
unit for IL-3, IL-5, and GM-CSF (granulocyte/monocyte colony stimulating factor) that in mice
was shown to play a role in regulating Th2 type immune responses [113]. In addition, CD131
stimulated the recruitment of neutrophils (which are a key innate immune component) and
controlled the homeostasis of tissue dendritic cells [114, 115]. In addition, DAPPLE analysis
identified a significant protein-protein interaction between the CSF2RB and TPO gene products.
TPO is critical to the production of thyroid hormones that can impact immune function and is
also associated with mucinosis (myxedema), a disease characterized by increased glycosamino-
glycan deposition in the skin [116, 117]. Other than CSF2RB, no other top finding in the gene-
based tests were even modestly associated with both persistent and intermittent carriage.

Results from the 2 previously described genome-wide association studies identified a num-
ber of loci with statistical significance. However, those associations were for the most part not
replicated in our studies or previous work [9, 18–23, 27, 30, 32, 34, 35, 85, 118]. Lack of replica-
tion between studies may be due to population differences, the impact of the respective coloniz-
ing/infecting S. aureus strains (and their relationship with distinct human genetic
determinants), study design (i.e., S. aureus infection versus carriage), and the size of respective
populations examined [9, 22]. Replication of 1 gene identified by gene-based tests was observed
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in the context of persistent carriage that identified CDK7 (p value 0.041) from the VEGAS gene
test conducted by Ye et al. (S1 Table). We also assessed gene-based evidence of replication in
our analyses of intermittent carriage versus non-carriage and found no support for previously
identified genes (data not shown).

Previous colonization studies have suggested that the 3 described staphylococcal carriage
phenotypes (persistent, intermittent, and non-carriers) be modified to include only 2 carriage
phenotypes: persistent carriers and intermittent/non-carriers [17]. However gene targets iden-
tified in the present S. aureus carriage genome-wide association study suggested that each phe-
notype is distinct. That the genome-wide association and rare variant analyses identified
relatively little functional similarity between persistent and intermittent carriers may suggest
underlying differences between these 2 carriage states. An alternate explanation is that these
studies lacked sufficient power to identify common factors across the carriage states. Despite
the recommendation of previous studies to consider intermittent and non-carriers as a single
group, this reclassification would require ignoring the differences that exist between these 2
carriage states. It is clear, however, that persistent carriers represent the most distinct carriage
state. This is supported by colonization studies that demonstrated that non-carriers (and decol-
onized intermittent carriers) artificially inoculated with S. aureus in the nares cleared the bacte-
ria over a similar time period (4 days for non-carriers and 14 days for intermittent carriers)
compared to persistent carriers (decolonized and then re-inoculated) that still harbored the S.
aureus inoculum>154 days later [17]. Persistent carriers also had a different antibody profile
against some staphylococcal virulence factors compared to the indistinguishable profile
described for non-carriers and intermittent carriers [17]. In addition, persistent carriers that
were decolonized and re-inoculated with a heterogeneous mix of S. aureus isolates were more
likely to be re-colonized with their original colonizing isolate suggestive of an intimate associa-
tion between the colonizing strain and the host [17].

This difference between persistent carriers and intermittent carriers (and intermittent carri-
ers and non-carriers) is further accentuated by the function of the genes associated with the
respective carriage states. Almost all determinants associated with persistent carriage were
associated with cellular integrity, morphology, and growth, functions that directly hold the
potential of impacting the host/pathogen interface that establishes environments permissive to
persistent carriage.

Attachment to host surfaces is requisite for colonization and infection of host tissues by
pathogens. S. aureus possesses an arsenal of adhesins capable of binding an array of host extra-
cellular matrix (ECM) components. These components include fibrinogen, fibronectin, colla-
gen, cytokeratin 10, elastin, heparan sulfate proteoglycans, vonWillebrand factor, bone
sialoprotein, vitronectin, and prothrombin that all facilitate the colonization of diverse tissues
and accounts in part for the myriad of diseases than can result following infection with this
pathogen [119–121]. It is not surprising therefore that host polymorphisms potentially affect-
ing cellular integrity, morphology and growth could also impact colonization with different
pathogens or strains of the same pathogen.

That various potential genes identified by the genome-wide association study (e.g.,
ALDH18A1, EPB41L4B, FGF3, and FGF4) and all but 1 gene identified in the rare variant anal-
ysis have been shown to possess tumorogenic potential should not be surprising since various
genes shown to play roles in the progression of various cancers also play critical roles in wound
healing, cellular migration, cellular integrity, and angiogenesis [60, 122, 123]. Polymorphisms
in these gene products or any gene products with the potential of altering the structural integ-
rity of the host cell could potentially impact staphylococcal colonization.

Focal adhesions represent large, multi-protein complexes that are closely associated with
cell surface integrins that span the eukaryotic plasma membrane linking the cellular
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cytoskeleton to the ECM (surrounding the cell) [124]. Most integrins and their respective focal
adhesions are expressed in the epidermis and regulate epithelial cell homeostasis by mediating
cell adhesion processes (and signaling) critical to tissue repair following injury [124]. Of the
gene targets identified in association with S. aureus persistent carriage, EHM2, PTPN3, SORS1,
andMKLN1 can impact the integrity of focal adhesions that in turn alters the cytoskeleton [53,
120, 124–133].

SORBS1 encodes CAP (Cbl-Associated Protein) [129, 132, 134] that affects insulin receptor
signaling and also functions as a cytoskeletal regulatory protein [129]. In fibroblasts, when
CAP associates with actin stress fibers, focal adhesion kinase binds CAP, and CAP over-expres-
sion induces the development of actin stress fibers and focal adhesions that physically link
intracellular actin bundles to the extracellular substrates of many cell types [127, 135]. Various
pathogens like S. aureus usurp focal adhesions as a means of triggering their uptake by various
non-professional antigen presenting cells, including epithelia/endothelial cells, osteoclasts, kid-
ney cells, fibroblasts and keratinocytes [120]. S. aureus possess various fibronectin binding pro-
teins (e.g., FnbpA, FnbpB, ClfA, ClfB) that facilitate coating the bacterial surface with this
matrix molecule that in turn binds to α5β1 integrins resulting in the formation of a molecular
bridge linking S. aureus to the host cell [125]. This interaction triggers the recruitment of focal
adhesion proteins that further alter the cytoskeleton facilitating attachment, invasion, and the
ability to persist in their hosts [125]. The importance of this interaction for the successful
attachment/invasion of human cells by staphylococci was demonstrated by generating fnbpA/
fnbpB-deficient S. aureus that less effectively infected epithelial cells and in a mastitis model
caused less severe disease [136, 137]. Furthermore, cells unable to form focal adhesions were
resistant to integrin α5β1-mediated cellular invasion by S. aureus [120, 127].

EHM2 is a member of the 4.1R, ezrin, radixin, moesin (FERM) protein superfamily consist-
ing of over 40 proteins that contain the characteristic 3-lobed FERM domain on the N-termi-
nus that binds various cell membrane-associated proteins and lipids and the spectrin/actin
binding domain (SABD) at the C-terminus [126]. The PTPN3 gene product also belongs to the
FERM family and is a protein phospatase that is a structural constituent of the cytoskeletal
shown to play a role in T cell activation, maintenance of tight junction integrity (between the
cell membrane and the cytoskeleton) and both EHM2 and PTPN3 gene products are associated
with focal adhesions [95, 128, 130, 133, 138]. EHM2 expression has been observed on wounds
undergoing healing (primarily at the wound's leading edge) functioning as a positive regulator
of keratinocyte adhesion and motility in addition to affecting the rates of cellular invasion and
adhesion to collagen via regulation of matrix metaloprotease 9 (MMP9) i.e., EHM2 knockdown
cells expressed significantly reduced levels of MMP9. This is of interest in the context of S.
aureus since up- or down-regulation of MMP9 levels has been shown to affect disease progres-
sion resulting from S. aureus infections, that is, MMP9 levels that are either too high or too low
can negatively affect wound healing andMMP9-deficient mice poorly controlled S. aureus
infections [60, 126, 131, 139–143]. In addition, MMPs play critical roles in tissue remodeling
(including the maintenance of the ECM), altering immune cell migration and infiltration pat-
terns, and impacted inflammation by exerting effects on cytokines and chemokines [143, 144].
As it relates to S. aureus colonization, a role for MMP9 has yet to be described; however, staph-
ylococcal lipoteichoic acid has been shown to increase production of MMP9 in middle ear epi-
thelial cells suggesting that increased MMP9 levels could be involved in progression of otitis
media [141].

Unlike EHM2, PTPN3, and SORS1; theMKLN1 gene product muskelin mediates ECM
binding via complex mechanisms involving interactions between different thrombospondin-1
(TSP-1) domains and various ligands (expressed by different cell types) including integrins,
proteoglycans, or integrin-associated proteins. Alterations to muskelin expression levels altered

GWAS of S. aureusCarriage in a Community-Based Sample

PLOS ONE | DOI:10.1371/journal.pone.0142130 November 16, 2015 16 / 28



attachment to TSP-1 in association with subtle changes to the organization of focal contacts
[53]. Since TSP-1 has also been shown to serve as a ligand for S. aureus, polymorphisms in
MKLN1 could alter staphylococcal binding or prevent clearance of S. aureus since TSP-1 break-
down products function as antimicrobial peptides (AMPs) that have broad antibacterial prop-
erties affecting both Gram-positive and -negative bacteria [145–148].

Homozygous mutations in ALDH18A1 (or other genes e.g., PYCR1, ATP6V0A2) can result
in a heteogenous group of rare diseases characterized by loose or wrinkly skin known as cutis
laxa [149–151]. Histologic analysis of skin from cutis laxa patients identified reduced elastin
levels with less-well defined collagen fibers lacking the characteristic wavy morphology. In
addition, collagen I and III levels were significantly reduced, and fibroblasts harvested from the
dermis presented with reduced growth rates [149]. The majority of studies that have examined
genes resulting in this rare condition have only described case reports of patients with homozy-
gous mutations, making it difficult to interpret how polymorphisms with a less pronounced
phenotype present at the cytoskeletal level.

Although adherence to host surfaces also represents a component of intermittent carriage
(i.e., the organism has to attach to host tissues even if this association is transient), the intermit-
tent periods of carriage, carriage of different strains over time, carriage of multiple strains, and
the reduced S. aureus inocula recoverable from the nares of intermittent carriers suggests that
different determinants are associated with this phenotype [17]. This is emphasized by the
observation that the majority of gene targets associated with intermittent carriage were also
associated with immune function/inflammation.

Our data suggested that determinants associated with persistent carriage and intermittent
carriage differed. A limitation to the present study was the analysis of only two nasal swabs to
establish carriage. Even though Nouwen et al. established that the 'two-culture' rule was 93.6%
reliable [39] and numerous studies have used this approach to establish S. aureus carriage phe-
notypes [20, 38, 118, 152–156] there exists room for classification error. Second, because only
one nostril was sampled some participants may have been misclassified as intermittent or non
carriers based on one study that described differences in S. aureus carriage between coloniza-
tion [157]; however, two other studies did not identify any differences [158, 159]. It should be
noted that samples that were collected and analyzed for the present study were of the ciliated
pseudostratified columnar epithelium associate the inferior and middle concha and not the
nonkeratinized, squamous epithelium present in the anterior nares and used to establish S.
aureus carriage by other studies. Furthermore, due to population differences and power we
should be cautious in making assumptions with regard to specific genes associated with respec-
tive carriage states. We should therefore further dissect the observation that persistent carriage
of S. aureus is affected primarily by polymorphisms at the host/pathogen interface and that
intermittent carriage is more likely impacted by environmental factors combined with the het-
erogeneity of the host immune response.

Supporting Information
S1 File. Figs A-E. LocusZoom plots of each top finding in the single variant association anal-
yses of persistent S. aureus carriage versus non-carrier. (A) EPB41L4B, (B) LINC-PINT, (C)
SORBS1, ALDH18A1, (D) SLC1A2, and (E) FGF4, FGF3. Figs F-L. LocusZoom plots of each
top finding in the single variant association analyses of persistent S. aureus carriage versus
non-carrier. (F) KAT2B, (G) UBE2E2,MIR548AC, (H) ROBO1, (I) RELL1, (J) GSTA4, ICK,
FBXO9, (K) LOC283585, GALC, and (L) ZNF532. Fig M.Manhattan (a) and QQ plots (b) of
results of single variant logistic regression of persistent S. aureus carriage versus non-car-
rier, including diabetes, PC1, and PC2 as covariates. The x-axis represents the chromosome
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number and each dot represents a single polymorphic variant with minor allele frequency
greater than 0.05. QQ plot shows the observed versus expected p-values for the same variants
shown in (a). Grey shading indicates the 95% confidence interval, the solid line indicates the
expected null distribution, and the dotted line indicates the slope after lambda correction for
genomic control. The 1,011 common variants identified by whole exome sequencing are shown
as x’s in the Manhattan plots. Fig N.Manhattan (a) and QQ plots (b) of results of single vari-
ant logistic regression of intermittent S. aureus carriage versus non-carrier, including diabe-
tes, PC1, and PC2 as covariates. The x-axis represents the chromosome number and each dot
represents a single polymorphic variant with minor allele frequency greater than 0.05. QQ plot
shows the observed versus expected p-values for the same variants shown in (a). Grey shading
indicates the 95% confidence interval, the solid line indicates the expected null distribution, and
the dotted line indicates the slope after lambda correction for genomic control. The 1,011 com-
mon variants identified by whole exome sequencing are shown as x’s in the Manhattan plots.
Figs O.Manhattan (a) and QQ plots (b) of results of gene-based burden tests of rare func-
tional variation in VAAST for persistent S. aureus carriage versus non-carrier including
PC1, and PC2 as covariates. The x-axis represents the chromosome number and each dot rep-
resent one protein-coding gene. QQ plot shows the observed versus expected p-values for all
protein-coding genes, grey shading represents 95% confidence interval, the red line indicates the
null distribution of p-values. Fig P.Manhattan (a) and QQ plots (b) of results of gene-based
burden tests of rare functional variation in VAAST for intermittent S. aureus carriage ver-
sus non-carrier including PC1, and PC2 as covariates. The x-axis represents the chromosome
number and each dot represent one protein-coding gene. QQ plot shows the observed versus
expected p-values for all protein-coding genes, grey shading represents 95% confidence interval,
the red line indicates the null distribution of p-values. Fig Q.Manhattan (a) and QQ plots (b)
of results of gene-based burden tests of rare functional variation in VAAST for persistent S.
aureus carriage versus non-carrier including diabetes, PC1, and PC2 as covariates. The x-
axis represents the chromosome number and each dot represent one protein-coding gene. QQ
plot shows the observed versus expected p-values for all protein-coding genes, grey shading rep-
resents 95% confidence interval, the red line indicates the null distribution of p-values. Fig R.
Manhattan (a) and QQ plots (b) of results of gene-based burden tests of rare functional vari-
ation in VAAST for intermittent S. aureus carriage versus non-carrier including diabetes,
PC1, and PC2 as covariates. The x-axis represents the chromosome number and each dot rep-
resent one protein-coding gene. QQ plot shows the observed versus expected p-values for all
protein-coding genes, grey shading represents 95% confidence interval, the red line indicates the
null distribution of p-values. Fig S. Protein-protein interactions among top-5 candidate genes
in the gene-based test of intermittent carriersversus non-carriers analysis. Red: genes that
encode proteins with direct interactions to another top-5 candidate; blue: genes that encode pro-
teins with second-degree interactions to another top-5 candidate; grey: genes that are not top-5
candidates, but encode proteins interacting with at least two top-5 candidates. The figure was
generated using DAPPLE software.
(DOCX)

S1 Table. Previous genes and SNPs associated with S. aureus carriage or infection.
(XLSX)
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