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Abstract:  An atypical or irregular respiratory frequency is considered
to be one of the earliest markers of physiological distress. In addition,
monitoring of this vital parameter plays a major role in diagnosis of
respiratory disorders, as well as in early detection of sudden infant death
syndrome. Nevertheless, the current measurement modalities require
attachment of sensors to the patient’s body, leading to discomfort and
stress. The current paper presents a new robust algorithm to remotely
monitor breathing rate (BR) by using thermal imaging. This approach
permits to detect and to track the region of interest (nose) as well as to
estimate BR. In order to study the performance of the algorithm, and its
robustness against motion and breathing disorders, three different thermal
recordings of 11 healthy volunteers were acquired (sequence I: normal
breathing; sequence 2: normal breathing plus arbitrary head movements;
and sequence 3: sequence of specific breathing patterns). Thoracic effort
(piezoplethysmography) served as “gold standard” for validation of our
results. An excellent agreement between estimated BR and ground truth
was achieved. Whereas the mean correlation for sequence 1-3 were 0.968,
0.940 and 0.974, the mean absolute BR errors reached 0.33, 0.55 and 0.96
bpm (breaths per minute), respectively. In brief, this work demonstrates that
infrared thermography is a promising, clinically relevant alternative for the
currently available measuring modalities due to its performance and diverse
remarkable advantages.
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1. Introduction

Breathing rate (BR) is considered an essential vital sign [1,2]. In adults, this parameter varies
from 12-18 bpm (breaths per minute) under resting conditions [3], whereas neonates’ BR is
ranging between 30 and 50 bpm [4]. An abnormal breathing manifests itself as tachypnea
(high BR), bradypnea (low BR), phases of apnea (transient cessation of breathing) or as ir-
regularities in breathing. Moreover, some pathologies (e.g. metabolic disorders [5] and cerebral
ischemia [6, 7]) lead to specific breathing patterns such as Kussmaul breathing and Cheyne-
Stokes respiration, respectively. Among others, occurring breathing pathologies serve as solid
and one of the earliest indicators of physiological distress [1,2]. In addition to that, monitoring
of breathing plays a crucial role in diagnosing and managing breathing disorders such as sleep
obstructive apnea, bronchitis, asthma, etc. Sport and sleep studies, as well as early detection of
sudden infant death syndrome (SIDS), are further examples where BR is thought to be a highly
relevant parameter [3]. As a matter of fact, SIDS is still one of the major causes of death in
infants younger than 1 year.

Nevertheless, BR is often a neglected and underestimated parameter mostly due to shortcom-
ings of the established monitoring techniques [1, 2, 8, 9]. They require attachments of sensors
to the patient, leading to discomfort, stress and even to soreness, particularly in small chil-
dren [10]. In general, monitoring of BR can be performed by (1) measuring chest or chest-
abdomen movement with respiratory belt transducers [11, 12], (2) detecting acoustic signals
of the upper airway which occur due to turbulent airflow [13—15], (3) metering electrical
impedances of the thorax (e.g. by using electrical impedance tomography - EIT) [16, 17] or
(4) performing signal analysis from electrocardiography (ECG) [11, 18, 19]. Moreover, there
are more precise but also more invasive methods available such as capnography [19], monitor-
ing varying partial pressure of carbon dioxide (CO,) in tidal volume, as well as spirometers [11]
and nasal thermistors [3] measuring air-flow and nasal temperature variations, respectively.

In recent years, there has been an increasing demand for unobtrusive and contactless but
also reliable monitoring alternatives of BR, aiming at improving patients’ quality of life and
optimizing the use of medical resources [1]. Therefore, new monitoring solutions based on
Doppler radar [1] and imaging sensors (visible [11], midwave infrared [12] and long wave
infrared imaging sensors [10,20]) have been being proposed and developed.

Thermal imaging, also denominated infrared thermography (IRT), emerged as a promising
monitoring and diagnostic technology in a wide range of medical fields. Heart rate [21] and
BR detection [10, 12, 22], monitoring of thermoregulation in neonates [23] and observation of
circulation and perfusion dynamics [24] are some examples where the application and perfor-
mance of IRT was studied. Thermal imaging is a remote non-contact monitoring approach. In
addition, it is a passive technique, i.e. it detects the radiation naturally emitted from an object,
in this case the human skin, and does not use any harmful radiation. Last but not least, ther-
mal imaging does not need a light source. This particular characteristic is one of the biggest
advantages of IRT over other imaging technologies [24].

This scientific paper proposes a novel reliable approach for contactless and passive moni-
toring of breathing function in thermal imaging. In contrast with other methods, which need a
manual selection of the region of interest [12,22,25], our approach allows an automatic detec-
tion of the nose in the first frame. In addition, a flexible algorithm for robust estimation of local
breath-to-breath intervals from IRT waveform was implemented. It may be a good alternative to
extract BR in nonstationary signals. While other research groups just validated the algorithm in
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optimal conditions [12,22] (i.e. the participants were instructed to minimize head movements
and to breathe normally), in this study we address the ability of our approach to accurately mea-
sure breathing rate during challenging conditions: head motion and breathing disorders. Here,
its robustness against motion artifacts as well as its accuracy and reliability during breathing
maneuvers were tested. The developed methodology, particularly segmentation and tracking
of the nostrils, extraction of the breathing waveform as well as its processing, is described in
section 2. Section 3 introduces, in turn, the experimental setup. Results are presented and dis-
cussed in section 4 and section 5, respectively. Finally, section 6 concludes the paper and gives
future perspectives.

2. Methodology

The current approach is based on the fact that temperature around the nostrils fluctuates during
the respiratory cycle (inspiration and expiration). Whereas during inhalation cold air from the
environment is inspired, during expiration warm air from the lungs is exhaled. IRT is capable
of accurately detecting this nasal temperature modulation as depicted in Fig. 1. In this example,
the mean temperature of the region of measurement (ROM) corresponds to 31.17 °C during
inspiration and 31.44 °C during expiration.

35 35
a b
30 30
25 25
20 20
— 33 33

31 31

20 20

Inspiration
Thean = 31.17 °C

Expiration
Thean = 31.44 °C

Fig. 1. Temperature variation around the nostrils during inspiration and expiration. Ther-
mograms of the nose during (a) inhalation, and (b) exhalation. The mean temperature of
the ROM reaches 31.17 °C and 31.44 °C during inspiration and expiration, respectively.
Color maps are depicted on the right side of the thermograms.

To measure BR in the recorded thermal sequence, the nose [region of interest (ROI)] must be
automatically identified in the first frame. Furthermore, a rough tracking in subsequent frames
needs to be performed to compensate the motion of the subject or patient. In order to improve
the signal-to-noise ratio (SNR), a second ROI, denominated region of measurement (ROM),
was defined. Finally, the breathing waveforms can be extracted and used for computing the BR.
Figure 2 illustrates the mentioned steps used to extract this vital parameter.

The steps of automatic detection of nose ROI, tracking of the ROI, ROM identification and
BR extraction are described in detail in sections 2.1-2.4.

The presented approach was implemented in MATLAB (MATLAB 2014a, The MathWorks
Inc., Natick, MA). Moreover, it was tested on a 64-Bit Windows 7 computer with a quad-core
Intel® Core™ i5-3450 3.10 GHz processor, 16 GB RAM and a solid-state drive (SSD). The
analysis of the data was done offline.

2.1. Automatic detection of ROl

Face segmentation was the first stage of the proposed approach. It was performed according to
the following three steps.
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Fig. 2. Graphic representation of the main steps used to extract BR from thermal imaging.
(1) Video sequence is recorded. (2) An automatic detection of the nose (ROI) is performed.
Subsequently, a first rough tracking of this region is carried out. (3) Identification of ROM
which encloses the nostrils. (4) The breathing waveform is extracted from the mean tem-
perature of the ROM. (5) Breathing rate estimation.

Step 1: Face was segmented by using the multi-level Otsu’s method [26]. In 1979, Nobuyuki
Otsu [27] introduced a clustering-based image thresholding approach, which permits to separate
an image in two classes, background and foreground. This algorithm uses discriminant analysis
to estimate an optimal threshold value (7*) by minimizing the within-class variance (GVZV) or
analogously by maximizing the between-class variance (63). The latter is governed by the
equation

T* = argmax{o3(T) = 6*(T) — 6 (T)}, ()
IST<L
where 6 stands for the total variance, T is a threshold value and, lastly, L represents the gray
levels. This equation can be further expanded to

03(T) = o (T) [t (T) — u]* + an(T) [u2(T) — p)*. 2)

Here, @; corresponds to the probabilities of the two classes (background and foreground),
represents the mean intensity of the original image, and L; is the mean intensity of the respective
class. As a matter of fact, 1 and 2 corresponds to classes C1 and C2, respectively.

This approach was extended by Liao and co-workers [26] and further optimized by other
research groups [28] in order to allow multi-thresholding. Therefore, Eq. (1) and Eq. (2) are
now given by

(T}, T, ... T,y = argmax  {03(T1,Ts,....Ti—1)}, (3)
I<Ti<..<Ty_i<L
and

o3(T) =Y ox(T)[u(T) — ). &)

M=

i=1
Here, it was assumed that there are M — 1 thresholds ( 71,73, ...,Ty—1 ) as well as optimal
thresholds ( 77, Ty, ..., Ty;_; ), which maximize (63). The M — 1 thresholds separate the image
in M classes (C; for [1,..., T}, C, for [Ty + 1,...,T5], ..., Cas for [Ty, +1,...,L]).

Step 2: After applying the multi-level Otsu’s method, remaining background noise was re-
moved. Hence, it was considered that only the region with the largest area in the binary image
coincides to the subject’s face.

Step 3: The next step aims at finding the chin contour. It was presented in [20].
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In order to find the area around the nostrils in the segmented face [see Fig. 3(b)], facts from
human anatomy and physiology were used. It is important to note that the thermograms of the
segmented faces were converted to gray scale [ranges between 0.0 (black) and 1.0 (full inten-
sity)] [Fig. 3(b)]. The idea behind this was to normalize the thermograms, which facilitates e.g.
the selection of threshold values in later steps. The periorbital region (PR), more precisely the
medial canthus region, illustrated in [Fig. 3(a)], is one of the warmest areas of the face as a result
of its vascular anatomy [29]. Figure 3(c) illustrates an example. By modifying the scale’s range
of Fig. 3(b) to [0.85, 1.0], it is possible to show this characteristic of the human physiology.
Hence, to detect both PRs, we limited our search to window A [Fig. 3(a) and Fig. 3(d)]. Here,
it was assumed that just the pixels with an intensity superior to a threshold of 0.95 correspond
to the medial canthus regions [Fig. 3(d) and Fig. 3(e)]. An extended analysis of thermograms
of differents subjects has demonstrated that just the pixels on these regions present an intensity
higher than this threshold. Since the nostrils are below the PRs, the search window was limited
again as demonstrated in Fig. 3(a) and Fig. 3(f). Finally, the canny edge detector was applied
to Window B. Figure 3(g) shows the edges of the nose. In order to find the nostrils as well as
to define the limits/size of ROI that will be posteriorly tracked, vertical Py (x) and horizontal
Py (y) projections were calculated as follows,

P—1

Py(y) =Y I(x,y), Q)
x=0
0-1

Pr(x) =Y I(x,y). (6)
y=0

Here, I(x,y) stands for the binary value at pixel (x,y) and, P and Q represent the width and
height of the binary image, respectively. While Fig. 3(h) and Fig. 3(i) depict horizontal and
vertical projections, Fig. 3(j) illustrates the limits of the detected ROI.

2.2.  Tracking of ROI

The tracking algorithm proposed by Mei et al. [30] was adopted to track the ROI detected in
Section 2.1. The approach of this research is based on sparse representation, where the ¢; -
regularized least-squares problem is used to achieve sparsity. The sparse representation was
integrated in a particle filter framework. The particle filter is composed of two models: a state
transition model and an observation model, also denominated appearance model.

In the former, conditional density p(x|x,_;) is used to estimate the dynamics of the target
object between two successive frames. It points out the state transition probability. Here, x; and
x;—1 represent the state variables, describing shape and location of the target, at time f and # — 1,
respectively. Since the transition only depends on the previous state, the transition of the state
variable x is considered to be a Markov chain.

The latter (observation model) can be considered as a target/background classifier. It esti-
mates the similarity between target candidate and target model. The observation likelihood is
defined by the conditional density p(z|x;) at each time 7. Here, x; is the state variable and z
denotes the observation. The maximum likelihood p(z|x;) is given by

plal) =14 (z()):0,0%), 7)
j=1

where .4 stands for the Gaussian distribution, &2 represents the variance, n is the number of
pixels in the appearance model, j corresponds to the jth pixel, and lastly, Z; is the approximation
residual of observation z; by the target model.
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Fig. 3. Steps to find the ROL. (a) [llustration of proportions of the head, periorbital region
- PR (blue dotted line window), and search windows A (black solid line) and B (green
pattern made of crossing lines). (b) Thermogram of the segmented face. (c¢) Level and
windowing adjustment of (b) to allow the visualization of periorbital regions. (d) Ther-
mogram correspondent to search window A. (e) Dilated binary image containing the hot
spots, which coincide with periorbital regions. (f) Thermogram correspondent to search
window B. (g) Binary image containing the edges of (f) after applying the canny edge de-
tector. (h) Horizontal projection Py (y) of (g). The maximal value of Py (y) is marked with
an asterisk. (i) Vertical projection Py (x) of (g). The two asterisks show the left and right
extremities of the nose. (j) Dotted line rectangle enclosing the ROI that will be posteriorly
tracked.

As previously mentioned, this tracking algorithm uses the ¢;-regularized least-squares ap-
proach. It aims to minimize the absolute values of the residuals according to,

min |[Be = y[[3 + A el (8)

Here, B consists of (1) a target template set and (2) trivial template sets; ¢ is composed of
both target and trivial coefficients; y is an 1D vector that corresponds to the target candidate;
and A is a regularization parameter. Additionally, ||.||; and ||.||» stand for the ¢; and ¢, norms,
respectively.

2.3. Identification of ROM

In order to improve the SNR, a second and smaller ROI, denominated ROM, was defined (see
Fig. 2). It was computed for each tracked ROI. The ROM was defined taking into consideration
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the edges of the nose [see Fig. 3(g)]. They were found by using the Canny edge detector.
Forthwith, horizontal and vertical projections were calculated as defined in Eq. (5) and Eq. (6)
[see Fig. 3(h) and Fig. 3(1)].

2.4.  Extraction of breathing waveform and signal processing

For each frame the mean temperature value 5(7) of the ROM was calculated according to

1 m—1n—1

s(t)=— s(i, j,t), 9
0= & j;o (1) ©)
where s(i, j,t) is the image temperature at pixel (i, j) and time point ¢, m describes the width of
the ROI, an lastly, n represents its length. In summary, the breathing signal corresponds to the
mean temperature of the ROM for all frames.

The signal was further preprocessed by applying a second order Butterworth band-pass filter
with lower and upper 3 dB cutoff frequency of 0.1 Hz and 0.85 Hz, respectively.

To extract the instantaneous breathing frequencies, the algorithm introduced by Briiser et
al. [31,32] was implemented. These authors proposed a new algorithm that allows a robust
estimation of local beat-to-beat intervals in physiological time series [33]. It consists in sliding
an adaptive short analysis window w;[v] across the signal s[n]. In this case, for each window
location, the local breath-to-breath interval 7; is estimated. The length of the analysis window
L+ 1 was selected in order to contain at least two breaths, as given by

wilv] = s[n; + v, ve{-L/2,...,L/2}, (10)

with w;[v] centered at n; and L = 2T,,,4, f5. In the latter, 7,4, denotes the expected upper breathing
limit and f; describes the sampling rate of the signal.

In order to estimate the local breath-to-breath interval 7; from each analysis window w;[v],
three estimators [(1) adaptive window autocorrelation - AC, (2) adaptive window average mag-
nitude difference function - AAMDF and (3) maximum amplitude pairs - MAP] were indepen-
dently computed. As a matter of fact, each estimator was calculated for the interval length
me {mmim e 7mmax}7 where myin = Tiin fy and Mgy = Tnax f-

1. Adaptive window autocorrelation - Exc[m)]

The adaptive window correlation introduced by Briiser and co-workers is estimated for
all interval lengths (discrete lags) m according to,
1 m
EAc[m]:%Zw[v]-w[v—m]. (11)

v=0

In brief, this estimator E4c computes the correlation between m samples to the right w{v]
and to the left w[v — m] of the analysis window center w[0].

2. Adaptive window average magnitude difference function - Eqypr|[m|

The average magnitude difference function estimator in line with autocorrelation was
firstly applied to pitch tracking. It aims to find the absolute difference between samples.
Briiser et al. [31,32] adapted this method by using an adaptive window. This new ap-
proach is given by

1 -
Epamprm] = | — Z [w[v] —wv—m]| . (12)
m v=0
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3. Maximum amplitude pairs - Epjap|m)

The current estimator can be intended as an indirect peak detector, since it considers only
the signal amplitude. Eyap|[m] is define as follows

Eyaplml = max (w]v]+wly—m]). (13)
ve{0,...,m}
For each lag m, the maximum amplitude of any two samples is computed. Therefore,
Epap|m] reaches its maximum when two peaks, separated by m samples, are included in
the analysis window.

To combine the three previous estimators (Eac[m], Eaampr [m], Eyap[m]), a Bayesian fusion
method was applied. Hence, the conditional probability of m being the correct breath-to-breath
interval given the three estimators P(m|Eac, Esampr, Emap) can be calculated according to

P(m|Eac, Eaampr ,Emap) o< P(m|Eac) - P(m|Eqampr ) - P(m|Epap). (14)

As a matter of fact, the three estimators (Eac[m], Eaampr|[m], Emap[m]) can be interpreted as
probability density functions (P(m|Eac), P(m|Esappr) and P(m|Epap)) as described in [33].

3. Experimental Setup

Thermography sequences were recorded by using a long wave infrared (LWIR) camera, Var-
10CAM® HD head 820S/30 mm (InfraTec GmbH, Dresden, Germany). It has an uncooled
infrared microbolometer focal plane array (FPA) with a spatial resolution of 1024 x 768 pixels.
This camera detects infrared wavelengths in the spectral range of 7.5 - 14 um and presents a
thermal sensitivity better than 0.05 K at 30 °C. In addition, infrared thermograms were acquired
with a frame rate of 30 frames per second (fps).

Eleven healthy volunteers (4 females and 7 males), between the ages of 21 and 31
(25.36 years =+ 2.94), participated in the current experiment. For the measurements, the camera
was sat atop a tripod, placed approximately 2 m away from the subjects who sat on a chair
[Fig. 4(a)]. The experiments were performed in a temperature-controlled environment (room
temperature and humidity were approximately 22 °C and 50%, respectively).
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Fig. 4. (a) Experimental Setup (1 - body attached data recording system SOMNOIlab 2
(Weinmann GmbH, Hamburg, Germany), 2 - Thermographic camera VarioCAM® HD
head 820S/30 mm (InfraTec GmbH, Dresden, Germany)). (b) Small sequence of the breath-
ing waveform displayed in the monitor to simplify the subjects’ task.
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The study protocol consisted of three phases A to C. In phase A, the subjects were instructed
to stay still and to breathe normally. A three minutes recording (Sequence 1) was performed.
During phase B, the subjects were advised to breathe normally and to perform some move-
ments during the three minutes acquisition (Sequence 2) in order to test the robustness of our
approach against motion. In the last phase C, they were asked to follow a sequence containing
different breathing patterns (eupnea, tachypnea, apnea, deep breathing (Kussmaul breathing)
and Cheyne-Stokes respiration). It is depicted in Fig. 5. In order to simplify this task, breathing
patterns were shown on a monitor. The subjects followed the displayed breathing waveform as
demonstrated in the example of Fig. 4(b). The sequence recorded corresponds to sequence 3.

Thoracic effort (piezoplethysmography) was the ground truth chosen to validate our results.
To measure this parameter the data recording system SOMNOIab 2 (Weinmann GmbH, Ham-
burg, Germany) was utilized.
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Kussmaul breathing - ---- Cheyne-Stokes respiration
Fig. 5. Intended breathing pattern sequence used during phase C.
4. Results

During phase A, the subjects breathed normally and stayed still according to the study protocol.
Table 1 shows the performance of our algorithm for each subject. On average, 97.52% of each
breathing waveform did not contain any artifact and was usable for BR estimation (in 10 out
of 11 subjects coverage was 100%). A mean correlation (Corr.) between BR estimated with
IRT and BR obtained with piezoplethysmography reached 0.968 £ 0.030. Moreover, the mean
absolute BR error (E) was 0.33 bpm and the spread of the error, calculated using the 90"
percentile of the errors (Eyg), averaged 0.71 bpm. Figure 6(a) depicts a Bland-Altman plot
comparing both measurement techniques, IRT and ground truth, for subject S9. The estimated
mean difference is 0.004 bpm and the limits of agreement range from -1.2 bpm to 1.2 bpm.
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Table 1. Performance of the proposed algorithm for phase A

Subject Gender Duration Coverage Correlation BR;s Error (bpm)
(min) (%) Corr. *Clos E Eoo
S1 F 3 100 0.979 [0.975;0.982] 0.32 0.65
S2 M 2.18 72.67 0.901 [0.883;0.916] 0.56 1.13
S3 M 3 100 0.986 [0.985;0.987] 0.21 0.53
S4 M 3 100 0.986 [0.985;0.987] 0.26 0.56
S5 M 3 100 0.990 [0.989;0.991] 0.18 0.42
S6 F 3 100 0.924 [0.918;0.930] 0.64 1.18
S7 M 3 100 0.978 [0.976; 0.980] 0.24 0.54
S8 F 3 100 0.976 [0.974;0.978] 0.35 0.75
S9 M 3 100 0.952 [0.948;0.956] 0.44 0.98
S10 M 3 100 0.990 [0.989;0.991] 0.22 0.50
S11 F 3 100 0.986 [0.985;0.988] 0.25 0.53
Mean 2.93 97.52 0.968 0.33 0.71

*Clos [lower limit; upper limit]
CI - confidence interval, BR;, Error - absolute BR error
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Fig. 6. Bland-Altman plots for subjects S9 (phase A), S3 (phase B) and S10 (phase C),
respectively. They compare BR obtained with IRT (BR;gy ) with reference BR (BRg, ).
(a) This first plot, correspondent to phase A, shows a bias of 0.004 bpm and limits of
agreement of -1.2 bpm to 1.2 bpm. (b) In the second example (subject 3, phase B) the bias
is -0.047 and the limits of agreement range from -1.4 bpm to 1.3 bpm. (c) The last Bland-
Altman plot (subject 10, phase C) presents a mean difference of 0.12. The 95% limits of
agreement vary between -3.7 and 3.9 bpm. As a matter of fact, solid line indicates the
bias/mean difference and 95% of limits of agreement are plotted in dashed lines.
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During phase B, subjects performed some head movements while breathing normally. Our
approach was again able to estimate the respiratory rate of all subjects. In this case 99.36% of
the data was free from artifacts, and thus, suitable for BR extraction. In Table 2 the results of
our algorithm are presented. It shows a mean correlation of 0.940 £ 0.032. Furthermore, an
average breathing rate error of 0.55 bpm was achieved. The spread of the error reaches, in turn,
1.23 bpm. The Bland-Altman plot for subject S3 is represented in Fig. 6(b). In this example,
the bias is -0.047 and the limits of agreement vary between -1.4 bpm and 1.3 bpm. Figure 7(a)
represents a thermogram of sequence 2 for the same volunteer as well as the respective breath-
ing waveform. It is contained in Visualization 1, which aims to illustrate the capacity of the
algorithm to follow a moving ROI and still be able to extract the breathing waveform.

Table 2. Performance of the proposed algorithm for phase B

Subject Gender Duration Coverage Correlation BR,; Error (bpm)
(min) (%) Corr. *C195 E Eg()
S1 F 2.79 93 0.892 [0.881;0.903] 0.72 1.86
S2 M 3 100 0.941 [0.934;0.947] 0.62 1.34
S3 M 3 100 0.961 [0.958;0.964] 0.45 0.78
S4 M 3 100 0.962 [0.959;0.965] 0.43 0.89
S5 M 3 100 0912 [0.903;0.920] 0.80 1.55
S6 F 3 100 0.880 [0.868;0.890] 0.76 1.85
S7 M 3 100 0.980 [0.979;0.982] 0.31 0.75
S8 F 3 100 0.957 [0.953;0.960] 0.50 1.21
S9 M 3 100 0.965 [0.962;0.967] 0.43 1.05
S10 M 3 100 0.955 [0.952;0.959] 047 1.18
S11 F 3 100 0.931 [0.925;0.936] 0.61 1.11
Mean 2.98 99.36 0.940 0.55 1.23
*Clys [lower limit; upper limit]
CI - confidence interval, BR;, Error - absolute BR error
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Fig. 7. (a) Thermogram of sequence 2 for subject S3. A short animation illustrating the
performance of the tracking algorithm is shown in Visualization 1. (b) Thermogram of
sequence 3 for subject S10. A short animation illustrating the performance of the algorithm
is shown in Visualization 2.
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During phase C, subjects simulated different breathing patterns (see Fig. 5). Table 3 demon-
strates that all data was free from artifacts, and therefore, usable for breathing rate estimation.
The mean correlation corresponds to 0.974 + 0.017. Lastly, the BR error and the spread of the
error averaged 0.96 bpm and 1.51 bpm, respectively. A Bland-Altman plot for subject S10 is
depicted in Fig. 6(c). Here, the mean difference averages 0.12 and the 95% limits of agree-
ment range from -3.7 to 3.9 bpm. Figure 7(b) depicts a thermogram of sequence 3 for the same
candidate as well as the breathing waveform. It is a single frame of the animation that can be
visualized in Visualization 2. It illustrates the capacity of the algorithm to be sensitive to differ-
ent breathing patterns. Figure 8 shows the spectrogram of the third sequence for subject S4. In
addition, it depicts the BR estimated with the proposed approach (solid line) as well as the BR
obtained with the ground truth (dashed line). Three breathing waveforms segments (A, B and
C), corresponding to eupnea, apnea and tachypnea, are also represented. Again, solid line and
dashed line represent IRT signal and ground truth signal, respectively.

Table 3. Performance of the proposed algorithm for phase C

Subject Gender Duration Coverage Correlation BR;s Error (bpm)
(min) (%) Corr. *Clos E Eogo
S1 F 10.43 100 0.963 [0.957;0.968] 1.36 2.17
S2 M 10.03 100 0.938 [0.932;0.944] 1.45 1.96
S3 M 10.26 100 0.982 [0.982;0.983] 0.72 1.27
S4 M 10.15 100 0.949 [0.942;0.955] 1.37 1.64
S5 M 10.24 100 0.983 [0.982;0.984] 0.64 0.71
S6 F 9.97 100 0.988 [0.987;0.989] 0.82 1.65
S7 M 10.21 100 0.992 [0.992;0.993] 0.58 1.05
S8 F 9.71 100 0.978 [0.976;0.979] 0.98 1.58
S9 M 10.38 100 0.978 [0.976;0.979] 1.12 2.05
S10 M 9.94 100 0.990 [0.990; 0.991] 0.65 1.07
S11 F 10.30 100 0.976 [0.974;,0.977] 0.87 1.41
Mean 10.15 100 0.974 0.96 1.51

*Clos [lower limit; upper limit]
CI - confidence interval, BR;, Error - absolute BR error
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Fig. 8. Top: Spectrogram of the third IRT sequence of subject S4. Middle: Estimated BR
(solid line - IRT, dashed line - piezoplethysmography). Bottom: Three 30-seconds seg-
ments of IRT (solid line) and piezoplethysmography waveforms (dashed line). The seg-
ments A, B and C correspond to eupnea, apnea, tachypnea, respectively.

5. Discussion

Breathing rate is one of the primary vital signs. It can be an important indicator of treatment
effects, procedural complications or clinical deterioration. Monitoring of respiratory function
is fundamental. However, studies have demonstrated that it is one of the most frequently un-
documented parameters [9]. This intensifies the need for reliable unobtrusive monitoring alter-
natives.

The present scientific paper introduces a new approach that allows to remotely monitor
breathing rate (BR) by using thermography. To evaluate the performance of the developed al-
gorithm, and thus, the feasibility of IRT as a valid noncontact measurement technique, a study
in eleven healthy participants was conducted. It focused on analyzing the robustness of our
method under challenging conditions: (a) motion (b) variable breathing rate and (c) respiratory
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disorders. Therefore, three sequences for each subject were acquired.

During the first phase the aim was to investigate and compare the performance of the al-
gorithm without any movement artifacts. Table 1 shows an excellent agreement between both
methods (infrared thermography and piezoplethysmography) with a correlation coefficient of
0.97 £ 0.03 and a mean absolute BR error that did not exceed 0.33 bpm. Lewis and co-
workers [22] published in 2011 a paper where they used infrared video thermography to esti-
mate breathing rate and relative tidal volume. Using a SC-6000 [320 x 240 pixel resolution and
sensitivity of 0.08 °C (Indigo System Inc., Goleta, CA)] and a TVS-700 [640 x 510 pixel reso-
Iution and sensitivity of 0.02 °C (FLIR Inc., Santa Barbara, CA)] infrared imaging camera they
obtained similar correlations, 0.95 4 0.05 (N=6) and 0.98 £ 0.02 (N = 12), respectively. Three
2 minutes recordings were acquired, in which the subjects were advised to breathe through
the nose (a) normally/spontaneously, (b) slowly and deeply, and (c) rapidly. In addition, they
were instructed to minimize head movements. In 2010 Fei et al. [12] published a paper where
they also used IRT [IRT camera FLIR SC6000, 640 x 542 pixel resolution and sensitivity of
0.025 °C (FLIR Inc., Santa Barbara, CA)] to recover the breathing signal from the subjects’
nostrils. They recorded approximately 3 minutes thermal clips for twenty candidates. To vali-
date their method, a measure denominated CAND (Complement of the Absolute Normalized
Difference) was proposed. It is given by

canp —1 - [BRr —BRq| (15)

BRg
where BRy is the mean BR obtained with IRT and BRg corresponds to the mean BR obtained
with the ground truth. The mean CAND for the experiment reached approximately 98%. In
summary, the three approaches present outstanding results as demonstrated by the high corre-
lations between IRT and gold standard. Figure 6(a) shows a Bland-Altman plot of the relation
between IRT and piezoplethysmography correspondent to volunteer S9. The estimated bias
(0.004 bpm) indicates that in this case the two methods have very similar results on average. In
addition, a good agreement between both methods can be observed here.

During phase B, subjects carried out arbitrary head movements. Since we always wanted to
have the nose in the camera’s field of view (FOV) the subjects tried to avoid strong rotations of
the head (down-, left- and rightwards). Visualization 1 demonstrates that despite rapid move-
ments the tracking algorithm was able to efficiently follow the ROI. Table 2 shows again an
excellent concordance between thermal imaging and piezoplethysmography. The correlation
coefficient was 0.94 £ 0.03 with a mean absolute BR error lower than 0.55 bpm. In Fig. 6(b) a
Bland-Altman plot comparing both methods for candidate S3 is presented. Also here IRT and
ground truth have similar results on average and an excellent agreement. To the best of our
knowledge, there is no further published study that examines the effect of movements on the
algorithm’s performance. Indeed, Lewis et al. [22] considered that as a limitation of their and
other works, since they applied tracking algorithms but did not validate them.

In order to examine (simulated) clinically relevant scenarios within our study, a broad
range of breathing patterns, such as eupnea, tachypnea, apnea, Kussmaul breathing and
Cheyne-Stokes respiration, were simulated. Also here we obtained promising results (see
Visualization 2). The correlation between IRT and gold standard is higher than 0.97 and the
mean absolute breathing rate error was 0.96 bpm (Egp=1.51 bpm). A Bland-Altman plot cor-
relating both methods is depicted in Fig. 6(c). It corresponds to volunteer S10. The obtained
mean difference (0.12 bpm) evidences that the two methods have similar results on average.
Furthermore, a good agreement between IRT and gold standard can be here observed. Fig-
ure 8 illustrates, in turn, the spectrogram of the IRT waveform for candidate S4 as an example.
Frequencies with higher amplitude, which coincide with respiratory rate, are depicted in dark
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red. This visual representation describes the variability of BR caused by the different breathing
patterns very well (compare with Fig. 5). The second plot shows the BR estimated from both
methods. An excellent concordance between the signals is noticeable. Additionally, Fig. 8 also
shows three 30-seconds segments (A - eupnea, B - apnea, C - tachypnea) of sequence 3. These
three intervals are examples of the excellent agreement between signals of the two modalities,
IRT and piezoplethysmography.

Figure 8 (middle) together with Table 3 show a high mean absolute BR error when compared
with Table 1 and 2. These errors are also visible in Fig. 6(c), which correspond to the outliers at
approximately 6 bpm and 20 bpm. In phase C abrupt changes in breathing rate were simulated,
therefore, small delays between both signals in these transitions caused errors of about 15 bpm,
which negatively influenced the final mean absolute error given in Table 3. The disparity be-
tween signals occurred in the transitions breathing/apnea, apnea/breathing, eupnea/tachypnea
and tachypnea/eupnea as you can confirm in the example given in Fig. 8 (middle). It further in-
dicates that the error between both methods outside the transitions is quite small. Furthermore,
we are comparing methods that measure the same vital parameter but are based on different
measurement principles. This might also contribute to an increase of the errors between both
methods. However, we strongly believe that our approach might be appropriated for clinical
purposes. It is able to correctly extract breathing rate in different scenarios (e.g. tachypnea,
apnea, Kussmaul breathing, and Cheyne-stokes respiration). Therefore, the algorithm used to
estimate BR may be a good alternative for nonstationary signals, including breathing rate and
heart rate. Moreover, since the delays between both methods in the transitions periods are quite
small, we did not think that it can be a great issue in clinical monitoring.

In contrast to phase C, in phase A and B a 100% coverage was not achieved. The infrared
camera used in this study presents a Non Uniformity Correction (NUC) system. NUC permits to
homogenize the image, i.e. it corrects the low temperature deviations of the detector elements.
During this correction, performed usually within a fixed time interval, the live display and image
acquisition is briefly interrupted. Normally, NUC has no impact on our algorithm. However,
during the video acquisition of two subjects (S2 phase A, S1 phase B) the camera made
within a significant period of time successive corrections. Since too much information was lost,
the signal presents a lot of artifacts. Therefore, we did not consider these intervals for data
evaluation.

There is a wide range of research papers in the literature that focus on other technologies (e.g.
Doppler radar [1] and visible/near infrared image sensors [11]) to measure breathing activity.
Together with IRT, these two technologies have demonstrated a great potential to detect this im-
portant vital parameter. However, they present some disadvantages in comparison with thermal
imaging. For example, Doppler radar is extremely sensitive to motion artifacts and to the pres-
ence of multiple subjects. Visible/near infrared imaging systems need, in turn, an illumination
source.

6. Conclusions

In the last decades there is a need for unobtrusive monitoring of vital signs. A wide range of
research groups have focused their work on camera-based monitoring alternatives. Visible, near
infrared and long-wave infrared are some examples of the technologies that are investigated.

This scientific paper introduces a new robust and feasible approach which uses infrared imag-
ing for monitoring of breathing function. Our method includes a tracking algorithm to compen-
sate the effect of head movements on the IRT waveform extraction. Moreover, it uses a powerful
algorithm for BR estimation which has demonstrated to be suitable for nonstationary signals.
The results show that infrared thermography is able to accurately estimate breathing rate under
challenging conditions such as motion and possible respiratory disorders.
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In a further step, reliability and feasibility of this approach in a clinical scenario should be
taken into consideration. Equally important is the impact of room temperature on the tempera-
ture measured around the nostrils. It is an interesting issue that must be investigated in future
studies. In addition, to obtain a more robust extraction of this vital parameter, we are currently
developing a method that considers temperature variation around the nostrils and mouth as well
as the movement of the shoulders during inhalation and exhalation. Apart from nasal breathing,
open-mouth respiration is also normal in adult humans. Shoulders and thorax movement are
other characteristics that are prominent during this process. They can be useful if neither nose
nor mouth are in the field of view of the infrared camera. Therefore, it would be propitious
to fuse all sources to permit a continuous robust and feasible monitoring of this crucial vital
parameter.
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