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Abstract: Phase Contrast Microscopy (PCM) is an important tool for
the long term study of living cells. Unlike fluorescence methods which
suffer from photobleaching of fluorophore or dye molecules, PCM image
contrast is generated by the natural variations in optical index of refraction.
Unfortunately, the same physical principles which allow for these studies
give rise to complex artifacts in the raw PCM imagery. Of particular interest
in this paper are neuron images where these image imperfections manifest
in very different ways for the two structures of specific interest: cell bodies
(somas) and dendrites. To address these challenges, we introduce a novel
parametric image model using the level set framework and an associated
variational approach which simultaneously restores and segments this
class of images. Using this technique as the basis for an automated image
analysis pipeline, results for both the synthetic and real images validate and
demonstrate the advantages of our approach.
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1. Introduction

Phase Contrast Microscopy (PCM) is an important technique for the study of living cells. As
illustrated in Fig. 1(a), PCM adds an annulus and a phase plate to a conventional light micro-
scope to create a phase shift between light propagating along the “diffracted” and “surround”
paths which is converted into intensity variations on the imaging plane [1]. There are two major
advantages of PCM due to the fact that specimens are not to be stained as required by fluo-
rescence microscopy. First, researchers can perform long-term observations of unstained living
cells without worrying about photobleaching. Second, disruption of the observed cells and thus
measurement artifacts caused by introduction of fluorescence can be avoided.

(a) (b)

Fig. 1. (a) The optical path of phase contrast microscopy; (b) A cropped region of a PCM
neuron image. The blue arrows point to somas; the red arrows point to dendrites; the yellow
arrows point to places where dendrites and somas are separated by halos; the purple dash
arrows point to shade-offs.

However, as seen in the work of [2, 3] and as illustrated in Fig. 1(b), PCM images can suffer
from imaging artifacts such as the halo and shade-off due to the imaging physics. Therefore it
is challenging to build models for cell intensity distribution and design algorithms to analyze
the images. Recently, various algorithms have been developed to help to automatically ana-
lyze PCM images for osteosarcoma cells [4], bovine aortic endothelial cells [5], bone marrow
stromal cells [6] and fish keratocytes [7]. The above algorithms mainly employ the gradient
information among halo, cell and background for segmentation.
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Besides the PCM imaging artifacts, the development of analysis algorithms for neurons is
even more challenging due to the requirement of identifying both cell bodies (somas) as well as
dendrites, two classes of structures with very different geometries and contrasts within the data.
Indeed, as illustrated in [8–12], dendrite tracing itself is already a quite challenging problem
since these structures can be dim and broken in some cases. Moreover, dendrites and soma of
the same neuron are sometimes separated by the halo artifacts in PCM images (see Fig. 1(b)).
These gaps need to be filled for the purpose of biological connectivity analysis. Biological
connectivity consists of chemical (synapses), electrical (gap junctions), physiological (voltage-
sensitive ion channels, synaptic receptors) and anatomical (synaptic clefts) components. In or-
der to study biological connectivity, structural connectivity (identifying somas and connecting
corresponding dendrites) needs to first be determined [13,14]. However, computationally bridg-
ing this gap is not at all trivial. Currently, the majority of image related research of neurons has
been performed on fluorescence microscopy data [15] with very limited work focusing on the
development of automatic algorithm for neuron segmentation (including both somas and den-
drites) and connectivity analysis for PCM images [16,17]. The work in [16] mainly considered
on dendrite tracing and quantification of the dendrite change while [17] only examined soma
segmentation. To the best of our knowledge, the work in this paper is the first to present a
method that segments both somas and dendrites simultaneously for PCM neuron images.

Recently, the authors of [2, 3] modeled the imaging process of PCM as a convolution opera-
tion. Based on the convolution model, [2] built an optimization function including smoothness
and sparseness regularization to restore artifact-free images. Then simple segmentation meth-
ods such as thresholding [18] can be used to these restored images.

In this paper, rather than employing a pixel-based parametrization of the problem as in [2],
we present a parametric image model consisting of two level set functions to represent the
neuron images. Then we formulate an optimization problem merging image restoration and
segmentation. Our novel approach has multiple advantages over the methods in [2, 3]. First of
all, even after restoration, image segmentation must still be performed on the restored images
for the purpose of image analysis in [2, 3]. Our method performs the restoration and segmenta-
tion simultaneously, so no other major segmentation operation is needed. Secondly, due to the
parametric representation, both dendrites and somas can be segmented simultaneously.

Based on the above segmentation approach, we present the pipeline illustrated in Fig. 2
which performs image analysis for the PCM neuron images. This pipeline is automatic and,
aside from the specification of a few parameters, requires no human interaction thereby making
it suitable for large scale automated image analysis. As in [2, 3], background bias correction
is performed before the essential part of the pipeline as well as the major contributions of this
paper which is “variational segmentation.” In this essential part, we build an energy functional
of level set functions based on the PCM physical model and image information. Then we solve
an optimization problem to obtain a segmenation/restoration of the PCM images. Based on the
segmentation of somas and dendrites, some simple morphological operations are performed
to refine the results. The feasibility and advantages of our variational segmentation method
are demonstrated by synthetic images in Section 5.1. In addition, the whole pipeline has been
validated in real PCM neuron images for the neural development study [19]. The remainder of
this paper is organized as follows. In Section 2, some background of the level set method is
introduced. We propose and illustrate our variational segmentation method in details in Section
3. Then we introduce a set of morphological operations which aim to refine the variational
segmentation results in Section 4. We present experimental results and discussions in Section
5. Finally, we draw our conclusion and discuss our future work in Section 6.
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Fig. 2. Illustration of the pipeline for PCM neuron image analysis

2. The level set method for image segmentation

The level set method is a very powerful and convenient approach to represent boundaries or
surfaces for objects [20, 21]. The essential idea of level set methods for segmentation is to
represent a curve �C as the intersection of a horizontal plane z(x) = 0 of an auxiliary level set
function φ(x); i.e., �C = {x|φ(x) = 0)}.

Image segmentation aims to identify objects of interest and/or their boundaries. From the
variational perspective, segmentation is often posed as an optimization problem by constructing
a scalar energy functional E(�C) based on �C, a curve representing the boundary of the object.
The energy functional E(�C), consisting of a data fidelity term and a regularization term, is
always constructed in a way that when �C approaches to the true boundary of the object, the
minimum value of E(�C) is achieved.

For example, the well-known Chan-Vese model [22] implicitly assumes that object and back-
ground are Gaussian distributed with the same variance, and subsequently seeks a segmenta-
tion which minimizes partially a mean square error-type of energy functional. In particular, the
Chan-Vese model is defined

Ecv(�C) =
∫

Ω1

[I(x)− c1]
2dx+

∫
Ωc

1

[I(x)− c2]
2dx+α|�C| (1)

where I(x) is the image intensity value at location x, Ω1 is the region inside of the curve �C,
Ωc

1 is the region outside of the curve �C and Ω = Ω1 ∪Ωc
1 which is the whole image domain. In

addition, c1 and c2 are the mean image intensity values for the regions Ω1 and Ωc
1 respectively.

Moreover, α is a coefficient, |�C| is the length of the curve �C and the term α|�C| basically is a
smoothness regularization term.

By introducing the level set function φ such that �C = {x|φ(x) = 0}, eqn. (1) can be converted
into a function based on φ as

Ecv(φ) =
∫

Ω
[I(x)− c1]

2Hε(φ(x))dx+
∫

Ω
[I(x)− c2]

2[1−Hε(φ(x))]dx+α
∫

Ω
|∇Hε(φ(x))|dx

(2)
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where Hε(·) is an approximate Heaviside function [22], defined as

Hε(z) =
1
2

(
1+

2
π

arctan(
z
ε
)

)
, (3)

and the Heaviside function is defined as

H(z) =

{
1, z ≥ 0
0, else.

By using calculus of variations [23], the optimization of Ecv can be realized by iteratively
updating c1, c2 and φ using the following Euler-Lagrange equation

∂φ(x)
∂ t

= δε(φ(x))
[

α∇
(

∇φ(x)
|∇φ(x)|

)
− (I(x)− c1)+(I(x)− c2)

2
]

(4)

where

c1 =

∫
Ω I(x)Hε(φ(x))dx∫

Ω Hε(φ(x))dx
, c2 =

∫
Ω I(x)[1−Hε(φ(x))]dx∫

Ω[1−Hε(φ(x))]dx
.

Here we use δε(·) to represent the derivative of Hε(·) through the paper. Thus the level set
method can be treated as an optimization technique which “evolve” the level set function φ as
a function of time such that, as t → ∞,�C(t) approaches the contour of interest in the image.

3. A variational formulation for PCM neuron image segmentation

In principle, phase contrast microscopy converts the phase difference of the surround wave
and the diffracted wave which passes through specimen into intensity difference that can be
directly measured [1] (see Fig. 1). Yin et al. [2,3] modeled the imaging process of phase contrast
microscopy as a convolution operation

I(x) ∝ G(x)+ [airy(x)−δ (x)]∗θ(x) (5)

where ∗ represents convolution; I(x) is the observed image; θ(x) is the phase retardation at the
location x; δ (x) is the Dirac delta function; G(x) is a bias field caused by uneven illumination
and can be estimated using flat-field correction method [24].The function airy(x) is an obscured
airy pattern defined as follow [2, 25, 26]

airy(x) =
J1(km|x|)

km|x| − rm
J1(kmrm|x|)

km|x| , x = (x,y),x,y ∈ −Nm, · · · ,−1,0,1, · · ·Nm, (6)

where J1(·) is the first order Bessel function of the first kind, Nm is the radius of the airy pattern
kernel, rm = 0.85 in our case which is the ratio of the inner radius (Rin) to the outer radius of
the phase ring (Rout) in Fig. 1, km is a scale parameter related with the properties of microscopy
and the wavelength of the imaging light [25,26]. In addition, the airy pattern is normalized such
that 1∗airy(x) = 1 as in [2, 3].

In this section, we present a parametric model to represent θ(x) based on the level set frame-
work. As previously discussed, for our application, a neuron usually consists of a soma and
multiple dendrites which need to be segmented [15, 27]. Somas and dendrites differ in two
critical ways. First, the shape of a soma is like a blob while the dendrites are typical tubular
structures. Second, somas are darker than dendrites in PCM images and halos are more obvious
than those of dendrites. This is because somas are usually thicker than dendrites. Thus, in the
soma regions, the phase retardation is larger and the PCM image is darker accordingly as shown
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in Fig. 1(b) and illustrated in Section 5.1. In Section 5.1, a single level set function is demon-
strated to have difficulty capturing both somas and dendrites simultaneously. Thus we use two
level set functions φ1 and φ2 for somas and dendrites respectively. Specifically, the image to be
recovered can be represented as the following Double Level Sets model (DLS)

θ(x) = s1Hε(φ1(x))+ s2Hε(φ2(x)), (7)

where φ1 and φ2 are the level set functions, s1 and s2 are real scalars representing in some
sense the average phase retardation values for somas and dendrites respectively, and Hε(·) is
the approximate Heaviside function defined in (3).

Based on the parametric model in (7), we propose the following energy function

E(φ1,φ2;s1,s2) = Ephy(φ1,φ2;s1,s2)+λ1Eloc(φ1,r1)+λ2Eloc(φ2,r2)+λ3Ewtub(φ2). (8)

The energy term Ephy is a data fidelity term based on the physical model as specified in
Section 3.1. In addition, Eloc is a local data fidelity term based on localized active contour
models [28] as introduced in Section 3.2. Moreover, Ewtub is a spatial weighted version of the
geometric regularization term for tubular structure [29] as introduced in Section 3.3. Lastly,
λi, i = 1 · · · ,3 are real scalars to balance these energy terms.

Here we want to point that, in the case of multiple level set functions, constraints are usually
imposed to guarantee each level set function does not overlap with each other [30] etc. In our
case for the segmentation of somas and dendrites, the overlap regularization does not apply.
A neuron can be divided into a soma and dendrites but no clear boundaries between the soma
and dendrites exist. Thus imposing overlap penalty always makes the soma and dendrites in the
segmentation separated from each other which complicates the connectivity analysis. There-
fore, we do not use regularization to guarantee the non-overlap for somas and dendrites for
now. We will develop a regularization method that ensures smooth connection between these
two structures in the future.

3.1. A data fidelity term based on the physical model

By compensating for G(x) and the multiplicative factor during preprocessing, and using the
sifting property of the Dirac δ function, the imaging model (5) can be written as

I(x) = airy(x)∗θ(x)−θ(x). (9)

In order to formulate an optimization problem, the physical model in (5) or (9) are always
represented using a matrix form. Following [31], here we define an operator vec: Cn×m →
C

nm×1 such that for a given array w ∈ C
n×m,

vec(w) = [w1,1, · · · ,wn,1,w1,2, · · · ,wn,2, · · · ,w1,m, · · · ,wn,m]
T .

The operator array defines the inverse of the vec operator such that

array(vec(w)) = w, vec(array(w)) = w,

where w ∈ C
n×m and w ∈ C

nm×1.
Then we can define φφφ 1, φφφ 2 and θθθ are the vectorized version of φ1, φ2 and θ respectively.

Thus the vectorized version of the DLS model (7) is represented by

θθθ = s1H(φφφ 1)+ s2H(φφφ 2) (10)

where φφφ 1 = vec(φ1), φφφ 2 = vec(φ2) and θθθ = vec(θ). In addition, (9) can be discretized and
represented by the following matrix form

I = Hθθθ , (11)
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where I is vectorized from I(x) such that I = vec(I). Moreover, H = (K− In) where In is
an identity matrix, K is a matrix with special structure built from the convolution kernel
airy(x) [31]. In this paper, we assume θ(x) is periodic so that K is a block-circulant-circulant-
block(BCCB) matrix. As we will discuss in Section 3.5, the BCCB assumption enables efficient
implementation of the matrix and vector multiplication in (11) through the Fast Fourier Trans-
formation (FFT) [31, 32].

From the physical model (11), a data fitting term Ephy is defined as

Ephy(φ1,φ2;s1,s2) =
1
2
||I−Hθθθ ||2.

3.2. Localized active contours

In order to deal with the inhomogeneity of images, level set methods driven by local image
features were proposed [28,33]. The general idea of the localized level set method is illustrated
by Fig. 3. For each point in the evolving curve �C such as x, the driven force derived from image
at x is only based on its neighborhood Br(x) rather than the whole image domain such as the
Chan-Vese model [22]. Therefore, localized active contours are robust to image heterogeneities
and also can capture information in small details such as vessels and dendrites [28, 33].

Fig. 3. An Illustration for the localized level set method. The point x is in the evolving
curve �C and Br(x) is a neighborhood of x. Note: the neighborhood Br(x) is divided into
two parts by �C.

Specifically, the local image fitting energy function formulation of [28] is defined as follows

Eloc(φ ;r) =
∫

δε(φ(x))
∫

Br(x,x′) ·Floc(I(x
′),φ(x′))dx′dx (12)

where Floc denotes a metric to evaluate local adherence to a given model. Mathematically, the
neighborhood of x with radius equals r is defined by

Br(x,x′) =
{

1, ||x−x′||2 ≤ r
0, else.

(13)

where || · ||2 indicates the l2 norm. In this paper, we use a localized version of the mean separa-
tion energy [34] for Floc

Floc(I(x),φ(x)) = (ux − vx)
2, (14)

where ux and vx are the mean values of the inside and outside parts of Br(x) respectively and
they can be represented by

ux =

∫
Br(x,x′) ·Hε(φ(x′)) · I(x′)dx′∫

Br(x,x′) ·Hε(φ(x′))dx′
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vx =

∫
Br(x,x′) · [1−Hε(φ(x′))] · I(x′)dx′∫

Br(x,x′) · [1−Hε(φ(x′))]dx′
.

3.3. A weighted geometric regularization of tubular structure

The most well known geometric regularization is the smoothness constraint in [22, 35] as also
defined as the third term in (1) which shrinks the curve in the normal direction. For the PCM
neuron image analysis in this paper, we take advantages of a geometric regularization term
Etub for tubular structure proposed by [29]. This tubular regularization is defined on the base of
local geometric properties of the level set function. It is similar as the localized level set method
introduced in Section 3.2, but the major difference is that only the level set function information
rather than image information is used to construct the regularization energy term.

An intuitive illustration of the effect of Etub can be found in Fig. 4. Rather than shrink the
curve into a point as smoothness regularization [22, 35] does, the tubular regularization would
extend curve into the major principal direction while keep the other direction unchanged.

Fig. 4. Curve evolution under the geometric tubular structure regularization. From left to
right: iteration 0, 20, 40 and 60 respectively.

By incorporating this geometric regularization term, most of the gaps between broken den-
drites, dendrites and their corresponding somas in the PCM images could be filled for neural
connectivity analysis. However, as illustrated later in this section, the energy term Etub in [29]
might impose the regularization in unnecessary regions and thus cause false dendrites. In order
to to reduce the false dendrite artifacts, we introduce Ewtub, a spatial weighted version of Etub

as follows.
Ewtub(φ) =

∫
w(x)δε(φ(x)) f (TrM−1(x))|∇φ(x)|dx (15)

where
M(x) =

∫
Hε(φ(x′))Br(x,x′)∇φ(x′)∇tφ(x′)dx′,

Tr(·) represents the trace of a matrix, f is a non-negative decreasing function from R
+ to R

+.
The only difference between Ewtub and Etub is a spatial varying weight term w(x). Here we
define w(x) is static and independent of φ as

w(x) = exp(−dist(BW (x))/a)+b (16)

where a and b are two real positive numbers. BW (x) is a binary image. Here we use the soma
initializations as BW (x) which is illustrated in Section 3.4. The function dist(·) calculates the
Euclidean distance transform of a binary image. For a zero pixel in BW (x), dist(·) assigns a
number that is the distance between that pixel and its nearest nonzero pixel of BW (x). For a
nonzero pixel, dist(·) assigns zero to that pixel. Therefore w(x) imposes stronger constraints
near the somas and thus reduces false dendrites in the area away from somas. An example of
the weight map w(x) is Fig. 5 by setting a = 20 and b = 0.5.

The motivation of introducing w(x) is that term Etub in [29] is independent of image infor-
mation which does not work well in our case of neuron images. Strong tubular regularization
could encourage connections of dendrites to corresponding somas separated by halos. However,
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Fig. 5. Left: A binary image; Right: The corresponding weight map w(x) with a = 20 and
b = 0.5.

if the same weight for the regularization applies over the whole image, false dendrites tend to be
generated in areas away from somas as illustrated in Fig. 6. In order to reduce the false created
dendrites, w(x) aims to put more tubular regularization near somas and less for regions far from
somas. By incorporating the term Ewtub, most of the gaps between broken dendrites, dendrites
and their corresponding somas in the PCM images can be filled for neural connectivity analysis.

The effect of the weighting term w(x) as well as the tubular geometric regularization can be
found in Fig. 6. In addition, the parameters a and b are set as a = 20 and b = 0.5 for the real
PCM images in Section 5.2. In order to show that the Ewtub is not that sensitive to a and b, we
consider four combinations of (a,b) values that are both above and below the (20,0.5) values
and include the corresponding segmentation results in Fig. 6. From Fig. 6, we find that, without
the term Ewtub, some dendrites fail to connect to their corresponding somas as pointed by red
arrows in Fig. 6(c). Using a constant weighting term, dendrites are connected to somas with the
result that some false dendrites are produced as denoted by light blue arrows in Fig. 6(d). By
comparing with Fig. 6(b) to (e-h), we see that varying the a and b values has little impact on
the final segmentation. Indeed, there is only a single readily identified difference as denoted by
the white arrow in Fig. 6(f)-(h).

(a). PCM image (b). Ewtub: a = 20, b = 0.5 (c). No regularization (d). Etub

(e). Ewtub: a = 15, b = 0.4 (f). Ewtub: a = 15, b = 0.6 (g). Ewtub: a = 25, b = 0.4 (h). Ewtub: a = 25, b = 0.6

Fig. 6. Effects of the tubular regularization for segmentation.
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Fig. 7. Illustration of the initializations for somas and dendrites. The input image to be pro-
cessed is in Fig. 2 for curve initializations. (a): local standard deviation (b) Otsu’s thresh-
olding results on (a); (c): closing and hole filling on (b); (d): erosion of (c); (e): steerable
filtering enhancement for dendrite initializations; (f) The minimum error thresholding re-
sults on (e); (g) The final dendrites initialization.

3.4. Curve initialization

Curve initialization is very important for level set methods. Good initializations can yield more
accurate segmentation results and also make algorithms converge rapidly. Instead of using man-
ual initialization, we propose an automatic initialization method as described in Fig. 7.

To begin with, two feature maps (Fig. 7(a) and Fig. 7(e)) for somas and dendrites are obtained
from the original input image (Fig. 2). For somas, the feature map is the local standard deviation
of the image [36]. For dendrites, a steerable filter using the second order Gaussian derivative
template [37] is applied to enhance tubular structures. The radius of the local standard deviation
in is set to 30 pixels while the standard deviation of the Gaussian template is three pixels in this
paper. These two parameters are set based on prior information concerning the approximate
sizes of the somas and dendrites respectively. Then by using Otsu’s method [18] and the mini-
mum error thresholding [38], preliminary initializations for somas and dendrites (Fig. 7(b) and
(f)) are obtained respectively. The morphological closing and hole filling operations are then
performed to make the initialization cover most of the somas as in Fig. 7(c). The structuring
element of the closing is a disk with radius equals seven pixels. Next, a morphological erosion
using a disk with radius equals ten pixels as the structuring element is used to get the final soma
initializations Fig. 7(d). There are two benefits for the erosion operation. Firstly, the initialized
soma size is reduced which makes the algorithm converge fast. Secondly, it can keep more den-
drites initializations since Fig. 7(g) is obtained by excluding the final soma initializations from
the preliminary dendrite initialization.

3.5. Implementation

By combining the gradient flows of terms Ephy, Eloc and Ewtub, the optimization of the energy
functional (8) can be achieved using the gradient descent flow method by following Algorithm
1 iteratively.

As summarized by Algorithm 1, there are 4 steps during each iteration. The gradient flows
of Ephy, Eloc and Ewtub are defined in (17), (20) and (21) respectively below.

Using the calculus of variation, the gradient flow of Ephy(φ1,φ2,s1,s2) with respective to φk
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Algorithm 1 Optimization for energy functional (8) for each iteration

Step 1: Update φ1 using ∂φ1
∂ t =− ∂Ephy(φ1,φ2;s1,s2)

∂φ1
−λ1

∂Eloc(φ1,r1)
∂φ1

.

Step 2: Update φ2 using ∂φ2
∂ t =− ∂Ephy(φ1,φ2;s1,s2)

∂φ2
−λ2

∂Eloc(φ2,r2)
∂φ2

−λ3
∂Ewtub(φ2)

∂φ2
.

Step 3: Update s1 by numerically solving (23).
Step 4: Update s2 by numerically solving (24).

and sk(k = 1,2) can be obtained as

∂Ephy(φ1,φ2;s1,s2)

∂φφφ k
=−skδ T

ε (φφφ k)H
T (I−Hθθθ), (17)

∂Ephy(φ1,φ2;s1,s2)

∂ sk
=−HT

ε (φφφ k)H
T (I−Hθθθ). (18)

Using the array(·) operator defined in Section 3.1, the array version of (17) is

∂Ephy(φ1,φ2;s1,s2)

∂φk
= array(−skδ T

ε (φφφ k)H
T (I−Hθθθ)) (19)

According to [28], the gradient descent flow of Eloc defined in (12) is

∂Eloc(φ1,r1)

∂φ1
=−δε(φ1(x))

∫
Br1(x,x

′)δε(φ1(x′)) ·
(
(I(x′)−ux)

2

Au
− (I(x′)− vx)

2

Av

)
dx′

(20)
where

Au =
∫

Br(x,x′) ·Hε(φ1(x′))dx′

Av =
∫

Br(x,x′) · [1−Hε(φ1(x′))]dx′.

For the weighted tubular regularization term Ewtub, according to [29], the gradient flow of
(15) is

∂Ewtub(φ2)

∂φ2
=−w(x)δε(φ2(x))

{
f (TrM−1)∇ · ( ∇φ2

|∇φ2| )+∇t f (TrM−1) · ∇φ2

|∇φ2| +∇tφ2L∇φ2

}

(21)
where

L(x) =
∫

B(x,x′)δε(φ2(x′))|∇φ2(x′)| ḟ (x′)M−2(x′)d(x′),

and ḟ denotes the derivative of f .
The difficult part of implementing (17) to (21) is the matrix and vector multiplication Hθθθ .

More specifically, as the size of matrix H grows rapidly as the size of image increases making
direct, space domain implementation of the model computationally cumbersome. If we assume
θ(x), the image to be restored, is n× n, then the size (also the memory cost) of H is n2 × n2.
The time cost of the matrix and vector multiplication operation is O((n2)2) = O(n4).

By assuming a BCCB structure, the matrix and and vector multiplication Hθθθ can be imple-
mented very efficiently through FFT as [31]

Hθθθ = vec(F−1(F (airy(x)−δ (x))◦F (θ(x)))) (22)

where F (·) and F−1(·) are discrete Fourier transform and its inverse form respectively, ◦ is
the component-wise multiplication. In addition, we have

F (airy(x)−δ (x)) = F (airy(x))−1.
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Thus the implementation of the Dirac δ function can be done in the spatial frequency domain.
In addition, from (22), we can see that the matrix and vector multiplication is mainly performed
by using several FFT and IFFT operations. Thus the time cost equals O(n2 log(n)). Moreover,
there is no need to build the huge matrix H and thus the memory cost for the frequency domain
implementation is O(n2). Alternative choices for modeling K and the resulting computational
methods can be found in [31, 39, 40].

For the two real scalars s1 and s2, based on (18), s1 is updated by numerically solving the
following minimization problem (assuming φ1, φ2, s2 fixed)

argmin
s1

|HT
ε (φφφ 1)H

T (I−Hθθθ)|, sub ject to, 0 < s1 < ub. (23)

Here we set ub = 0.2 which is a upper bound of s1. Next, update s2 by numerically solving the
following minimization problem (assuming φ1, φ2, s1 fixed)

argmin
s2

|HT
ε (φφφ 2)H

T (I−Hθθθ)|, sub ject to 0 < s2 ≤ s1. (24)

By using the constraint 0 < s2 ≤ s1, the level set function s1 would catch the brighter ob-
jects as shown in Section 5.1. We update s1 and s2 once for every ten updates to the level set
functions. This change reduces computation load and makes little difference to the final results.

4. Morphological refinement

An example of the results of our approach to identify somas and dendrites is provided in
Fig. 8(b) and (e) respectively. As is typical for problems of this type [27, 41], a degree of post
processing can be helpful to refine the accuracy of the basic segmentation methods. Toward this
end, the final soma results are obtained by a morphological dilation as seen in Fig. 8(b). The
structuring element of the dilation is a disk with radius equals two pixels. To get rid of tubular
structures which are not connected to and far away from somas, morphological reconstruction
is used. Morphological reconstruction is a useful method for selecting meaningful components
from a binary image [42, 43]. Morphological reconstruction eliminates the mask components
that do not overlap with the marker. We assume that dendrites always connect to somas. Thus
in the neuron images, the mask is the segmented dendrites as in Fig. 8(e) and the marker is the
segmented somas as in Fig. 8(c).

The effect of morphological reconstruction in our case (Fig. 8) can be seen in by comparing
the regions denoted by dash blue rectangles in (e) and (f). By excluding somas (c) from (f), the
dendrites are obtained as shown in (g). Lastly the final results with both somas and dendrite
traces are obtained by the combination of (c) and the skeletonization of (g). The dilation opera-
tion improves the final results in two aspects. Firstly, some dendrites which are just one or two
pixels away from somas can be connected to somas. An example is denoted by light blue arrow
in (f). Secondly, some false dendrites around soma boundaries can be removed. This effect is vi-
sualized by comparing the regions denoted by red dash rectangles in (f) and (g). To summarize,
the series of the morphological operations as presented in Fig. 8 have several benefits: firstly,
it reduces the false tubular structure; secondly, it guarantees that all dendrites are connected to
but not overlap with somas by the exclusion operation.

5. Experiment and discussion

To evaluate the validity of our new method, we conducted two experiments. The first one is
based on synthetic images and is intended to demonstrate the feasibility and advantage of our
new approach. The second experiment is based on real PCM neuron images of E18 rat cerebral
cortical tissue to study the effect of Ivermectin(IVM) to the development of neuron growth
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Fig. 8. Illustration of morphological operations

[19]. The experiment was approved by Tufts University Institutional Animal Care and Use
Committee and complies with the NIH Guide for the Care and Use of Laboratory Animals
(IACUC No.B2011−45).

There are three parameters, km, rm and Nm, in the airy function formulation (6). All PCM
images are collected from rat cortical neuron cultures using a Zeiss Axiovert S100 with an 32×
with NA= 0.40 (type LD A-Plan) objective at the resolution of 1728×1296. The parameter rm,
the ratio of the inner radius to the outer radius of the phase ring, can be read or measured directly
which is 0.85 in our case. The parameters km and Nm depend on the hardware specification of
the specific microscope and wavelengths of image light [25, 26]. As indicated in [3], wrong
parameters generate unsatisfactory restoration results. In addition, restoration results achieve
the best using the correct parameters and they are stable around the correct parameters. Thus
grid search is used to estimate km and Nm by evaluating restoration results on several images
manually. In our case, the parameters km and Nm are estimated as 0.128 and 15 respectively.
The set of parameter values is used for both the synthesized images and the real PCM image
data in this section.

5.1. Synthetic image illustration

In this section, we use synthetic images to demonstrate the advantages of our method over Yin’s
method in [2, 3] and to justify our use of two level set functions instead of one. Representing
both somas and dendrites of the neuron image to be recovered by a Single Level Set (SLS)
formulation

θ(x) = s1Hε(φ1(x)), (25)

fails to allow for their simultaneous identification. The SLS model can be simplified from the
DLS model (7) by assuming s2 = 0. Thus all calculations and implementations of the SLS
model can be obtained from that of the DLS model by setting s2 = 0.

The synthetic image consists of a bright square and a less bright line as in Fig. 9. The size of
square is 30× 30 and the width of the line is 1 pixel. The square in the true phase retardation
image of has the intensity 0.18, the tubular structure has the intensity 0.06 and the standard
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True image PCM image without noise PCM image with noise

(a) (b) (c)

Fig. 9. Synthesized images. (a): a true phase retardation image; (b): the simulated PCM
image without noise; (c): the simulated PCM image with Gaussian noise (PSNR = 15dB)

Noise free data Data with noise
Initializations Reconstruction Segmentation Initializations Reconstruction Segmentation

Yin’s
method

DLS

SLS

Fig. 10. Results comparison among Yin’s model [2, 3] and the Single Level Set (SLS) and
the Double Level Sets (DLS) model for Fig. 9(b) and (c) above. Columns 1-3: Initializa-
tions, reconstruction results and segmentation results. Rows 1-3: Yin’s model, SLS and
DLS model (top to bottom) for noise free data. Rows 4-6: Yin’s model, SLS and DLS
model (top to bottom) for data with noise.

deviation of the Gaussian noise in the right image of Fig. 9 is 0.02. Here we defined PSNR as

PSNR = 10log10
max(Iclean)

MSE(Iclean, Inoisy)
,

where Iclean and Inoisy are the PCM images with and without noises as displayed in Fig. 9(b)
and (c) respectively. In addition, MSE(Iclean, Inoisy) are the mean square error between the noise
and clean PCM images.

In Fig. 10, the initializations for Yin’s method are obtained directly from the data using
the methods in [2, 3] while the initializations for level set formulations are curves obtained
using our initialization method in Section 3.4. The radius of the local standard deviation for the
square initialization is set to 20 while the standard deviation of the Gaussian template for the
steering filter for tubular enhancement ranges from 0.5 to 3 as noise increases. The parameters
for weight of the tubular term (16) are set as a = 5, b = 0.2. The parameters in Algorithm 1
are set as follows: r1 = 15, r2 = 1, λ1 = 1, λ2 = 1 and λ3 = 0.0015. In order to make a direct
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comparison, no morphological refinements is used for the synthetic images.
For DLS model, the blue curves and the red curves are the initializations for the square and

the line structure respectively. For SLS model, all initial curves are blue without distinguishing
the square and the line structure and segmentation results only obtain the square. Yin’s method
and DLS method both work well in the case without noise. The major advantage of DLS model
over Yin’s method is well illustrated for the case with noise. In principle, Yin’s method does
an acceptable job for reconstruction by significantly reducing the halo artifacts. In addition,
we evaluate the mean square error (MSE) for the reconstructions with respect to different peak
signal to noise ratios (PSNR) (20 simulations per PSNR) for Yin’s method, SLS method and
DLS method as included in Fig. 11. From Fig. 11, we can see that SLS performs worst for most
cases due to the missing of the line structure. In high PSNR cases, both DLS and Yin’s method
perform quite well and DLS model outperforms Yin’s method slightly. As PSNR decreases,
Yin’s method deteriorates quickly which can also be seen in Fig. 10.

Fig. 11. Mean square error of the reconstruction results

For the purpose of image analysis and understanding, the segmentation still needs to be
performed on the recovered images for Yin’s method. Moreover, in noisy cases above, simple
thresholding skills such as [18] are not capable of recovering the linear structures. While for
DLS, no further segmentation is required since the regions {x|φ1(x) > 0} and {x|φ2(x) > 0}
already correspond to results for the square and the line respectively.

5.2. Application to real PCM images

In this section, we apply our method on real PCM images of neurons. The parameters for curve
initialization for all real PCM images are set as stated in Section 3.4. Through parameters in
Algorithm 1, we set the local radii r1 = 15 and r2 = 2. The parameters λ1,λ2 and λ3 are set to
5, 80 and 16 respectively. The curve evolution process stops either after 500 iterations or if the
region size change of φ1 > 0 and φ2 > 0 is less than 5 pixels between two adjacent iterations.
We determine these parameters by manually evaluating the performance of the algorithm using
ten images which are not used in the evaluation process below. Finally the parameters for mor-
phological refinements are set as introduced in Section 4. Lastly, the parameters for weight of
the tubular term (16) are set as a = 20,b = 0.5.

Results of our proposed method, the approach of Yin et al. in [2, 3] and manual annotation
are presented in Fig. 12. In general, Yin’s method (both before and after Otsu-based threshold-
ing [18]) works well in identifying high contrast somas and proves less capable of finding the
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Our
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Fig. 12. Segmentation results comparison. Columns: different PCM images. Rows (top to
bottom): PCM images, Yin’s reconstruction results, Yin’s segmentation results, final results
of our method and manual results respectively.
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dendrites. This performance though is to be expected given that the work in [2, 3] was specifi-
cally intended to localize cell bodies rather than extended, thin structures such as the dendrites
in our data sets. In contrast, our method better recovers the dendrites and yields similar re-
sults for the somas. For the dendrites, our method produces more segments than manual results
which is not unusual. Actually, even using the same software or algorithm, dendrite tracing
results might be different due to different parameter setting or manual interaction. Thus, den-
drites segmentation or tracking is usually not evaluated by absolute dendrite length [27, 44].
Later in this section, we present quantitative validation results based on Pearson’s correlation
for dendrites as in [27]. In addition, the growth trend of dendrites matches well in the context
of the IVM effect evaluation.

In order to quantitatively evaluate our segmentation results, 8 groups of PCM images of E18
rat cerebral cortical tissue were collected. In addition, 4 of these 8 groups are treated with
IVM and the other 4 are control groups. Each group consists of 4 images taken at 0 hour, 2
hour, 4 hour, 6 hour and 24 hour for the same sample respectively. One group of the PCM
images as well as the segmented results is included in Fig. 13. For the purpose of validation, we
manually annotated somas of the 40 PCM images (8 groups multiply 5 images per group) and
also dendrites traced manually by using NeuronJ [45]. The manual annotation process takes 5
to 10 minutes to annotate the somas and 30 to 45 minutes to trace the dendrites for one image in
a completely hand-operated way. For our approach, no more manual operation is needed except
parameter setting. Currently, for a 1728× 1296 image, our method costs about 30 minutes
using unoptimized Matlab codes on a Dell Precision T1600 PC with Quad Core 3.1GHz and
4GB RAM.

As in [19], we categorize somas into isolated somas and connected somas in order to study
the neuronal growth. The isolated somas are defined as the somas which are not connected to
other somas by dendrites and are further than 10 pixels from other somas [19]. As indicated in
the right column of Fig. 13, the isolated somas detected by our approach are denoted by red
areas. From Fig. 13, we can see that dendrites are growing and connecting more somas as time
passes. In addition, the ratio of total soma number to isolated soma number is used as a metric
to evaluate weather IVM suppress the neuronal growth as in [19]. Thus we need to perform
evaluation on the segmentation of both isolated somas and all somas.

We use several metrics to evaluate soma segmentation. The first metric is called the accuracy
(ACC) proposed in [2, 3]. We use P and N to denote soma pixels and background pixels (in-
cluding dendrites) respectively. The true positive (TP) represents pixels that are both identified
manually and our method. The false positive (FP) are pixels labeled by our method but not
manually. The false negative (FN) denotes pixels that are segmented manually but not by our
method. In addition, | · | represents the number of pixels. Then the accuracy is defined as

ACC =
|TP|+ |N|− |FP|

|P|+ |N| .

The second metric is the Dice coefficient which is defined as

DICE =
2|TP|

(|FP|+ |TP|)+(|TP|+ |FN|) .

The ACC and DICE values of all somas and isolated somas for all 40 images are included in
Fig. 14. We can see that the accuracies for all somas and the isolated somas are above 0.97 and
0.96 respectively. In addition, most of the dice coefficients range from 0.7 to 0.8 and 0.5 to 0.7
for all somas and isolated somas respectively. We see that the performance for isolated somas
is a little worse. This though is not unexpected as identifying isolated somas is dependent on
dendrite segmentation. Both false positive dendrites and false negative dendrites might cause
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Fig. 13. A group of images. Left column: PCM images; Right Column: segmentation re-
sults based on our method. Blue areas indicate connected somas, read areas denote isolated
somas and yellow lines represent dendrites. Rows (top to bottom): 0, 2, 4, 6 and 24 hour
respectively.
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Fig. 14. Quantitative comparison between the proposed method and manual results for
somas. Left: ACC results; Right: Dice results.

Fig. 15. Soma numbers comparison.

incorrect isolated somas classification. Thus incorrect dendrite segmentation might degrade
isolated soma segmentation results. Still all these values in Fig. 14 indicate that our method
generates rather similar results as manual processing with very little manual effort.

In addition to ACC and DICE which are defined by comparing pixels, we also get the soma
numbers for validation as in [27]. From Fig. 15, we can see that our method is consistent with
manual results for both isolated somas and total somas at all time points. The total soma num-
bers almost remain unchanged and the trend of isolated soma numbers is decreasing through
different times suggesting that dendrites grow and connect to more somas as time goes by.

For dendrites evaluation, we also present dendrite length according to the control and IVM
group at different time points in Fig. 16. We can see that our methods yields longer dendrites
for both the control group and drug group at all time points. As mentioned in [27], different
methods might generated different results for dendrites length. Thus the correlation is always
used to validate dendrite segmentation [27]. In addition, the measured dendrites length using
the proposed method as well as manual results for all 40 images are included in Fig. 16. The
correlation between the two sets of results are 0.94 indicating the consistency of our method
and manual results. Moreover, we can find that for both our method and manual results at all
time points, the control group has fewer dendrites than that of the drug group suggesting that
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IVM suppresses the growth of neural cells.

Fig. 16. Quantitative comparison between the proposed method and manual results for
dendrites. Left: The x axis represents the manually traced dendrite length; the y axis denotes
the segmented dendrites length using the proposed method. Each dot represents a results
for each PCM image. Right: Comparison for dendrites at different time points and different
groups

Finally, we check the ratio of all soma numbers to isolated soma numbers as displayed in
Fig. 17. As already indicated in [19], manual results suggest IVM suppresses the neural growth
and connectivity. Here we use repeated measures ANOVA test [46] to accommodate the drug
and control group and the five time points. The statistical test result indicates that there is a
significant (p = 0.0031) difference between the drug and control groups for manual results.
For our method, the repeated measures ANOVA test also indicates that the ratios in the control
group are significantly larger than that of the drug group (p = 0.0137).

In summary, experimental results demonstrate that our method produces very similar seg-
mentation results with manual annotation for somas. For dendrites, our method yields consis-
tent results with manual results. In addition, our method can be applied to investigate IVM
effect by investigating the significant difference of the ratio of all soma numbers to isolated
soma numbers in both control group and drug group as time passes.

Fig. 17. Ratio of all soma numbers to isolated soma numbers. Left: manual results; Right:
proposed method.
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6. Conclusion and future work

In this paper, we introduce a parametric image model using the level set framework for the
purpose of the PCM image restoration/segmentation. Then we present an optimization problem
merging both image restoration and segmentation and give its solutions. Based on the segmen-
tation method just mentioned, we introduce a pipeline for PCM neuron image analysis which
is automatic and the first to segment somas and trace dendrites simultaneously for the PCM
neuron images. The technical advantages of our method have been well demonstrated by com-
paring to other state of the art methods using both synthetic and real PCM images. Moreover,
our approach is shown to be feasible for the study of IVM effect to neural growth and develop-
ment.

We are going to build a regularization term to couple the somas and dendrites in the varia-
tional formulation (8). Usually for the multi-level set formulation, constraints need to be im-
posed to avoid overlap [30,47–49]. In the neuron application, no clear boundaries exist between
the soma and dendrites for a neuron. Normal overlap penalty term such as [30] would separate
somas and dendrites which is not we want for the neural connectivity evaluation. Thus building
a regularization term which can avoid overlap between somas and dendrites and also connect
them is an interesting problem and also one of the future works.

Currently, the coefficient s1 and s2 in (7) are two scalars which means the phase retardation
image θ(x) is a piecewise constant model [22]. By extending s1 and s2 to be spatial variant
fields s1(x) and s2(x), θ(x) can be extended to a piecewise smooth model [47] which could
better model neural cells over the whole image domain. Moreover, we may also investigate the
integration of machine learning techniques such as in [50] in modeling θ(x) within the level
set framework.

One important future direction is to develop methods for the optimal selection of the parame-
ters such as λ1, λ2 and λ3 to further reduce manual interaction. Another important area of future
work should be devoted to accelerate our method via: using faster programming languages such
as C++; using fast level set implementation techniques such as [51]; using parallel computing
techniques such as Graphics Processing Unit (GPU).

Phase contrast microscopy belongs to a type of microscopy called partially coherent micro-
scopies [25,26] which does not need fluoresce or staining for specimens. Besides phase contrast
microscopy, dark field and differential interference contrast (DIC) microscopy are also exam-
ples of spatially partially coherent microscopies. A key issue here is the difference in the point
spread functions among these microscopes which in turn give rise to data-domain artifacts that
also differ from those seen in this study. While we believe that the basic, two-level set approach
pursued here can be used in the context of these other microscopes, changes and adaptation
will certainly be required to apply these ideas to other cell lines as well as partially coherent
modalities.
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