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Abstract. Real-time imaging of human brain has become an important 
technique within neuroimaging. In this study, a fast and efficient sensitivity 
map generation based on Finite Element Models (FEM) is developed which 
utilises a reduced sensitivitys matrix taking advantage of sparsity and 
parallelisation processes. Time and memory efficiency of these processes 
are evaluated and compared with conventional method showing that for a 
range of mesh densities from 50000 to 320000 nodes, the required memory 
is reduced over tenfold and computational time fourfold allowing for near 
real-time image recovery. 
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1. Introduction 

Real-time brain imaging of human brain is an important technique within neuroimaging 
which has been used in the study of brain activation during interactive tasks [1, 2], analysis of 
networks between different functional brain regions during complex movements and 
emotions [3–6], and monitoring whole brain state for spontaneous activation such as sleep, 
and changes between tiredness and alertness [7]. It provides the possibility of observing brain 
processes during physical and mental experience, guiding medical and behavioural therapies 
and assisting the rehabilitation of some disorders and diseases such as depression, 
schizophrenia, and stroke [8–10]. Since immediate feedback is available during the imaging 
process, some brain–computer interfacing (BCI) systems are designed based on real time 
brain imaging [4, 11–13]. The BCI systems analyse brain activity data and react to the 
findings in real-time. It is an alternative communication and environment control tool for 
disabled patients. 

Electroencephalography (EEG) and Near-Infrared Spectroscopy (NIRS) are the most 
commonly used real-time brain imaging techniques. They have been used to track and 
classify brain activities during complex motor tasks, such as alternating bilateral self-paced 
finger tapping task; monitoring brain activation during different stages of sleep [4]; and 
develop BCI environmental control systems [11, 12]. However, EEG and NIRS lack spatial 
information, and have limitations on the region-based analysis. Real-time functional MRI 
(fMRI) is a 3D brain imaging technique which has been used to observe the self-regulation of 
activity in circumscribed regions and emotion networks, and has also been used to analyse the 
neuro-feedback of treatment for patients with attention deficit and hyperactivity disorder 
(ADHD) [5, 13–17]. However, MRI is not suitable for patients with electronic implants such 
as pacemaker and has some limitations for infants and patients with claustrophobia, the 
application of real-time fMRI is also limited. 

Diffuse optical tomography (DOT) is a relatively new neuroimaging technique that 
monitors brain activities using measurements of transmitted and reflected near infrared light 
from the surface of the head. It is a low-cost, portable imaging system as compared to other 
brain imaging techniques and can be used for infants and hospitalised patients [18, 19]. The 
recovery of brain activity in DOT is divided into two main steps: the generation of the 
forward model and the inverse process for the recovery. Currently, the DOT recovery process 
for the whole head can take several hours becoming more computationally expensive as the 
size of the region of interest (domain) and number of source and detectors increases. Real-
time DOT imaging therefore relies on the reduction of processing time and previous studies 
of fast DOT recovery have been largely focused on the inverse process. The reduction of 
recovered parameter density based on a coarse reconstruction basis and adaptive meshing 
algorithms have been shown to increase the time-efficiency for the recovery process [20–23]. 
A sensitivity matrix reduction method (where the sensitivity matrix is defined as the 
sensitivity of the NIR measurement data to small changes in optical properties) for the inverse 
process has also been used to reduce the processing time [24]. Since the inverse problem is 
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highly under-determined, gradient-based optimisation schemes and modified singular value 
decomposition are also used to increase the efficiency in inverse processing [25–28]. 
Parallelisation is one of the most common time reduction methods with efficient DOT 
recovery with both CPU and GPU based parallelisation were analysed previously [29–32] 
highlighting their advantage providing a systematic method of their incorporation is utilised. 
Although most previous studies are focused on reducing the calculation time of the inverse 
process, the generation of the forward model and its associated sensitivity matrix for 
parameter recovery are also worth investigating. 

This study is focused on a unique and efficient generation of the sensitivity matrix using 
the finite element model for image reconstruction (inverse model) of a complicated 
inhomogeneous model such as the human brain with the high-density diffuse optical 
tomography (HD-DOT) system. Two efficient generation processes are developed and 
evaluated based on a reduced sensitivity matrix and the parallelisation of the calculation 
process. Time and memory efficiency of these novel efficient generation processes are 
evaluated based on comparison with the conventional generation process. 

2. Methods 

2.1 Sensitivity matrix 

Model-based image reconstruction in DOT relies on the use of a model, typically a numerical 
model based on the finite element model (FEM) to simulate the NIR light propagation within 
a medium. The volumetric mesh generation of a FEM of the human head, either subject 
specific or atlas-based has been discussed in detail elsewhere [33, 34] and are shown to be 
achievable on a relatively fast (typically minutes) time-scale. Through the use of a HD-DOT 
system for the imaging of the whole surface of the cortex, typically FEM with meshes 
containing over 300,000 nodes are needed to capture, in sufficient detail, the geometry and 
internal structures of the head. Additionally, our current whole-head clinical system contains 
~3500 source/detector pairs for each wavelength (750 and 850 nm) of operation which using 
conventional techniques (discussed below) are very computationally expensive, as maps of 
brain activations are derived through the direct calculation and inversion of a wavelength 
dependant sensitivity matrix [35]. 

The sensitivity matrix, also known as the Jacobian or weight matrix, contains a set of 
sensitivity values which are defined as the sensitivity of NIR boundary data of each 
measurement to a small change in optical property of each mesh node. 

The sensitivity of NIR boundary data to the optical property can thus be represented as: 

 J yμΔ = Δ  (1) 

where μΔ  is the changes in tissue property, yΔ  is the resulting change in boundary data, and 

J is the sensitivity matrix. A continuous wave (CW) DOT system with single wavelength is 
used in this study and the sensitivity matrix is focused on changes in the absorption 
coefficient based only on intensity measurements: 
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where lnI is the log amplitude of boundary data, aμ  is the absorption property at a given 

wavelength, NN is the number of nodes in the FEM mesh and NM is the number of 
measurement. Since DOT is a highly under-determined and ill-posed problem (NN >> NM), 
the image recovery step can be defined as: 

 ( ) 1T TJ JJ I yμ α
−

= + ΔΔ     (3) 

where 

 

( ) ( )( )( )T T

J
J

diag diag J J max diag J Jβ
=

 + 
 

   

∝  is the Tikhonov regularisation parameter, β is the spatial regularisation factor, with 
0.01, 0.01β∝= = , where diag() is either a vector containing the diagonal values of matrix or 

a diagonal matrix created from a vector, and I is and identity matrix [35–37]. 
The Jacobian is formed using the Adjoint method [38], which takes advantage of 

reciprocity to construct the matrix entries from the forward model fluence calculations, and is 
highly efficient as compared to perturbation methods [39]. Using this approach and assuming 
a Continuous Wave (CW) system with a given FEM mesh, the Sensitivity for intensity 
measurements due to absorption for each node can be calculated based all its adjacent 
connecting nodes. For a given source (i) and detector (j) pair, the sensitivity value at a node 
(r) is calculated based on the fluence iΦ  in the adjacent node (k) due to source i, the 
corresponding Adjoint fluence j

AdjΦ  in the adjacent node (k) due to detector j, and the 

associated finite element basis (shape) function ( )ku r  for the node (r) and the adjacent node 

(k). The Sensitivity can be calculated as [38]: 
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 (4) 

where iΦ  is the fluence due to source i at nodes k of an element τ associated with a mesh 
node r and j

AdjΦ  is the corresponding Adjoint fluence due to detector j with uk being the 

associated finite element basis (shape) function. If the forward solution is obtained on a 
regular voxel grid, where all the FEM nodal spacing is equal and the FEM elements 
area/volume are also constant, this expression can be simplified to the multiplication of the 
two fluence values for the node (r): 

 ( , , ) ( ) (r)i j
AdjJ j i r r= Φ × Φ  (5) 

However, for a FEM mesh consisting of non-uniform element size and basis functions, 
this calculation cannot be simplified and the summation as outlined in Eq. (4) must be 
calculated for all nodal sensitivity values taking into account the finite element basis function 
for each node; a computationally time consuming task, as it will involve repeated summation 
and multiplication for each FEM nodal sensitivity calculation. Nonetheless, this simplification 
(Eq. (5)) can be utilized to provide an approximation of the sensitivity values to allow the 
determination of an effective Region of Interest (ROI) for image reconstruction, as it only 
involves a point by point multiplication for each nodal value calculations. 

Previous studies have shown that only nodes within the region being imaged, which have 
sensitivity values higher than 1% of the maximum absolute value can affect the DOT 
recovery [22]. Based on this criterion, it is therefore possible to use the approximation (Eq. 
(5)) to provide the ‘effective’ ROI for which the more accurate sensitivity matrix can be 
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calculated (Eq. (4)) for only the required ROI, therefore dramatically reducing the 
computational burden. This assumption can be used when the FEM mesh resolution and 
element area are such that the created mesh is near-uniform in element size, which is the case 
in our models using our meshing algorithms outlined elsewhere [34]. 

Consider, for example a single source/detector pair on a full head model (optical 
properties shown in Table 1 [40]) and the associated sensitivity matrix calculated using both 
Eqs. (4) and (5), referred to as ‘Original’ and ‘Approximated’ matrices respectively, Fig. 1. 
For each sensitivity distribution, contour plots of relative magnitude based on maximum 
absolute magnitudes ranging from 10 – 0.0001% is shown. As evident, the discrepancies 
between the two sensitivity matrices are largest for the higher threshold of 10% and smallest 
for the lower threshold of 0.0001%. 

 

Fig. 1. An example of the sensitivity calculated for a given source/detector pair on a full head 
model using conventional and approximated method. Each contour line represents 10 – 
0.0001% of the maximum absolute sensitivity value. 

Table 1. Head tissue optical properties at 750 nm. 

µa (mm-1) / µ’s (mm-1) / Refractive Index 
Scalp 0.0170 / 0.74 / 1.33 
Skull 0.0116 / 0.94 / 1.33 

Cerebrospinal fluid (CSF) 0.004 / 0.3 / 1.33 
Gray Matter 0.0180 / 0.84 / 1.33 
White Matter 0.0167 / 1.19 / 1.33 

2.2 Efficient sensitivity matrix 

In order to calculate the sensitivity matrix in an efficient framework, without loss of 
information while reducing the computational burden, the efficient sensitivity matrix 
calculation can be summarised using the following steps: 
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1. For all source/detectors, calculate the fluence (the so called direct and adjoint fields) 

2. For all source/detector pairs, calculate the sensitivity values for all nodes using Eq. (5). 
Note that this is computationally efficient, given that it is a simple point by point 
multiplication. 

3. Determine common nodes within the ROI for all source/detector pairs, within the FEM 
mesh that have a sensitivity above a chosen threshold value. 

4. Calculate the absolute sensitivity value for all nodes within the ROI using Eq. (4). 
It is important to point out however, that although using this method, only a portion of the 

Sensitivity matrix is calculated, which will be shown to be the only effective region for this 
application of HD-DOT, it still requires the full head fluence calculations due to the complex 
light propagation in scattering tissue. 

2.3 Sparse representation 

Using the scheme outlined above and given that the majority of nodes within the FEM mesh 
will have zero contribution to the sensitivity matrix, one further advantage can be taken for 
the storage of this otherwise large matrix, using ‘sparse matrix’ representation. Given that 
only a certain portion of the FEM mesh nodes will have a ‘sensitivity’ contribution for each 
source/detector pair, only such values need to be stored within the memory for the inverse 
problem, Eq. (3), where only the row/column index and value for each non-zero entry are 
stored, thus significantly reducing the memory requirements for an HD-DOT imaging set-up. 
Consider for example, a FEM head mesh containing ~300,000 nodes with ~3,500 
measurement pairs. The sensitivity matrix, using conventional non-sparse representation, (Eq. 
(2)) will require 8.4 GBytes of RAM for storage where the sensitivity of all nodes within the 
FEM mesh are calculated and stored, regardless of their significant contribution to the 
source/detector pairs. However, using the approximation scheme outlined above, together 
with sparse representation, the same Sensitivity matrix can be stored using sparse 
representation, where only nodal values above a certain threshold are stored using only ~0.8 
GBytes of RAM. Additionally, sparse matrices also have significant advantages in terms of 
computational efficiency. Unlike operations with full matrices, operations with sparse 
matrices do not perform unnecessary low-level arithmetic, such as zero-adds. The resulting 
efficiencies can lead to dramatic improvements in execution time for algorithms working with 
large amounts of sparse data. 

2.4 Parallelisation in the sensitivity generation process 

Parallelisation, which computes multiple processes simultaneously, is one of the most 
common methods to reduce the processing time. For example, a process paralleled with 10 
Central processing units (CPU) is ten time faster than based on single CPU. The generation of 
the sensitivity matrix can also benefit from parallelisation. There are two main calculations 
within the forward model to which parallelisation can be applied to: (1) The calculation of 
light fields (direct and adjoint) is processed for each sources and detectors separately, 
therefore calculations for multiple sources and detectors can be run in parallel simultaneously 
and (2) The calculation of sensitivity matrix which itself is based on light fields (Eq. (5)) is 
also processed on a measurement pair basis and can hence also be parallelised. 

Both the parallelisation and the reduction based on the ROI (using Eq. (5)) for the 
calculation of the sensitivity matrix can increase the efficiency of the calculation process. 
Therefore the two efficient calculation processes of the sensitivity matrix based on the two 
factors are: (1) The calculation of the reduced sensitivity matrix without parallelisation and 
(2) the calculation process of a reduced sensitivity matrix with parallelisation on sources and 
detectors for light fields and sensitivity values calculations. The accuracy and efficiency of 
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these two efficient processes are evaluated and compared with the conventional sensitivity 
generation process. 

2.5 Simulated study 

2.5.1 Mesh resolution model accuracy 

Throughout this work, we have utilised NIRFAST, an open source light propagation model 
and image reconstruction toolbox (www.nirfast.org), which utilised linear 3D tetrahedral 
elements based on the Diffusion Approximation [34, 41]. A feature of FEM based image 
reconstruction and light propagation models is that the accuracy of the fluence solution is a 
function of the chosen mesh resolution and the corresponding finite element basis function. In 
theory, the solution of FEM approaches the true solution as the area of each FEM elements 
nears zero; therefore for a given model, the mesh with highest nodal resolution should be 
more accurate. The problem of mesh resolution versus computational model then becomes 
two folds: for a complex multi-layered mesh, whereby fine structural features need to be 
represented a high density FEM mesh is required, but for fast computational models, a low 
density mesh is better suited. Numerical errors due to FEM mesh resolutions have previously 
been discussed together with algorithms which take into account such numerical model errors 
as unknown and recoverable parameters [42]. For the purpose of this work, and to highlight 
the need for high density meshes together with fast and efficient computational models, a 
multi-layered high density mesh with ~400000 nodes corresponding to ~2450000 linear 
tetrahedral elements is used as ground truth. Additionally, eight multi-layered FEM meshes 
with different node densities are generated based on the same subject containing a total of 
~50000 to ~320000 nodes corresponding to ~290000 to ~1930000 linear tetrahedral elements. 
Each model contains 5 tissue regions (skin, skull, Cerebrospinal fluid (CSF), grey matter and 
white matter) with the optical properties for each tissue type assigned based on a single 
wavelength (750 nm) model, Table 1. A high-density (HD) source-detector cap is placed on 
the surface of each head mesh covering the entire cortex [Fig. 2] containing 158 sources and 
166 detectors which are distributed uniformly across the source-detector cap. This gives rise 
to 3478 measurements, where the 1st to 4th nearest neighbour measurements corresponding 
to 1.0, 2.2, 3.0, and 3.6 cm source-detector distance respectively are used for the sensitivity 
matrix calculation [18]. The sensitivity matrices for each model using Eq. (4) are generated 
based on the same subject and compared to the high resolution (ground truth mesh) sensitivity 
matrix to calculate percentage accuracy on a nodal basis. The region of interest (ROI) for this 
evaluation is limited to the grey matter region only and the sensitivity values are mapped onto 
a high resolution uniform grid using linear interpolated functions for analysis. 
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Fig. 2. High-density source and detector positions for the whole-head HD-DOT. 

2.5.2 Threshold value 

The calculation of the reduced sensitivity matrix is based on the chosen threshold for the 
effective ROI. A simulation experiment is designed for the determination and selection of a 
suitable threshold. A layered mesh with ~320000 nodes, corresponding to ~1930000 linear 
tetrahedral elements is generated based on an MRI scan of a subject head which contains 5 
tissue regions (skin, skull, CSF, grey matter and white matter) with the optical properties for 
each tissue type assigned based on a single wavelength (750 nm) model [Table 1] As in 
previous case, a high-density (HD) source-detector cap is placed on the surface of the head 
mesh covering the entire cortex [Fig. 2] containing 158 sources and 166 detectors which are 
distributed uniformly across the source-detector cap giving 3478 measurement pairs. 

The sensitivity matrix as outlined in Section 2.2 is calculated based on 5 different 
thresholds (10%, 1%, 0.1%, 0.01% and 0.001%) and is stored as a sparse matrix. The 
conventional full sensitivity matrix is also calculated to allow a direct comparison of accuracy 
which is determined as the percentage error between the new sensitivity matrix (outlined in 
section 2.2) and the conventional full sensitivity matrix. 

2.5.3 Full-field imaging and parameter recovery 

For the analysis of the recovery result based on the reduced sensitivity matrix, a simulation 
experiment is designed for the recovery of brain activity within the whole cortex. Whole 
cortex activation, which here is a simulated brain activation that models the same changes in 
optical coefficients throughout the entire cortex region, is simulated within the same subject 
mesh as the previous experiment. Boundary data are generated based on the same HD-DOT 
source-detector cap with noise added to simulate a clinical situation. The brain activation 
which is modelled as a unit change in optical property (∆y in Eq. (1) is reconstructed (using 
Eq. (3) based on either the original sensitivity matrix or the reduced sensitivity matrix with a 
threshold of 0.001%. The recovered results from the two sensitivity matrices, μΔ , are 

evaluated and compared. 

2.5.4 Computational speed and memory requirements 

The final simulation experiment is designed for the evaluation of the time and memory 
efficiency of the two efficient sensitivity generation processes outlined in section 2.4. Eight 
multi-layered FEM meshes with different node densities are generated based on the same 
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subject. The eight meshes contain a total of ~50000 to ~320000 nodes corresponding to 
~290000 to ~1930000 linear tetrahedral elements. The original and the reduced sensitivity 
matrices are generated for each mesh and the computational speed and memory requirements 
using each specific technique is calculated. All computational models are performed using 
MATLAB R2012b on a Workstation running 64 bit Linux (Ubuntu 12.04 LTS) with 16 
GBytes RAM using 2 six-core AMS Opteron Processors at 800 MHz. 

Memory efficiency of the sensitivity calculation processes as proposed, are evaluated 
based on the comparison of required memory of the reduced sparse sensitivity matrices and 
the original sensitivity matrices from the eight meshes. Time efficiency of the proposed 
sensitivity calculations are also evaluated based on the comparison of average processing 
times as compared to the conventional sensitivity generation process. For each mesh, all the 
sensitivity generation processes are performed five times, and the average processing time of 
each is calculated. Reductions in processing time and memory storage requirements are 
presented. 

3. Result and discussions 

Quantitative evaluation of the accuracy of the sensitivity matrix is analysed based on eight 
different resolution meshes generated from the same subject. The eight meshes each have a 
different density with the number of nodes varying from 50000 to 320000. The sensitivity 
matrix is generated for each mesh and used together with a reference sensitivity matrix as 
generated from a high-density mesh with ~400000 nodes based on the same subject. The 
accuracy of the sensitivity matrices for each of the eight meshes is evaluated based on the 
comparison with the reference sensitivity matrix, defined as: 

 100%
subj ref

err
ref

J J
J

J

−
= ×  (6) 

where errJ  is error of the sensitivity matrix, subjJ  is sensitivity matrix of the subject mesh and 

refJ  is the reference sensitivity matrix. 

The ROI for this evaluation is defined as the grey matter region of the reference high-
resolution sensitivity matrix. The nodal average sensitivity errors in ROI for the 8 meshes are 
shown in Fig. 3. The accuracy of the sensitivity matrix increases as the density of the nodes in 
the mesh increases. The sensitivity matrix based on mesh with 320000 nodes has the smallest 
sensitivity error (~4%) and the sensitivity matrix based on mesh with 50000 nodes has the 
largest sensitivity error (~10%). This highlights the need for the use of high resolution meshes 
for model-based HD-DOT and hence the requirement in improving the computational speed. 
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Fig. 3. Accuracy of the sensitivity matrix as a function of FEM mesh nodal density with 
respect to ground truth (high density mesh). The accuracy is calculated on a node by node 
basis and error bars represent the variation across the whole model with the ROI. 

Calculation of the reduced sparse sensitivity matrix relies on the approximate sensitivity 
matrix (Eq. (5)) and the associated threshold value chosen to find the nodes within the ROI. 
The accuracy of this reduced and sparse sensitivity matrix is evaluated based on the HD 
source and detector cap with multiple measurements, as compared to the full conventional 
matrix for different threshold values. Five reduced and sparse sensitivity matrices based on 
different thresholds (10%, 1%, 0.1%, 0.01% and 0.001% of the maximum sensitivity value) 
and the original sensitivity matrix, are generated using the same mesh. The accuracy of the 
sensitivity matrices as a percentage error (on nodal basis) using different threshold are 
calculated with respect to the original matrix and shown in Fig. 4. For all five reduced sparse 
sensitivity matrices, deeper tissue such as the grey matter has higher sensitivity error than 
shallower tissue such as the skin. The maximum sensitivity error in the ROI decreases as the 
threshold for the reduced sensitivity matrix decreases. Reduced sensitivity matrix based on 
the 10% threshold has a 100% maximum sensitivity error in the ROI and reduced sparse 
sensitivity matrix based on 0.001% threshold has a 0.8% maximum sensitivity error. Note 
that, as shown in Fig. 1, the total sensitivity diminished as a function of depth and therefore 
all area deep within the head, where the total sensitivity due to all source/detector 
combinations was less than 1% of the absolute maximum sensitivity was not considered to be 
within the ROI and represented as ‘NaN’ for this analysis. 
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Fig. 4. An example of sensitivity error for reduced sparse sensitivity matrices with different 
thresholds as compared to conventional full matrix. 

The average sensitivity errors of the 5 reduced sensitivity matrices for the grey matter 
within the ROI is shown in Fig. 5. The average sensitivity error within the ROI (effectively of 
the grey matter) decreases as the threshold chosen for the calculation of the reduced sparse 
sensitivity matrix decreases. The reduced sparse sensitivity matrix, based on 10% threshold, 
has ~65% average sensitivity error and is the least accurate sensitivity matrix. The most 
accurate of the five reduced sensitivity matrices is the reduced sensitivity matrix based on 
0.001% threshold, which has ~0.02% sensitivity error. To ensure the sensitivity values in the 
entire effective region are accurate, a threshold of 0.001% of the maximum absolute 
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sensitivity value is therefore used for the generation of reduced sensitivity matrix in this 
study. 

 

Fig. 5. Accuracy evaluation of the reduced sparse sensitivity matrices with different thresholds 
as compared to conventional full matrix. The red line represents the 1% sensitivity threshold. 

For the evaluation of the recovery accuracy of the reduced sparse sensitivity matrix, whole 
cortex activation is simulated and recovered using both the proposed reduced sparse 
sensitivity matrix and the original sensitivity matrix. The normalized recovery results based 
on these two sensitivity matrices are shown in Fig. 6. Recovery results based on the original 
sensitivity matrix and reduced sensitivity matrix are visually the same, and they are located in 
the same region as the simulated activations demonstrating that the reduced sensitivity 
matrices can be an acceptable alternative for the original sensitivity matrices. 
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Fig. 6. Recovery result of whole cortex. 

Memory efficiency of the proposed sparse sensitivity calculation is evaluated based on 
storage memory reduction of the reduced sparse sensitivity matrix as compared to the full 
conventional matrix. This is performed based on the reduced sparse sensitivity matrices from 
the eight different resolution meshes and the comparison with the original sensitivity matrix 
from the same corresponding mesh, shown in Fig. 7. For both sensitivity matrices, storage 
memory increases as the number of nodes in the mesh increases. The mesh with 320000 
nodes has the largest RAM requirements for storage with the original sensitivity matrix 
requiring ~8.4 GBytes and the corresponding largest reduced sensitivity matrix requiring ~0.7 
GBytes. The percentage memory reduction of the reduced sensitivity matrixes based on the 
eight meshes is shown in Fig. 8. The memory reductions of all eight meshes are over tenfold 
and with the reduction increasing as the number of nodes in the mesh increases. The reduced 
sensitivity matrix based on the mesh with 320000 nodes has the largest reduction factor 
amongst the eight meshes (~1240%) and the reduced sensitivity matrix based on mesh with 
50000 nodes has the smallest reduction factor (~1020%). Therefore the reduced sensitivity 
matrix is more memory efficient compared to the original sensitivity matrix, based on the 
same mesh. 
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Fig. 7. Size of the sensitivity matrix for 8 meshes. 

 

Fig. 8. Reduction of size of the sensitivity matrix for 8 meshes. 

The reduced sensitivity matrix utilising parallelisation in the calculation process has also 
been investigated. The generation of the sensitivity matrix is divided into two steps: 1) 
generation of the light fields for all sources and detectors, and 2) calculation of the sensitivity 
matrix based on the light fields from the previous step. Parallelisation can be applied to both 
steps and the total computational processing time for both steps are evaluated separately 
based on the eight meshes outlined above. Using parallelisation for the generation of light 
field only, Fig. 9, the process time varies from <5 minutes to ~1.5 hours and tends to increase 
as the node density of the mesh increase and the utilization of parallelisation on generation of 
light filed has ~300% reduction on processing time for high density meshes. For the 
generation of the sensitivity matrix, once the light fields have been calculated, the processing 
time using conventional methods varies from <20 minutes to ~6 hours, Fig. 10, and it 
increases as the node density of the meshes increase. The calculation of reduced sparse 
sensitivity matrix has ~230% reduction on process time as compared to the conventional full 
matrix calculation and utilization of parallelisation on generation of sensitivity matrix 
provides additional ~200% reduction on processing time. 
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Fig. 9. Processing time of the light field generation. 

 

Fig. 10. Processing time of the sensitivity matrix generation only from calculated light fields 
and the reduction based on parallelisation and reduced sensitivity matrix. 

The utilisation of parallelisation for the field calculations, as well as sensitivity matrix 
calculation, together with application of the proposed reduced sparse calculations, are 
compared with conventional non-parallelised calculations, Fig. 11 to provide an overall whole 
model computational analysis. For each mesh density, the reduced sparse sensitivity 
calculations using both parallelisation or not, are more time efficient than the conventional 
generation process. For the same sensitivity matrix generation process, processing time 
increases as the node density of the mesh increases. Since the storage memory of the original 
sensitivity matrix using meshes with 270000 nodes and 320000 nodes are close to the 
hardware memory limitation of the machine, processing time of the original sensitivity 
matrices increased dramatically due to memory swap allocations. The mesh with 320000 
nodes has the longest processing time for the conventional generation process (~470 minutes) 
and for the efficient proposed process with parallelisation is ~65 minutes. The mesh with 
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50000 nodes has the shortest process time for the conventional generation process (~30 
minutes) and ~7 minutes using the proposed process. 

 

Fig. 11. Total processing time of sensitivity generation processes. 

There isn’t a clear linear relationship between the reduction in processing time and the 
nodes density of the meshes. Except for the mesh with 270000 nodes and 320000 nodes, a 25 
fold reduction of the processing time of each mesh (5 reduced sensitivity generation processes 
× 5 conventional generation processes) are similar for each sensitivity generation process. 
The models with 270000 and 320000 nodes with the sensitivity matrices larger than 7 GByte, 
which approach the memory limitation of the hardware (8 GBytes) during the conventional 
sensitivity generation process involve the swap memory in the calculation process, leading to 
a dramatic increase in processing time. However, it is well known that an increase in a 
number of parameters to be recovered (i.e. mesh resolution) the inverse problem becomes 
more ill-conditioned [24, 43–45], therefore there is a trade-off between recovery accuracy, 
mesh resolution and computation time. For all eight meshes, the efficient sensitivity 
generation process without parallelisation has ~170% reduction of process time and the 
efficient sensitivity generation process with parallelisation has ~400% reduction of process 
time. Therefore, the proposed sensitivity generation process with parallelisation is the most 
time efficient generation process. 

4. Conclusion 

Efficient sensitivity generation processes as outlined here rely on the reduced sparse 
sensitivity matrix representation and parallelisation in the generation process. One of the main 
steps in the generation of the reduced sensitivity matrix is the selection of the approximate 
efficient regions. Every node in the ROI should have a sensitivity value higher than the 1% of 
the maximum absolute sensitivity value and the approximated ROI should cover the entire 
efficient region as defined by this criteria, since any nodes with less than 1% contribution are 
not likely to contribute to parameter recovery. Approximate ROIs are selected based on 
threshold of an approximated and computationally fast sensitivity matrix (Eq. (5)), therefore 
the threshold value can affect the accuracy of the reduced sensitivity matrix. Based on 
evaluation results, accuracy of the reduced sparse sensitivity matrix increases as the threshold 
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decreases. Compared to the original sensitivity matrix, the reduced sparse sensitivity matrix 
based on 0.001% threshold has less than 0.8% maximum sensitivity error in the ROI and 
~0.02% average sensitivity error within grey matter, which is the sampled area using our HD-
DOT setup. To ensure the sensitivity accuracy in the ROI the reduced sensitivity matrix based 
on 0.001% threshold is therefore used in this study. 

The effect of FEM mesh resolution on accuracy of the sensitivity matric is also presented. 
It is shown that as the node density of the mesh increases, the numerical accuracy of the 
sensitivity matrix also increases, highlighting the need for use of high resolution meshes for 
model based parameter recovery. The sensitivity matrices based on the mesh with 320000 
nodes has the smallest sensitivity error (~4%) and the sensitivity matrixes based on the mesh 
with 50000 nodes has the biggest sensitivity error (~10%). 

The effect of using a reduced sparse sensitivity matrix on brain activation recovery is 
evaluated based on simulated whole cortex (flat field) activation. Recovery results based on 
the original sensitivity matrix and the reduced sparse sensitivity matrix are compared for the 
whole cortex, and there is no visual difference on the recovery results based on the two 
matrices. Therefore, the reduced sparse sensitivity matrix is an acceptable alternative of the 
original sensitivity matrix. 

Compared to the original sensitivity matrix, the reduced sparse sensitivity matrix has clear 
advantages on the memory and computational time efficiency for the generation process. 
Based on eight meshes of varying node resolution, storage memory of the original sensitivity 
matrix and the reduced sparse sensitivity matrix both increase as the node density of the mesh 
increases. The memory reduction of the reduced sensitivity matrix is over tenfold for all 8 
meshes and it increases as the node density of the mesh increases. The mesh with 320000 
nodes has the biggest original sensitivity matrix (~8.4 GB) and the biggest reduced sparse 
sensitivity matrix (~0.7 GB), yet providing the largest memory reduction of memory 
requirements (~1240%), such that it is possible to calculate and store these matrices for 
parameter recovery on simple hardware. 

Two efficient calculations of the reduced sparse sensitivity matrix are also investigated 
based on parallelisation within the generation process itself. Processing time for meshes of 
different resolutions, for both light field calculations as well as the sensitivity matrix 
calculations have shown that, as expected, parallelisation based on multiple CPUs provide an 
enhanced computational speed. For all example meshes of varying resolution, the process 
time increases as the node density of the mesh increases, but there is no linear relationship 
between the node density of the mesh and the reduction of the processing time, which in part 
is due to hardware limitation and the use of swap memory in extreme cases. The mesh with 
320000 nodes has the longest processing time for the conventional calculation (~470 minutes) 
and longest processing time for the proposed calculation process with parallelisation (~65 
minutes). The mesh with 50000 nodes has the shortest processing time for the (~30 minutes) 
and shortest processing time for the proposed process with parallelisation (~7 minutes). For 
all eight meshes, the reduction of the processing time is ~170% using the proposed process 
without parallelisation and ~400% with parallelisation. Since there are some delicate 
structures in human brain such as the small folds in the gyri that cannot be represented by low 
density meshes, the structure of the meshes can become more complex when reaching certain 
limitations of the node density, again highlighting the need for the utilisation of high density 
FEM meshed for model based parameter recovery. 
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