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Abstract

The field of metabolomics continues to witness rapid growth driven by fundamental studies, 

methods development, and applications in a number of disciplines that include biomedical science, 

plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, 

etc. NMR spectroscopy is one of the two most widely used analytical platforms in the 

metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and 

quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to 

generate metabolite profiles using intact biospecimens with no need for separation, and its 

capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths 

for metabolomics applications. However, NMR's limited sensitivity and resolution continue to 

pose a major challenge and have restricted both the number and the quantitative accuracy of 

metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has 

increased the demand for new methods with improved detection, better unknown identification, 

and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed 

significant improvements in these areas, and have thereby enhanced the pool of routinely 

quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise 

opportunities to exploit the combined strength of the two analytical platforms for direct 

comparison of the metabolite data, unknown identification and reliable biomarker discovery that 

continue to challenge the metabolomics field. This article presents our perspectives on the 

emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an 

emphasis on recent and ongoing research from our laboratory.
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1. Introduction

The field of metabolomics, involving the parallel and quantitative detection of large 

numbers of small molecules in biological systems, offers new avenues for understanding 

biological phenotypes, deciphering mechanisms, and identifying biomarkers or drug targets 

for a variety of conditions [1–5] (Fig. 1). Given the powerful attributes of the metabolomics 

field, applications have spread broadly to numerous areas, from health and disease, food, 

energy and the environment, etc.; nevertheless, a majority of studies are focused on 

understanding, preventing, diagnosing, managing (and possibly curing) human diseases. 

Advanced analytical methods can now be employed to profile a wide variety of biological 

specimens. The currently detectable metabolome is complex and rich; approximately 30,000 

endogenous human body metabolites have been identified thus far, with a majority 

belonging to various lipid classes [6]. These metabolites represent the downstream products 

of gene expression and protein action, and thus provide an instantaneous snapshot of 

biological phenotype. Additionally, while vast progress in genomics and proteomics enables 

understanding of altered genes and proteins in pathogenesis, a combination of these omics 

with metabolomics promises a better understanding of disease development, the discovery 

of new gene functions and drug targets, and improved biological validation of disease 

mechanisms and biomarkers.

NMR and MS are the most commonly used methods to analyze the metabolome because of 

their ability to analyze hundreds of metabolites in a single measurement. NMR's unique 

capabilities and complementarity to MS allow it to play a key role in the multidisciplinary 

metabolomics field, including a range of methods development and applications. As a result, 

the number of reported studies has grown rapidly in recent years, though not as quickly as 

MS (Fig. 2). The high complexity of biological samples and the interest in uncovering, 

measuring and understanding subtle changes in the metabolome due to the influence of a 

variety of genetic and environmental factors require new methods for improved detection, 

unknown identification and quantitation of a large pool of metabolites.

Given this backdrop and current needs in metabolomics, what role does and will NMR 

spectroscopy play in metabolomics? In this perspective, we hope to answer this question as 

we describe our efforts and those of others over the past decade to improve NMR-based 

metabolomics in several areas that address a number of significant bottlenecks in the field. 

In particular, new approaches to improve the quantitation, resolution, and coverage of the 

metabolome as well as methods to better integrate NMR with mass spectrometry for 

biomarker discovery and unknown metabolite identification are discussed. The goal of this 

perspective is not to review the field, and thus readers are referred to a number of fine 

reviews of the exciting and expanding field of metabolomics [4,5,7–12]. Instead, we hope to 

highlight some of the challenges and new developments that will help propel NMR-based 

metabolomics forward.

2. NMR characteristics for metabolomics and key challenges

NMR spectroscopy exhibits numerous unique and favorable characteristics that are 

beneficial to the field of metabolomics (see Table 1) [13]. Importantly, (1) NMR is highly 
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reproducible and quantitative; a single internal reference is sufficient for absolute metabolite 

quantitation over an incredible dynamic range (see Fig. 3) since signals in NMR have the 

same sensitivity, independent of the properties of the metabolite; (2) a combination of NMR 

techniques enables the unambiguous identification of structures for unknown metabolites, 

which is important considering that a majority of the detected metabolites in complex 

biological mixtures is unknown; (3) NMR enables analysis of intact biofluids and tissues 

with no need for sample separation or preparation, which is important considering that 

factors associated with sample preparation and separation contribute to analytical variability 

and represent a major bottleneck; (4) NMR is non-destructive, which means the sample 

remains intact after the analysis and can be used for reanalysis at a later time period or 

analysis using other methods such as MS; (5) NMR possesses unsurpassed capability to 

trace metabolic pathways and measure metabolic fluxes utilizing isotope labeled substrates; 

(6) NMR provides unique opportunities to translate in vitro findings to clinical applications 

in vivo; and, finally, (7) metabolite profiles obtained by NMR are virtually independent of 

the operator and instrument used, which provides a high degree of reliability to the derived 

results.

Despite numerous unique characteristics and advances, however, it is increasingly clear that 

the complexity of biological mixtures far outweighs the current capabilities of NMR. The 

limited resolution and sensitivity of NMR, along with the difficulties associated with 

unknown metabolite identification (particularly for low concentration species) pose a major 

challenge for unraveling the complexity of biological mixtures. These challenges have 

restricted both the number and the quantitative accuracy of metabolites analyzed. The 

number of NMR detectable metabolites in a typical cell, tissue or blood sample ranges from 

approximately 20 to 60, which is far fewer than the actual number of metabolites present in 

a biological system. In addition, the standard NMR methods used to determine the structures 

of unknown species are much more difficult to implement when analyzing complex 

mixtures.

Furthermore, an altogether different challenge is that metabolite data for the same or similar 

samples obtained using NMR and MS are often not directly comparable. This is a major 

bottleneck for biomarker discovery as well as for exploiting the combined strength of the 

two analytical platforms for unknown metabolite identification. In view of these challenges, 

there is high demand for the development of new methods to facilitate identification and 

quantitation of a significantly larger number of metabolites on a routine basis, and to directly 

compare and combine data from NMR and MS.

3. Metabolite detection and quantitation

An important characteristic that has drawn NMR-based metabolomics to prominence is the 

ability to analyze intact samples with no need for sample preparation or separation. 

However, while analysis of intact samples continues to be attractive for samples such as 

urine, it is increasingly realized that analysis of intact human blood serum or plasma has 

serious limitations. First, the number of metabolites detected is restricted to ~30 or less, 

which is far fewer than the actual number of blood metabolites. Metabolites that bind to 

serum/plasma proteins are either invisible or significantly attenuated in the NMR spectra 
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(Fig. 4); as a result, concentrations of many detected metabolites including important species 

such as lactate, histidine, tyrosine and phenylalanine, are grossly underestimated [14,15]. In 

addition, residual macromolecule signals retained in the CPMG spectra of intact serum/

plasma often produce distorted baselines, which affect reliable metabolite quantitation. And 

finally, due to the exchange between protein-bound and free metabolites in solution, 

transverse relaxation (T2) times become reduced, resulting in significantly broadened NMR 

peaks and poor quantitative accuracy. Due to such limitations, applications of the vast 

majority of the NMR studies of intact blood serum/plasma have been restricted to measuring 

relative peak intensities, instead of absolute concentrations.

Alternatively, several approaches have been made to remove proteins physically using ultra-

filtration, solid phase extraction, or protein precipitation using organic solvents such as 

methanol, acetonitrile, acetone, perchloric acid and trichloroacetic acid [16–19]. For 

example, a study focused on improving blood metabolite detection using ultra-filtered 

human plasma from NIST SRM (National Institute of Standards and Technology Standard 

Reference Material) identified 39 metabolites [20]. Another exhaustive study of ultra-

filtered serum, as a part of investigations of the human serum metabolome, identified 49 

metabolites [21] (Fig. 5). However, despite the large literature on serum/plasma protein 

removal that provides numerous options, few quantitative comparisons have been made, 

thus leaving no clear choice for NMR.

Focused on a quantitative evaluation, we recently compared ultrafiltration and protein 

precipitation methods using various organic solvents including methanol, acetonitrile, 

perchloric acid and trichloroacetic acid [22]. The results clearly show that protein 

precipitation exhibits superior performance over ultrafiltration for quantitatively recovering 

blood metabolites from the protein matrix (Fig. 4), and the reduced interference from 

macromolecular signals allows a dramatic increase in the number of detectable and 

quantifiable metabolites. We also compared the performance of acetonitrile and methanol, 

which are used almost interchangeably by many researchers for serum/plasma protein 

precipitation, by evaluating numerous solvent-to-serum ratios and measuring the absolute 

concentrations of nearly 60 blood metabolites. The results reveal a surprisingly poor 

performance for acetonitrile precipitation [23]; in particular, one third of the detected 

metabolites were attenuated by up to 67% compared to methanol precipitation at the same 

solvent to serum ratio of 2:1 (v/v). Nearly 2/3 of the metabolites were further attenuated by 

up to 65% upon increasing the acetonitrile to serum ratio to 4:1 (v/v). The results clearly 

indicate that methanol precipitation, apart from being more quantitative, is less susceptible 

to variation caused by different amounts of methanol (Fig. 6). Acetonitrile, on the other 

hand, deleteriously affects metabolite levels, due to the poor solubility of many metabolites 

in this solvent, and hence is clearly unsuitable for quantitative analysis of, specifically, 

hydrophilic blood metabolites. We note that, due to the lack of a comprehensive evaluation 

of blood metabolite quantitation, acetonitrile is often incorrectly considered to be a better 

solvent for serum protein precipitation in the metabolomics field.

While most quantitation methods in the NMR literature involve introducing an internal or 

external standard, we introduced an alternative method that uses the solvent itself as the 

standard, which enables accurate quantitation of metabolites and obviates the need for any 
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external or other internal reference (Fig. 3) [24]. Interestingly, this study demonstrates that 

the concentration determination is linear over 7 orders of magnitude in NMR, in a range of 4 

μM to over 100 M. This linear range is larger than almost all other analytical methods 

available. Further, the method is robust and fairly indifferent to probe tuning or salt 

concentration. Fig. 3 demonstrates the results of quantitative analysis of metabolites using 

water as a solvent, but, similarly, other solvents can easily be used. Factors that are 

associated with NMR signal receiving efficiency [25], the receive gain function [26], and 

receiver gain compression [27] have been discussed in detail and provide greater insights 

into quantitation using such reference-free methods.

Quantitation of metabolites using 2D NMR spectra is more challenging and has been 

somewhat more limited. A major challenge for absolute quantitation of metabolites using 2D 

experiments such as HSQC, for example, is that the peak integrals depend on a number of 

parameters such as RF pulse power, inter-pulse delays, the magnitude of heteronuclear J-

couplings, and T1 and T2 relaxation times. Numerous efforts have focused on alleviating this 

challenge, including calibration curves [28], correction factors calculated from solving the 

Bloch equations [29], and calculating a “time zero” HSQC spectrum derived by 

extrapolating the peak intensity back to zero time using a series of HSQC spectra [30]. The 

latter method requires no need for calibration curves or correction factors for each 

metabolite; however, this method requires multiple 2D spectra for each sample.

Another issue to consider is the presence of several high concentration species, such as 

glucose, lactate and others, that overshadow a large number of metabolite signals. We 

recently introduced a method termed “Add-to-Subtract” that offers a simple avenue for 

effectively suppressing the dominant (and complicated) signals from glucose, which has a 

concentration of at least an order of magnitude higher than other metabolites in blood and 

diabetic urine [31]. In this approach, a small drop of concentrated glucose solution is added 

to the sample in the NMR tube; the sample is mixed, equilibrated, and then a second 

spectrum is obtained. A new spectrum is calculated, which is free of any glucose signals, by 

a careful weighted subtraction of the two spectra obtained before and after addition of 

glucose. The Add-to-Subtract spectrum thus obtained enables easier identification of low 

intensity signals that otherwise are masked (see Fig. 7). The background subtraction 

approach can be used for a variety of purposes, such as improving the spectral inputs to 

multivariate analysis, for example [31]. Generally, a challenge for multivariate statistical 

methods such as principal components analysis (PCA) is that strong background signals 

often dominate the outcome and thus low concentration metabolites that potentially have 

important biological meanings are often masked or suppressed. Here, the high glucose 

background in the NMR spectra of blood serum/plasma and diabetic urine dominates the 

PCA results. The removal of glucose (or any other high intensity) signals benefits the 

identification and quantification of low level metabolites, and can potentially lead to the 

discovery of additional key metabolites.

To date, although a variety of 1D and 2D NMR techniques are employed for metabolite 

detection and quantitation, traditional 1D NMR techniques continue to be the workhorse 

methods for routine metabolite profiling. In particular, owing to the ease of analysis and 

high-throughput capabilities [32,33], the 1D NOESY and CPMG pulse sequences with water 
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signal suppression are still the most popular NMR experiments. 1D NOESY is useful for 

biofluids such as urine and extracted metabolite mixtures that are generally devoid of 

macromolecules, and the CPMG experiment is often used for samples such as blood serum/

plasma to attenuate the large and broad signals that result from high concentrations of 

macromolecules such as proteins and lipids. The classical water presaturation method is still 

the most commonly used approach; nevertheless, a number of newer sequences including 

presaturation utilizing gradients and echoes, excitation sculpting [34] and the combinations 

of gradient and weak rf pulses such as the WET sequence [35], have been demonstrated to 

provide improved suppression. A 1D NMR pulse sequence that filters small molecules based 

on differences in their diffusion coefficients has also been demonstrated [36]. We introduced 

two sequences, WET180 and Pre-SAT180 (Fig. 8) [37,38], which provide further 

improvements in water suppression. Essentially, these two methods compensate for the 

deleterious effects of signals from “far away” water that are otherwise hard to suppress. 

Results of these approaches show the full retention of signal intensity and selectivity, good 

phase properties, and high tolerance to pulse missettings.

4. Unknown metabolite identification

The incredible complexity of biological samples is increasingly being realized as a result of 

advances in analytical instrumentation and their ability to probe such samples more 

sensitively and deeply. For example, a recent investigation by MS reported the detection of 

nearly 30,000 metabolite features in blood [39]. Although, due to significant redundancy, 

each feature in the MS spectrum does not correspond to a unique metabolite, such high 

feature numbers are another indication of the high complexity of biological mixtures. 

Unknown metabolite identification from the data of such samples is a major challenge for 

the metabolomics field. Current peak identification capabilities of MS typically leave more 

than 2/3 of globally detected metabolite features unidentified. Similarly, for NMR, unknown 

metabolite identification is an important challenge. Numerous chemical shift databases help 

immensely to narrow peak assignments to a relatively small list of potential metabolite hits. 

However, choosing the correct metabolite that provides an unambiguous peak assignment, 

especially for low concentration metabolites, is a challenge because most of these metabolite 

peaks are partially or completely overlapped by more abundant metabolite signals.

Numerous efforts have been focused on identifying unknown metabolites in the complex 1D 

and 2D NMR spectra. For 1D, selective TOCSY is one such approach that has been shown 

to be useful for unraveling the complexity of NMR spectra. Selective TOCSY opens 

avenues for both unknown metabolite identification as well as reliable metabolite 

quantitation [40–42]. The ability of selective TOCSY to connect peaks that are part of the 

same coupled network of spins arising from a single metabolite results in multiple peaks that 

are free of interferences and thus aids significantly in positive identification. An example of 

the application of selective TOCSY to isolate low concentration metabolites from complex 

biological mixtures is demonstrated in Fig. 9a–c. TOCSY can also be used to improve the 

quantitation of highly overlapped metabolites in complex mixtures, as we demonstrate in 

Fig. 9d and e, for the case of taurine in urine [40]. And an additional advantage of selective 

TOCSY is that it enables the identification of low concentration metabolites that may be 

important for distinguishing sample classes even when they occur in the presence of more 
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dominant, high intensity signals that do not provide such distinguishing capabilities. 

Moreover, we have shown that a combination of selective TOCSY with HPLC fractionation 

offers additional advantages for unknown identification, especially when dealing with 

extremely complex NMR spectra [43].

Combining an array of 1D/2D NMR experiments, database searches, and spiking with 

authentic compounds, we recently reported the unambiguous identification of nearly 70 

blood metabolites, a large number (nearly 1/3) of which had not been previously identified 

in the NMR spectra of blood [23]. Further, experimental protocols and comprehensive peak 

annotations have been provided to take advantage of the high reproducibility and 

quantitative nature of NMR, and to mitigate against the sensitivity of NMR chemical shifts 

to altered sample conditions. Such details enable easy reproduction of NMR spectra and 

serve as a visual guide for identification of the enhanced pool of blood metabolites for 

routine applications. Importantly, this protocol enables even non-expert NMR users to easily 

identify and quantify blood metabolites, thereby allowing effective use of this tool. This 

advance represents a significant step forward, considering that assigning unambiguous peaks 

for many metabolites with low (≤few μM) concentrations is especially challenging, since 

many of these peaks are often buried underneath abundant metabolite signals.

Unknown metabolite identification in human urine is generally met with added challenges. 

Urine provides a rich source of information as it generally contains a significantly higher 

number of NMR detectable metabolites compared to serum/plasma. However, the high 

number of metabolites, coupled with their vast concentration range (~106), results in 

extremely complex NMR spectra. Contributions from numerous factors including diet, 

medications, personal habits such as physical activity or smoking, gender, age, gut microbe 

diversity, as well as genetics, affect the metabolome and add to the spectral complexity [44]. 

In fact, due to such factors, urine from even the same individual exhibits significant 

variability depending on the time of the day of urine collection, although the basic 

metabolome is preserved over time [45]. Further, varied pH (approximately from 5 to 8) and 

salt concentration cause significant peak shifts for many metabolites, especially, for those 

with functional groups with pKa's near physiological pH. Although efforts have been made 

to maintain the same pH for all samples before NMR analysis, achieving such conditions is 

often challenging [46,47]. Due to these reasons, the number of metabolites identified and 

quantified in urine has often been restricted to about 50 or less. Notably, a more recent study 

presents the identification of a surprisingly high number of metabolites; using Chenomx 

software and spiking with authentic compounds, a total of 209 urine metabolites with an 

average of 167 ± 19 identified metabolites per sample has been reported [48]. The number 

of metabolites thus identified by NMR is far higher than that obtained from even the more 

highly sensitive method of GC–MS. However, considering the high complexity of the urine 

NMR spectrum and the sensitivity of chemical shifts to factors such as pH and salt 

concentration, routine analysis of such a high number of urine metabolites using 1D NMR is 

still a challenging task. Improvements in the NMR analysis of urine would greatly benefit 

the metabolomics community.
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4.1. 2D methods

There has been increased interest to identify metabolites using 2D NMR by exploiting the 

resolution offered by the second dimension. Heteronuclear 2D experiments, especially 

the 13C–1H HSQC experiment, provide excellent spectral resolution along the indirect 

heteronuclear (13C) dimension as the impact of peak redundancy is not as large as that seen 

in homonuclear 2D experiments. Only a single peak is observed for each carbon (other than 

quaternary carbons), and the broad chemical shift range (>200 ppm) improves resolution. 

Despite the low natural abundance of the heteronuclei, which contributes to increased 

experimental time and makes the use of HSQC challenging for high-throughput 

applications, numerous metabolite identification [49,50] and quantitation strategies [28,30] 

have been reported, which indicate the importance of HSQC in metabolite identification. 

Databases such as HMDB (Human Metabolome Database) [6], BMRB (Biological Magnetic 

Resonance Data Bank) [51], MMCD (Madison Metabolomics Consortium Database) [49] 

and PRIMe (Platform for RIKEN Metabolomics) [52] are immensely useful in the 

identification of unknown metabolites using HSQC spectra. A publicly available, 

semiautomated software tool, MetaboMiner, can identify metabolites from 2D spectra by 

making use of a spectral reference library to automatically match peaks and identify 

compounds [53]. More recently, an improved query algorithm named COLMAR (Complex 

Mixture Analysis by NMR), which helps to identify metabolites based on a database that 

combines the spectral data from BMRB and HMDB, has been shown to achieve higher 

performance in terms of sensitivity and specificity than other tools [54]. Separately, there 

have been efforts to overcome the limitations of low natural abundance by using 

uniform 13C labeling, and the recent study by the RIKEN group to identify over 200 plant 

metabolites currently stands as an important benchmark [55]. Metabolites in the spectra of 

uniformly 13C-labeled mixtures can be identified by combining 13C–13C TOCSY spectrum 

with techniques such as DemixC [56] or DeCoDeC [57]. The DeCoDeC technique has also 

been used to identify 1D traces of individual metabolites using other heteronuclear 

experiment such as 2D 13C–1H HSQC-TOCSY or 2D planes using the combination of 

2D 13C–1H HSQC-TOCSY and 2D 13C–1H HSQC experiments [57]. Further development 

of 2D methods that can help unravel the complex metabolome of biological samples 

presents a great opportunity, one that is sure to be well received by the metabolomics 

community.

4.2. Correlation and related statistical methods

Correlation approaches have attracted major interest for their ability to reduce NMR spectral 

complexity and identify peaks that belong to the same metabolite. STOCSY (statistical total 

correlation spectroscopy) generates correlation coefficients between every pair of 1D NMR 

peaks across multiple spectra, and metabolites can then be identified based on peaks 

showing high correlations [58–62]. A large number of variants of STOCSY have been 

developed for compound identification, data preprocessing, and metabolic pathway analysis 

(Fig. 10). For example, STORM (subset optimization by reference matching), a variant of 

STOCSY, aims to improve structural correlations using reduced spectral subsets containing 

smaller numbers of samples than the number of variables [63]. Another approach, SHOCSY 

(homogeneous cluster spectroscopy), reduces the variation within biological classes by 
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selecting subsets of homogeneous 1H NMR spectra that contain specific spectroscopic 

metabolic signatures related to each biological class in a study [64].

Alternatively, Covariance NMR [65] uses a statistical calculation to generate a high 

resolution spectrum similar to that obtained in the direct dimension using a small number of 

increments in the indirect dimension, which can potentially save up to an order of magnitude 

in data acquisition time. Indirect dimension data are processed using covariance calculations 

instead of Fourier transformation, resulting in a reduced data acquisition time for 2D NMR 

experiments without compromising the resolution.

We introduced a novel statistical approach based on peak ratios that is complementary to the 

correlation and covariance approaches. This method, RANSY (Ratio Analysis of Nuclear 

Magnetic Resonance Spectroscopy), offers new avenues for metabolite identification in 

complex mixtures by facilitating the isolation of peaks from the same metabolite [66] (Fig. 

11). RANSY works on the principle that the intensity ratios between NMR peaks from the 

same metabolite are fixed and identifies the peaks of a specific metabolite on the basis of 

peak height or integral ratios. Peak ratios derived from a set of NMR spectra are divided by 

the ratios’ standard deviations across a sample set to generate the individual RANSY 

spectrum:

where Pi is an individual peak intensity, Pd is the driver peak used across the spectrum 

(usually a peak of interest for a particular metabolite), and σid is the standard deviation of 

the peak ratio across the different spectra. The fixed ratios of NMR peaks arising from the 

same molecule lead to small σid and thus large RANSY values. RANSY was demonstrated 

for both 1D and 2D NMR spectra and compares quite favorably to correlation methods. For 

example, RANSY can identify additional peaks from valine and leucine (Fig. 11b and d, 

respectively), whereas correlation is not nearly as able to identify such related peaks (Fig. 

11c and e, respectively). More recently, the RANSY principle was extended to identify 

metabolites using mass spectral data [67]. In this approach, called RAMSY (Ratio Analysis 

of Mass Spectrometry), mass fragment peaks for the same metabolite were identified using a 

single mass chromatogram. The RANSY and RAMSY methods provide a powerful 

approach for reducing the interference of peaks that arise from other metabolites and thus 

promise significant improvement for unknown metabolite identification. The RANSY 

approach is also potentially useful for combining NMR and MS (heterospectroscopic) data, 

again for improved metabolite identification, and work is in progress along these lines. We 

anticipate that new statistical approaches will continue to develop and help to address the 

hallenging metabolite identification problem.

5. Expanding the metabolite pool using isotope labeling strategies

The use of isotope labels provides an exciting capability to increase the number of NMR 

detectable metabolites that results from improved resolution and sensitivity. Both in vivo and 

ex vivo isotope labeling have dramatically improved the ability to investigate metabolic 
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mechanisms, as well as to identify and accurately quantify low concentration metabolites in 

biological samples. In vivo isotope labeling has largely been focused on targeting altered 

metabolic pathways to better understand the composition and origins of various metabolic 

products from different pathways, and to measure their fluxes [68]. Additionally, the use of 

in vivo isotope labeling for enhancing sensitivity and resolution is gaining increased interest 

[55,69]. For such applications, metabolites are labeled globally with isotopes such as 13C by 

growing cells, for example, in media supplemented with isotope labeled substrates and 

detected generally using 2D NMR experiments. Such non-selective isotope labeling, apart 

from being able to detect hundreds of metabolites, enables acquiring homonuclear (as well 

as enhanced heteronuclear) experiments involving labeled nuclei and provides new avenues 

for metabolite identification. Numerous efforts have been made in this direction, where it 

has been shown that organisms including bacteria and yeast, and even plants can be 

fully 13C-labeled, and information on a couple of hundred metabolites can be derived 

using 13C–13C 2D NMR experiments. Moreover, uniform 13C-labeling allows the 

determination of the carbon backbone topology of unknown metabolites as a first step 

toward structure determination, which is much more difficult using 1H NMR alone [70]. 

Quantitation of metabolites using such 2D experiments is possible, even without the need 

for internal standards [71].

Ex vivo isotope labeling has provided new avenues to enhance the pool of quantifiable 

metabolites. Here, selective detection of a specific class of metabolites offers opportunities 

for systematically unraveling the complexity of biological mixtures and reliably identifying 

and quantifying large numbers of metabolites (Fig. 12). This is important since reliable 

detection and quantitation of many metabolites across a larger number of metabolic 

pathways is becoming increasingly important as a means to better understand various 

biological processes. Owing to their wide chemical shift dispersion compared to 1H, we 

have used heteronuclei such as 13C, 15N and 31P to tag metabolites, which offers benefits in 

terms of resolution and sensitivity [72–76] (Fig. 13). Inverse 2D NMR detection of such 

isotope tagged metabolites through the naturally sensitive 1H spin provides improved 

resolution and better sensitivity compared to the detection of non-labeled metabolites. A 

number of methods for the selective detection of different metabolite classes based on 

functional groups has been developed. Amino-group containing metabolites have been 

tagged with 13C-isotope based acetylation or formylation reactions and the tagged 

metabolites are detected using 1H–13C 2D NMR experiments with enhanced resolution and 

sensitivity [72,73]. Carboxyl-group containing metabolites, tagged with a 15N-isotope 

labeled ethanolamine tag, have been detected using 1H–15N 2D NMR [74] (Fig. 14). An 

important aspect of such tagging approaches is that, unlike the conventional 1H NMR, a 

single peak is generally observed for each tagged metabolite. The resulting spectral 

simplification, combined with the effective suppression of non-tagged metabolites, 

significantly adds to the improved resolution and NMR sensitivity, and allows the detection 

of over a hundred metabolites from a single class of compounds. Importantly, since the 

magnetic characteristics of the detected pairs of nuclei from the tag (i.e., the J-couplings and 

relaxation times) are very similar for different tagged metabolites, relative peak area is a 

direct measure of relative concentration. A single internal reference is sufficient for the 

determination of absolute concentrations of metabolites with high accuracy. The tagged 
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metabolites are demonstrated to exhibit excellent reproducibility and good linearity with 

coefficients of regression (R2) greater than 0.99 [74]. Further, 15N-labeled metabolites could 

be detected with concentrations as low as 8 μM (signal to noise ratio (SNR) ~3) using an 8 

min 2D experiment at 800 MHz (without cryoprobe detection). Due to many advantages of 

this approach, new isotope tags that offer novel avenues to exploit the combined strength of 

NMR and MS are also being developed [77] (vide infra).

6. Micro-coil NMR

Micro-coil probes offer additional sensitivity for NMR detection of metabolites and are 

especially useful for mass limited samples [78–84]. Small coil volumes combined with their 

solenoidal geometry contribute to significant signal enhancement compared to the 

conventional probes. Considering their potential utility in the metabolomics field, numerous 

efforts in our laboratory and others were focused on developing and testing micro-coil 

probes with different sample volumes and with single, dual and even quadruple sample coils 

(Fig. 15) [78–81,85–87]. We have shown that susceptibility matched plugs and zero 

susceptibility wire offer volume efficiency and improved magnetic field homogeneity 

[81,82]. Liquid chromatography often used for separating metabolites from complex 

mixtures is invariably associated with mass limited conditions, and thus a number of such 

applications have demonstrated the utility of micro-coil probes using direct online detection 

[88,89], after online pre-concentration [90,91] or after offline pre-concentration [84]. 

Commercially available micro-coil probes with automation have also been demonstrated to 

be suitable for high-throughput and routine metabolomics applications [92]. While micro-

coil NMR offers superior sensitivity for mass limited samples, it is important to be cautious 

while concentrating samples before performing micro-coil NMR. This is because 

metabolites with limited solubility and sample matrices with high salt or protein 

concentration will adversely impact both the relative and absolute concentrations of 

metabolites. An evaluation of the effect of concentrating the commonly used serum and 

urine samples was made recently, and indicated that the sensitivity improvement does not 

follow an anticipated linear increase and is dependent on both the metabolite and sample 

matrix [83]. Nevertheless, micro-coil NMR approaches remain attractive given the precious 

nature of many biological samples and the need to perform detailed analyses on these 

samples, such as for unknown identification.

7. Hyperpolarization in NMR

Hyperpolarization methods such as optical pumping of 3He or 129Xe, parahydrogen induced 

polarization (PHIP) and dynamic nuclear polarization (DNP) boost the nuclear polarization, 

enhance sensitivity and enable real time monitoring of metabolism in vivo. In particular, 

PHIP and DNP are shown to be useful for hyperpolarizing nuclei such as 13C or 15N in 

various substrates and detecting their downstream products. Infused hyperpolarized 

substrates undergo metabolic transformation in vivo and the transformed metabolic products 

that remain highly polarized are detected with high sensitivity. Common among the studies 

that employ PHIP is the PASADENA (parahydrogen and synthesis allow dramatically 

enhanced nuclear alignment) [93,94]. Apparently, PHIP offers a fast preparation step, of the 

order of 1 min. However, this method is restricted to unsaturated substrates for molecular 
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addition of parahydrogen and hence important substrates such as 13C-pyruvate are not 

amenable to hyperpolarization by this method. There have been efforts focused on 

alleviating this bottleneck; for example, potassium 13C-phosphoenolpyruvate has been used 

to obtain hyperpolarized 13C-lactate, which is metabolically linked to 13C-pyruvate [95]. 

DNP, on the other hand, uses paramagnetic centers to transfer polarization from electron 

spins to neighboring spins of the substrate [96,97]. DNP can be used to hyperpolarize 

metabolites with a wide range of molecular structure. A promising method for metabolism 

studies is the dissolution DNP approach, wherein the solid sample is dissolved in an 

appropriate solvent after hyperpolarization occurs and transported into a high resolution 

NMR spectrometer [98]. Dissolution DNP is used in many occasions using a wide range of 

substrates [99]. DNP combined with the fast acquisition method proposed by Frydman 

enables sub-second acquisition of 2D NMR spectra [96]. However, the long 

hyperpolarization preparation time, of the order of 1 h or more, and the need for an external 

(expensive) polarizer are major drawbacks that limit routine applications of the DNP. 

Sensitivity enhancement is always attractive for NMR, though further technology advances 

are needed to allow the investigation of a broader range of metabolites and their pathways.

8. NMR of tissue

An important capability of NMR is that it provides a unique opportunity to profile 

metabolites from the intact tissue, nondestructively, using high resolution magic angle 

spinning (HR-MAS) techniques [100]. Tissue metabolic profiles represent a sensitive 

method for detecting disease biomarkers owing to the close association of the tissue with 

disease pathologies. HR-MAS provides highly resolved, liquid-like spectra of intact tissue 

samples, thereby offering opportunities for investigating metabolic mechanisms, as well as 

for disease diagnosis and prognosis. Importantly, the tissue can be recovered after NMR 

experiments and can be used for other studies such as proteomic and genomic analysis. 

Current technological advancements in HR-MAS NMR enable analysis of as little as a few 

nano-grams of tissue [101]. Such capabilities, combined with minimal sample preparation 

and fast data acquisition, promises metabolic profiling of biopsied tissue for translation to 

clinical applications. In fact, studies have shown that HR-MAS NMR of core needle biopsy 

tissue can predict tumor aggressiveness prior to surgery in breast cancer patients [102]. 

Though underutilized and underappreciated as a technique in metabolomics, HR-MAS NMR 

provides a number of promising opportunities that nicely complement the analysis of 

extracted metabolites by NMR and MS.

9. Exploiting the combined strengths of NMR and MS

In view of the complexity of biological samples, there is increased interest in combining 

NMR and MS methods to establish structures for numerous unknown metabolites, to better 

interpret biological function and mechanisms, and to improve biomarker discovery. A major 

hurdle generally encountered in the analysis of samples using NMR and MS is that the 

metabolite data are often not directly comparable, which continues to be a significant 

challenge in the field. This challenge prevents drawing meaningful conclusions from the 

vast amount of metabolite data existing in the literature and limits exploitation of the 

combined strengths of NMR and MS in metabolomics (see Table 1). The main contributing 
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factors for this bottleneck are the limited NMR sensitivity, complex spectral signatures, 

variable MS ionization efficiency, and ion suppression (in LC-MS) that can cause attenuated 

or even missing metabolite peaks. Numerous approaches are being attempted, including the 

use of statistical methods and/or databases for improved structure or biomarker 

identification.

Standard or even new statistical approaches can be used to combine NMR and MS data, as 

we have shown using a combination of NMR and DESI (desorption electrospray ionization 

mass spectrometry)-MS [103] or DART (direct analysis in real time)-MS methods [104]. In 

the former study, results obtained from the two techniques were combined in 3D PCA plots 

to obtain a common list of metabolites associated with inborn errors of metabolism (IEM). 

In a new approach, NMR and DART data were combined using the NMR PCA outputs 

(continuous score values) to describe patient status, instead of the binary values of 1 for 

breast cancer and 0 for normal subjects. This information was then used for partial least 

squares discriminant analysis (PLS-DA) of the DART data. Using this approach, significant 

improvement in distinguishing metabolite profiles between cancer patients and controls was 

achieved (Fig. 16) [104]. Other approaches to combine NMR and MS data, such as utilizing 

multiblock principal component analysis (MB-PCA) and multiblock partial least squares 

(MB-PLS) have been recently demonstrated [105]; in this case, it provides significant 

improvement in the mechanistic understanding of dopaminergic cell death. Using a 

correlation approach called SHY (statistical heterospectroscopy), it was shown that NMR 

and MS data could be combined to enable the detection of new metabolites in complex 

mixtures [106] (Fig. 10). SHY relates peaks (either NMR or MS m/z peaks) for the same 

metabolite based on intrinsic correlation between peaks from the two spectroscopic 

platforms. Recently, a novel database approach combining MS with NMR for the 

identification of unknown metabolites in complex metabolite mixtures was introduced [107]. 

In this approach, a list of feasible structures based on the empirical chemical formula 

derived from accurate MS data is first generated, and then predicted NMR spectra for all 

structures are compared with the experimental NMR spectra to filter the list and identify the 

correct metabolite (Fig. 17).

Focused on more easily detecting and quantitating the same metabolites reliably using NMR 

and MS, we recently developed a new “smart tag,” approach that uses 15N-cholamine [77]. 

This isotope tag was designed to possess duel characteristics: (1) an NMR sensitive 

heteronuclear isotope with good chemical shift dispersion, and (2) a permanent charge that 

improves MS sensitivity (Fig. 18). The 15N-cholamine smart tag enables enhanced 

resolution and sensitivity for NMR detection similar to that obtained for 15N-ethanolamine 

(Fig. 14). Additionally, the permanent positive charge enhances the sensitivity of MS 

detection by up to three orders of magnitude by converting negatively ionizing organic acids 

to positively charged ions that result from the quaternary nitrogen in the tag [77]. By 

combining the individual strengths of the 15N label and permanent charge, the smart isotope 

tag facilitates effective detection of the carboxyl-containing metabolome by both NMR and 

MS methods. The smart tag approach opens avenues for comparing and correlating the data 

from the two analytical platforms, for exploiting their combined strengths in biomarker 

discovery, and for unknown metabolite identification as demonstrated in Fig. 19, in which 
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cholamine tagging is combined with RANSY to connect NMR peaks with accurate MS data. 

It is anticipated that many more approaches will be developed to explore and exploit this 

rich area of multiplatform, multidimensional data space.

10. Biomarker discovery and translation

In response to the growing need for improved diagnostic tests and new therapies, many 

biomarker discovery efforts are being made for translational applications focused on early 

disease detection, therapy prediction and prognosis, treatment monitoring and recurrence 

detection, as well as the important area of therapeutic target discovery. Numerous human 

diseases including inborn errors of metabolism, diabetes, cardiovascular disease, 

neurological diseases and cancer have been the targets of biomarker discovery efforts 

[4,108–111]. Our own work in biomarker discovery has mostly focused on identifying 

potential metabolite biomarkers for various types of cancers. For example, we have used 

NMR-based metabolite profiling to identify promising serum metabolite biomarkers of 

hepatocellular carcinoma [112], and pancreatic cancer [113]. Using a combination of NMR 

and MS analysis, a panel of serum biomarkers consisting of amino and organic acids was 

identified for the early detection of breast cancer recurrence [114]. Separately, a 

combination of NMR and MS detected biomarker candidates were identified that can predict 

response to neoadjuvant chemotherapy for breast cancer [115]. Similarly, biomarkers for 

esophageal cancer have been identified using NMR or in combination with MS [116,117]. 

See Fig. 20 for examples of these studies.

In order to translate the discovered biomarkers to clinical use, a number of validation steps 

are needed [4,118]. A first step typically involves pre-validation of the putative biomarkers 

to reduce the number of false positive biomarker candidates, and to assess the overall 

accuracy of initial multivariate models. Multivariate models are typically cross-validated 

either by splitting the data into a training and testing set, or by using a leave-n-out 

procedure, with typically 1% < n < 30% for n samples. The models are then evaluated by 

determining the diagnostic sensitivity and specificity, or more generally using a receiver 

operative characteristic (ROC) curve (Fig. 20c) to describe overall performance. The 

robustness of models can be tested using Monte Carlo Cross Validation (MCCV) [119], in 

which the whole dataset is randomly divided into training and testing sets to assess not only 

the predictive model's average performance, but also its range (Fig. 20d) [115]. This process 

is then iterated hundreds of times to evaluate the average accuracy of the model. Validation 

studies for translational applications should be properly designed and ideally take into 

account biological or technical variations. However, due to the cost and effort required to 

acquire a large number of samples, most early validation studies currently rely on relatively 

moderate sample sizes. As a result of such limitations, potentially confounding factors 

including diet, age, gender and subtle differences in pathology can strongly affect the 

performance of the derived biomarkers. Efforts to take these factors into account are still 

nascent.

There is also increased interest in developing biological validation (in addition to the 

analytical and clinical validation) of identified biomarkers, in order to reduce the number of 

false positive biomarker candidates that arise, and to provide deeper biological insight. 
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However, some parts of metabolism are insufficiently understood or quite complicated, such 

that it can be challenging to derive specific biological meaning for the promising biomarker 

candidates. We believe that efforts to translate metabolite biomarker panels for clinical 

applications and to find biological connection between the disease state and the derived 

biomarker panel are best pursued in parallel. Finally, greater insight into metabolic 

perturbations can lead to novel drug targets, which constitutes another exciting and growing 

area of opportunities in metabolomics.

11. Concluding remarks

In summary, NMR spectroscopy continues to play a key role in the metabolomics field. 

Numerous beneficial characteristics of NMR outweigh its limited resolution and sensitivity. 

NMR thus offers unique opportunities to understand systems biology, discover biomarkers 

and potential therapy targets, and translate laboratory findings to clinical applications. 

Outstanding opportunities exist in the application of NMR-based metabolomics to non-

health related fields as well. In particular, for any metabolite of moderate size, NMR is the 

essential technique for structure determination. However, because of the increasingly 

realized complexity of biological mixtures, reliable detection, unknown identification and 

quantitation (especially of a large pool of metabolites) continue to constitute daunting 

challenges. With appreciation of the advantages of NMR for metabolomics applications as 

well as its challenges, there have been multifaceted efforts to boost sensitivity, resolution 

and the speed of data acquisition, and to improve quantitative accuracy. Improved methods 

to combine and compare metabolite data from NMR and MS, for exploiting their combined 

strengths for unknown metabolite identification and biomarker discovery, are currently 

being developed, and these efforts will likely deliver important results. NMR-based 

metabolomics is anticipated to witness further improvements in the number, accuracy and 

speed of metabolite identification and quantitation, and thus greatly impact the 

understanding of systems biology with the hope of helping to manage widespread human 

diseases.
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Fig. 1. 
Schematic diagram depicting the application of NMR-based metabolic profiling for early 

disease diagnosis, systems biology research and drug target discovery.
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Fig. 2. 
The trend in metabolomics research studies published in the last 10 years using NMR 

spectroscopy and mass spectrometry [obtained by Web of Science searches using 

(metabolomic* OR metabonomic*) AND (NMR OR nuclear magnetic resonance); 

(metabolomic* OR metabonomic*) AND (MS OR mass spectrometry)].
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Fig. 3. 
Experimental proton concentrations determined by NMR at 25 °C, for partially deuterated 

water (circles), sodium acetate (squares) and N,N-dimethylformamide (diamonds, triangles) 

are plotted against the expected values. The dashed line shows the ideal correlation between 

experimental and expected values with a slope of 1. Standard deviations are generally too 

small to be plotted for concentrations larger than 75 μM [reprinted with permission from 

Ref. [24]].
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Fig. 4. 
Comparison of the aromatic region of 800 MHz, cryo-probe 1H NMR spectra of the same 

human serum sample obtained by suppressing protein signals (a) by T2 filtering using the 

CPMG pulse sequence, (b) by ultrafiltration using a 3 kDa molecular weight cut-off filter 

and (c) by protein precipitation using methanol (1:2). In (a) most of the metabolite signals 

are missing or significantly attenuated, while in (b) many metabolites including tryptophan, 

benzoate and formate are significantly attenuated when compared to (c) [reproduced with 

permission from Ref. [22]].
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Fig. 5. 
Venn diagram showing the number of serum metabolites detected by global NMR, GC–MS, 

LC/GC-FID, LC–ESI-MS/MS and MS/MS platforms [reproduced with permission from 

Ref. [21]].
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Fig. 6. 
Relative mean concentration values of nearly 60 abundant blood metabolites quantitated 

using NMR after protein precipitation using methanol (MeOH) or acetonitrile (ACN) at 

different solvent to serum ratios as indicated. The values are relative to the mean = 1 for 

MeOH at a 2:1 ratio. Note methanol performs most optimally over a wide range and the 

methanol to serum ratio of 2:1 provides the best performance [modified from Ref. [23]].
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Fig. 7. 
“Add to Subtract” approach for glucose peak removal: (a) 1H spectrum of urine with 

dominant glucose (added to mimic diabetic urine); (b) spectrum obtained after adding a 

small drop (a few μL) of external glucose to the biological sample in (a); and (c) “glucose 

free” spectrum obtained using “Add to Subtract” approach. Note that the vertical scale is 

enhanced for the spectrum in (c) to highlight clear identification of low intensity peaks that 

were buried underneath the abundant glucose peaks [modified from Ref. [31]].
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Fig. 8. 
(a) Pre-SAT180, a pulse sequence to effectively suppress the faraway water signal. (b) A 

schematic diagram shows the faraway water region and how its suppression is achieved. 

Arrows after each pulse indicate the contribution to the transverse magnetization from the 

different portions of the sample, including bulk solvent, faraway water and the solute. Top 

and bottom portions of the figure indicate inversion pulse on or off conditions. Receiver 

phase shifting creates the difference spectrum with improved solvent suppression 

[reproduced with permission from Ref. [38]].

Gowda and Raftery Page 29

J Magn Reson. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Left: (a) 1D proton spectrum of honey acquired using 1D NOESY sequence with 

presaturation for water suppression; (b) selective TOCSY spectrum of honey with selective 

excitation on the proline γ peak (1.98 ppm); (c) selective TOCSY spectrum for a mixture of 

10 mM L-proline and 10 mM L-arginine with selective excitation on the proline γ peak (1.98 

ppm). Note, in (b) low concentration proline peaks are clearly isolated from the complex 

honey spectrum using selective TOCSY method. Right: Titration of taurine into a human 

urine sample, showing (d) integral of 1D TOCSY spectrum around 3.28 ppm, and (e) 

integral of 1D proton spectrum around 3.28 ppm. Note, in (e) taurine is overestimated due to 

overlap in the 1D 1H spectrum, while it can be measured accurately using selective TOCSY 

as shown in (d) [modified from Refs. [40,41].

Gowda and Raftery Page 30

J Magn Reson. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
(a) An example of correlation of NMR and MS heterospectroscopic (SHY) data for 

unknown identification. And (b) statistical spectroscopy family tree. Branches in the tree 

show different variants of statistical spectroscopic tools used for compound identification, 

data preprocessing, and metabolic pathway analysis [reproduced with permission from Refs. 

[60,61]].
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Fig. 11. 
1H NMR spectrum of serum (a), obtained using the CPMG pulse sequence; (b) selective 

detection of valine from the serum 1H NMR spectrum by RANSY. The identified peaks 

around 3.6 ppm are from the α-CH proton; (c) selective detection of valine from the 

serum 1H NMR spectrum by statistical correlation; (d) selective detection of leucine from 

the complex serum 1H NMR spectrum by RANSY. The identified multiplet around 1.70 

ppm is from the β-CH2 and γ-CH protons; (e) selective detection of leucine from the 

complex serum 1H NMR spectrum by statistical correlation. The driving peaks are indicated 

by asterisks [reproduced with permission from Ref. [66]].
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Fig. 12. 
Schematic diagram for ex vivo isotope tagging of metabolites in complex biological mixture 

and detection using 2D NMR with enhanced resolution and sensitivity.
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Fig. 13. 
Reaction schemes for chemical derivatization using 13C, 15N or 31P tags to target amine, 

carboxylic acid or alcohol metabolites in complex biological mixtures to enable NMR 

detection with enhanced resolution and sensitivity [modified from Refs. [72,74,75]].
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Fig. 14. 
2D 1H–15N HSQC spectrum of human urine (left) and serum (right) obtained after tagging 

carboxyl-containing metabolites with 15N-ethanolamine. Nearly 200 metabolite signals are 

detected and a large number of these have been identified by comparing the chemical shifts 

with those of standard metabolites derivatized separately [reproduced with permission from 

Ref. [74]].
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Fig. 15. 
Four-coil Multiplex NMR probe constructed with solenoidal micro-coils optimized for 

detection of small volume, mass limited samples [reproduced with permission from Ref. 

[87]].
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Fig. 16. 
Score plots from the results of PCA of (a) NMR and (b) DART-MS spectra of the same 

human serum samples; and (c) improved results obtained by combining NMR and DART-

MS data in which PC1 results from NMR are used as the input for the PLS-DA analysis of 

the DART-MS data. Open diamonds represent normal samples and red solid diamonds 

represent breast cancer samples. Ellipses in the score plots illustrate the 95% confidence 

level [modified from Ref. [104]].
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Fig. 17. 
Schematic representation of the strategy for the identification of metabolites in complex 

metabolomic mixtures by the combined use of mass spectrometry and 1D NMR 

spectroscopy [reproduced with permission from Ref. [107]].
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Fig. 18. 
Schematic figure illustrating the “smart isotope tag” approach used to detect the same 

metabolites using NMR and MS with high sensitivity. Tagging carboxyl-containing 

metabolites with 15N-cholamine enables their detection by both NMR and MS with high 

sensitivity [reproduced with permission from Ref. [77]].
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Fig. 19. 
Unknown metabolite identification using a “smart tag” and RANSY: Efficient detection of 

the same metabolite by both NMR and MS is enabled by the smart tag, while RANSY 

connects the NMR and high resolution MS data for improved unknown identification.
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Fig. 20. 
(a) Percentage of breast cancer recurrence patients correctly identified using an 11-marker 

model (red squares) and CA 27.29 (blue triangles) as a function of time for all recurrence 

patients (modified from Ref. [114]); (b) 3D PLS score plot that distinguishes among normal 

subjects, Barrett esophagus (BE), high-grade dysplasia (HGD) and esophageal cancer 

patients (Reproduced with permission from Ref. [117]); (c) ROC curve for a 12-metabolite 

NMR-based statistical model for detecting pancreatic cancer (modified from Ref. [113]); (d) 

Monte-Carlo cross validation (MCCV) results for a PLS-DA model developed using 

metabolites to discriminate hepatocellular carcinoma (HCC) from hepatitis C (HCV) 

infection. Each blue diamond represents an iteration of the true model; each red square 

represents an iteration of the permutation model [Reproduced with permission from Ref. 

[115]].
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Table 1

A summary of NMR and MS characteristics relevant to metabolomics studies.

Characteristic NMR MS

Strengths • Detects up to hundreds of metabolites in a single 
measurement
• Does not need sample separation
• Highly quantitative
• Single internal reference is sufficient for absolute 
quantitation
• Highly reproducible
• A combination of NMR techniques enables unknown 
structure determination
• Enables high-throughput measurements
• Isotope based methods have enhanced the limit of 
detection
• Non-destructive to samples

• Detects up to thousands of metabolites in a single 
measurement
• Highly sensitive
• Highly quantitative using internal standards (1 per 
metabolite)
• Accurate mass can be used to derive empirical formula
• Reliable metabolite identification enabled through tandem 
mass analysis
• Enables high-throughput measurements
• Wide range of instruments available to detect different types 
of metabolites and for a variety of experiments

Weaknesses • Relatively less sensitive (Limit of Detection ~1 μM)
• Limited spectral resolution
• Detects fewer metabolites compared to MS
• Difficulty measuring lipids
• High field instrument costs

• Usually requires chromatographic separation (with the 
exception of lipids)
• Less reproducible
• Multiple and, often, expensive internal standards are required 
for absolute quantitation
• Difficulty in analyzing salty samples
• Identities for a major fraction of detected metabolites are not 
known
• Destructive to samples

Complementarities • Unknown metabolite structure identification is best performed by combining atomic connectivity from NMR and 
accurate mass from MS
• Biomarker discovery studies show that both NMR and MS provide superior performance by combining the “best of the 
best” biomarkers detected by both platforms
• Ability to detect the same metabolites efficiently by NMR and MS using various methods including a smart isotope 
tagging approach, for example, enables direct comparison of growing NMR and MS data in the literature
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