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Abstract

Background: Metabolism is generally modeled by directed networks where nodes represent reactions and/or
metabolites. In order to explore metabolic pathway conservation and divergence among organisms, previous studies
were based on graph alignment to find similar pathways. Few years ago, the concept of chemical transformation
modules, also called reaction modules, was introduced and correspond to sequences of chemical transformations
which are conserved in metabolism. We propose here a novel graph representation of the metabolic network where
reactions sharing a same chemical transformation type are grouped in Reaction Molecular Signatures (RMS).

Results: RMS were automatically computed for all reactions and encode changes in atoms and bonds. A reaction
network containing all available metabolic knowledge was then reduced by an aggregation of reaction nodes and
edges to obtain a RMS network. Paths in this network were explored and a substantial number of conserved chemical
transformation modules was detected. Furthermore, this graph-based formalism allows us to define several path
scores reflecting different biological conservation meanings. These scores are significantly higher for paths
corresponding to known metabolic pathways and were used conjointly to build association rules that should predict
metabolic pathway types like biosynthesis or degradation.

Conclusions: This representation of metabolism in a RMS network offers new insights to capture relevant metabolic
contexts. Furthermore, along with genomic context methods, it should improve the detection of gene clusters
corresponding to new metabolic pathways.

Keywords: Metabolic network, Reaction signatures, Graph reduction, Pathway conservation, Chemical
transformation modules

Background
In bioinformatics, metabolism is generally modeled
by directed networks where nodes represent reactions
and/or metabolites and edges the product/substrate
exchanges between reactions [1]. Metabolic network
reconstruction of a given organism generally starts with
its genome annotation that predicts enzymatic activities
from coding sequences and, therefore, the correspond-
ing reactions and metabolites of the network. However,
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two main bottlenecks limit today this reconstruction by
homology: the difficulty in associating correct functions
to genes and the lack of experimental characterization
of enzyme activities for which proteins are sometimes
unknown, i.e. orphan enzymes [2].
Subgraphs of these networks are often used to repre-

sent metabolic pathways that group sets of connected
reactions involved in a same biological process. Sev-
eral hypotheses on the origin and evolution of metabolic
pathways have been proposed, including patchwork evo-
lution by enzyme recruitment in new metabolic path-
ways [3, 4], retrograde synthesis which postulates that
metabolic pathways are constructed starting from the
final metabolite [5], and the theory on metabolic path-
way duplication [6]. Despite their differences, these
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hypotheses agree about the importance of enzyme
promiscuity in the evolution of metabolic pathways, i.e.
the capacity of enzymes to catalyze one or several types
of reactions on more or less different substrates. A recent
study in Escherichia coli successfully brings out this
enzyme capacity to adapt themselves to new substrates [7].
In order to explore metabolic pathway conservation

and divergence among organisms, previous studies were
based on pathway alignment to find similar pathways
within or between organisms using the Enzyme Commis-
sion (EC) numbers to define reaction similarities [8–11].
Due to limitations of the EC classification, the notion of
reaction similarity for pathway alignment was improved
using metabolite similarity [12] or substructure changes
[13]. Another approach, that does not require prede-
fined pathways, was based on the detection of motifs
in a reaction network [14]. Few years ago, the concept
of chemical transformation modules, also called reaction
modules, was introduced by Muto et al. [15]. They cor-
respond to sequences of chemical transformations which
are conserved in metabolism. These modules capture the
chemical logic of pathways that may correspond or not to
conserved sets of enzymes. Muto et al.made a systematic
analysis of the conservation of reaction modules by align-
ing metabolic pathways from KEGG [16] and used RClass
(Reaction Class) [17] to group reactions having same pat-
terns of chemical transformations. The same year, Barba
et al. [18] published a study on the modularity of the
purine and pyrimidine metabolism, which presents chem-
ical reaction similarities, and also enriched the reaction
module definition with the notion of enzyme homology.
In the present work, we propose a different formalism

for the detection of reaction modules, although we use the
same definition of modules as Muto et al. [15]. Instead of
using pathway alignment, we adopt an innovative graph
representation of the metabolism where the reaction net-
work is reduced in a Reaction Molecular Signature (RMS)
network. For that, RMS are automatically computed for
all reactions and encode changes in atoms and bonds as
described in [19]. Thereby, reactions sharing a same sig-
nature are grouped together. Paths in the RMS network
are then explored to detect conserved modules. Further-
more, this graph-based formalism allows us to define
several path scores reflecting different biological conser-
vation meanings. These scores are finally analyzed for all
possible paths in the network and for known metabolic
ones and used to build association rules that should pre-
dict metabolic pathway types like metabolite biosynthesis
or degradation.

Methods
Reaction network
Metabolic data was extracted from MetaCyc public
database version 19.0 [20]. MetaCyc contains a large

collection of curatedmetabolic pathways from all domains
of life. In addition, metabolites, reactions, enzymes and
genes are also listed. Metabolic pathways described in
MetaCyc are generally short (4.3 reactions on average)
and have been experimentally elucidated in at least one
organism. A metabolic network was reconstructed using
MetaCyc reactions as nodes. We linked two reactions by
a directed edge when the product of one reaction is the
substrate of the other one. However, to avoid the high con-
nectivity problems that are common when building such
metabolic networks, we limited shared compounds to
“main compounds”, i.e. metabolites deemed biologically
relevant to both reactions in at least one metabolic path-
way. Only reactions that belong to a metabolic pathway
were taken into account, as only these ones have dis-
tinction between main metabolites and co-substrates sup-
porting the reaction such as water, ATP or NAD. Trans-
port reactions, for which translocated substrate remains
unchanged, were excluded from the network construction
and from further analysis, e.g. ABC transporter ATPase
reactions corresponding to 3.6.3.- EC class.

Reaction molecular signatures
Reaction Molecular Signatures (RMS) were computed for
all MetaCyc reactions, belonging or not to a metabolic
pathway, as described in [19]. These signatures encode
changes in atoms and bonds where the reaction is tak-
ing place. First, structures of all molecules involved in
a reaction were downloaded from MetaCyc website in
MDLMolfile format. Using ChemAxon MolConvert soft-
ware [21], all molecules were standardized by adding
implicit hydrogen atoms and applying aromatization
when needed. Stereo signature molecular descriptors [22]
were then computed for heights 1 and 2 with the MolSig
software (http://molsig.sourceforge.net). These molecu-
lar signatures are encoded using SMILES-like strings [23]
and the height parameter corresponds to a distance for
the inclusion of neighbour atoms and bonds up from
a given atom. Second, corresponding RMS were gener-
ated for each molecular signature height by calculating
the difference between the signatures of the products
and of the substrates. To obtain correct RMS, reaction
equations have to be balanced with explicit compounds
for which Molfile structures are available. It should be
noticed that (i) for a given height, a reaction has only
one RMS signature (ii) reactions sharing a same RMS
have similar chemical transformations (iii) the higher
the height value is more the signature is precise. RMS
of height 1 (RMS-H1) capture the reaction center with
atom and bond changes. To compute RMS of height
2 (RMS-H2), RMS-H1 were partitioned in sub-groups
having similar signatures at height 2. Distances between
signatures were computed using an approximate string
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matching algorithm [24]. Then, a hierarchical clustering
was build on these distances using the Ward algorithm
[25] and the tree was cut at a cophenetic distance thresh-
old of 90. To deal with reaction directionality, RMS hav-
ing strictly opposite signatures were merged in a single
entry. Higher values of the height parameter were not
used because they lead to too precise signatures with
many describing only one reaction. The RMS classifica-
tion of reactions is available in Additional file 1 and the
source code for the RMS computation was deposited in
GitHub (https://github.com/mSorok/createRMS.git). The
RMSmethod has been chosen in this work as it guarantees
that all reactions described by the same signature per-
form the same chemical transformation, making manual
post-process unnecessary.

RMS networks
The reaction network was reduced in a directed net-
work of chemical transformations represented by RMS.
As shown in Fig. 1, reactions signed by the same RMS
are grouped in a single node. Two RMS are connected
by a directed edge in the RMS network if there is at
least one edge in the original reaction network linking
reactions signed by the corresponding source and tar-
get RMS. For computational complexity reasons and the
lack of explicit representation of repeated reactions in
pathway databases, edges are not created if source and
target RMS are identical (i.e. self-loops are avoided). This
transformation was made for the two RMS heights and
we obtained two networks called RMS-H1 and RMS-
H2 networks. Furthermore, this graph reduction, which
aggregates reaction nodes and edges, allowed us to define

Markov chains transition probabilities of order 1 between
connected RMS. Pr

(
RMSj | RMSi

)
is calculated as the

ratio of the number of outgoing reaction edges linking
RMSi to RMSj among the total number of outgoing edges
from reactions signed by RMSi.

RMS node weighting
Several weights, reflecting different biological conserva-
tion meanings, have been computed on nodes of the
RMS networks. The first weight,wRea, corresponds to the
number of MetaCyc reactions associated to a given RMS,
whether they are present or not in the initial reaction net-
work. It gives a quantitative measure of the diversity of
reactions represented by a RMS.
A second weight, wPageRank, is computed using

PageRank algorithm [26] implemented in the Jung 2.0
Java library [27]. This topological weight is based on a
network architecture exploration in order to locate influ-
ential nodes in the RMS network with the assump-
tion that most important chemical transformations
are likely to have more incoming links from other
transformations.
The last weight, wProt, is an estimation of the num-

ber of proteins associated to a given RMS. Known pro-
tein/reaction associations were extracted directly from
MetaCyc and from Swiss-Prot using EC numbers [28].
These associations were used to compute two ratios cor-
responding to the number of known proteins with the
same Pfam domain composition [29] and associated to
a given RMS Np(p ∈ RMSi

⋂
p ∈ Domj) divided by

the total number of known proteins having the domains
Np(p ∈ Domj), for d2r ratio, or by the total number of

Fig. 1 Reaction network to Reaction Molecular Signature network. This figure presents a toy example of the reduction of a reaction network in a
RMS network. Reactions sharing a same reaction signature (same node color in the figure) are grouped in a single RMS node. Directed edges of the
reaction network are also merged in the RMS network. Red edges illustrate the computation of Markov transition probabilities Pr(RMS2 | RMS1),
Pr(RMS3 | RMS1) and Pr(RMS5 | RMS1). They correspond to the proportion of reaction edges, among the five outgoing edges of RMS1 reactions
(blue nodes), connecting RMS1 to RMS2, RMS3 and RMS5

https://github.com/mSorok/createRMS.git
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known proteins associated to the RMSNp( p ∈ RMSi), for
r2d ratio.

d2r(RMSi,Domj) = Np( p ∈ RMSi
⋂

p ∈ Domj)

Np( p ∈ Domj)
(1)

r2d(RMSi,Domj) = Np( p ∈ RMSi
⋂

p ∈ Domj)

Np( p ∈ RMSi)
(2)

Next, the association score, score(Dom,RMS), was com-
puted as the harmonic mean of d2r and r2d values. This
score represents a trade-off between sensitivity and speci-
ficity to associate protein domains to chemical transfor-
mations and tends to be very low when domains or RMS
are very frequent.

score(Domj,RMSi) = 2 × d2ri,j × r2di,j
d2ri,j + r2di,j

(3)

Finally, wProt is, for each protein domain associated to
the given RMS, the geometric mean of the total num-
ber of UniProt proteins associated to a domain multiplied
by the score(Dom,RMS). Only proteins from UniProt
reference proteomes [28] (version 2015_04 with 2,424
reference proteomes) were considered to provide broad
coverage of the tree of life while reducing taxonomic
over-representation.

wProt(RMS) = n

√√√√
n∏

j=1
Np( p ∈ Domj) × score(Domj,RMS)

(4)

This weight gives a quantitative measure of the diver-
sity of enzymes associated to a RMS. High value of wProt
may indicate that the chemical transformation is widely
represented among organisms and/or that many enzymes
catalyze this transformation because of many gene dupli-
cations or many enzyme families.

RMS path enumeration and scoring
An enumeration of all paths of length 1 (one edge and
two RMS nodes) to 4 (four edges and five nodes) was
made in both RMS networks using the Grph Java library
[30]. In this path enumeration, loops were not allowed (i.e.
a node cannot be found more than once in a path). To
make them comparable, metabolic pathways from Meta-
Cyc were translated in overlapping RMS paths of the same
length. In addition, a Pathway Conservation Index (PCI)
was computed for each RMS path and represents the
number of distinct corresponding reaction paths that are
present in at least one MetaCyc pathway.
According to previously defined RMS weights, path

conservation scores, named scoreRea, scorePageRank and
scoreProt, were calculated as the geometrical means of
path node weights multiplied by their probability of tran-
sition to the next node of the path. As an illustration, the

formula of scoreRea is given in which RMSi and RMSi+1
are two consecutive nodes and n is the path length.

scoreRea(RMSs → RMSn) (5)

= n−1

√√√√n−1∏
i=s

wRea(RMSi) × Pr (RMSi+1 | RMSi)

ScorePageRank and scoreProt are computed in the same
way using wPageRank and wProt, respectively.

Results and discussion
From reaction to RMS networks
Among the 12,377 MetaCyc reactions, RMS of of height
1 (RMS-H1) and 2 (RMS-H2) have been computed for
9,001 reactions excluding transport reactions and reac-
tions without proper compound structures as described
in the Methods section. As shown in Table 1, RMS-H1
gathers on average about two times more reactions than
RMS-H2. Indeed, RMS-H2 signatures givemore precision
about the chemical transformations than RMS-H1 as they
encode additional information about the neighborhood of
the reaction center that may be important for the chemical
reactivity.
This fully automated chemical classification of reac-

tions was compared with the Enzyme Commission (EC)
classification which is a human expertise classification of
enzymatic activities [31]. Even if efforts were made to
automate the classification of new activities [17, 32, 33],
the EC classification covers only half of all known enzy-
matic reactions. Among the 4,574 reactions linked both
to an EC number and to a RMS, a simple similarity mea-
sure (Rand index) was computed between the third level
sub-subclasses of EC numbers (179 classes) and the RMS-
H1 (1,437 classes). We obtained a Rand index value of
97.68 % meaning, even if the RMS classification has a
finer granularity, both classifications are thus similar (see
Additional file 2 for detailed counts). Reactions classified
in a same RMS tends to have the same third level EC
class. Nevertheless, we found cases where the two clas-
sifications differs such as the example depicted in Fig. 2.
From a chemical point of view, the D-glutamate cyclase
and the L-lysine-lactamase reactions correspond to the
formation or the hydrolysis of a lactam involving a pri-
mary amine and the carbon of the keto function of a

Table 1 Reaction molecular signature statistics

Height 1 Height 2

Number of RMS 2477 4775

Number of reactions by RMS

Minimum 1 1

Average 3.63 1.89

Maximum 312 144
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Fig. 2 Example of reactions having a same RMS signature but classified in different EC classes. a D-glutamate cyclase reaction annotated with the
EC 4.2.1.48. b L-lysine lactamase reaction annotated with EC 3.5.2.11. This both reactions make the same the chemical transformation represented
by RMS-H1.1372, which encodes, in SMILES-like strings, the difference between the products and the substrates of atomic signatures of height 1

carboxylic acid. These reactions are encoded by the same
RMS but their EC classes differ: the D-glutamate cyclase is
classified as a carbon-oxygen lyase (EC number 4.2.1.48),
whereas the L-lysine-lactamase is a hydrolase acting on
a carbon-nitrogen bond of a cyclic amide (EC number
3.5.2.11). These differences show that EC numbers are
mainly focused on enzymatic activities and take in consid-
eration the biological context to classify the reactions (e.g.
the in vivo reaction directionality). These ambiguities, that
are quite common between lyases and hydrolases or trans-
ferases, were also previously reported in other chemical
classifications of reactions like MOLMAP [34].
Finally, an initial reaction network was established using

metabolic pathway information from MetaCyc. It is made
of 5,830 reaction nodes and 11,197 directed edges with
an average node degree of 2.6. This graph was reduced
in two RMS networks using RMS-H1 and H2 signatures.
As summarized in Table 2, RMS networks are more com-
pact than the reaction network: RMS-H1 and RMS-H2
networks contain a third and a half of nodes, respectively.

Table 2 Statistics on reaction network and RMS networks

Reaction RMS-H1 RMS-H2
network network network

Number of nodes 5830 1768 3365

Number of edges 11197 6107 8721

Average node degree 5.17 9.10 3.33

Average node out degree 2.60 4.36 2.99

Average node in degree 2.27 3.94 6.84

Node reduction rate 1 0.30 0.57

By aggregating reactions in RMS nodes while preserv-
ing their initial connectivity, RMS graph structure should
efficiently capture conserved paths of chemical reactions
even for reactions not already associated to a metabolic
pathway. Indeed, 2,278 reactions not included in the initial
reaction network are linked to a chemical transformation
context in the RMS networks since they are classified
in the RMS networks with other reactions from known
pathways.

Conserved RMS paths in metabolic pathways
An exploration of the RMS networks was conducted by an
enumeration of all paths of length 1 (one edge, two RMS)
to 4 (four edges, five RMS). To evaluate their conservation
in the light of knownmetabolic pathways, a Pathway Con-
servation Index (PCI) was computed for each RMS path
and corresponds to the number of distinct reaction paths
present in MetaCyc pathways. The number of RMS paths
with a PCI ≥2 is reported in Table 3 for each path length
and for both signature heights. We found, for RMS-H1,
between 117 and 600 conserved RMS paths depending of
the path length and fewer paths (between 128 and 380)
for RMS-H2 as they encode more precise signatures (see
Additional file 3 for the complete list). They correspond to

Table 3 Number of conserved modules (PCI ≥ 2)

Path length RMS-H1 network RMS-H2 network

1 600 380

2 365 214

3 212 141

4 117 128
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conserved chemical transformation modules, also named
reaction modules in a previous study [15]. Indeed, Muto
et al. obtained similar results but with a higher num-
ber of detected conserved paths (between 338 and 928
for the same path lengths). Although our results are not
directly comparable to those of Muto et al. by the usage of
different primary data sources (i.e. MetaCyc and KEGG,
respectively), the RMS paths detected by our method can
be directly considered as conserved modules whereas the
paths obtained by Muto et al. need a manual examina-
tion to obtain conserved modules from them. In fact, they
adopted a looser definition of chemical conservation with-
out taking into account side compounds and using finger-
print similarities to group reactions without the constraint
that the reactions perform the same chemical transfor-
mation. Only 34 reaction modules were finally confirmed
by the authors [15]. Among the modules detected by our
method, we found, for instance, that the β-oxidation path-
way, that is well-known for fatty acid degradation, is also
conserved for other molecule types (Fig. 3). This module,
also detected by Muto et al. for a subset of compounds
(two among eight), has four reaction variants in its first
step. As another example, we detected a new three-step
module for the biosynthesis of aldoximes from amino
acids, which are notably precursors of several secondary
metabolites produced by plants (Fig. 4). More generally,
nearly half (48 %) of metabolic pathways contains at least
one conserved module in the height 1 RMS network (see
Table 4). Interestingly, pathways involved in the genera-
tion of precursor metabolites and energy (‘Energy’ type in
Table 4) are the most conserved (78 % of them in RMS-H1
network). Besides, the proportion of conserved pathways
involved in biosynthesis and degradation is also important
and comparable for both types, 42 % and 47 % respectively.

RMS path scoring and learning
To go further, our method proposes an evaluation of
chemical module conservation in the metabolism using
three scores corresponding to different biological points
of view. Indeed, scoreRea reflects the diversity of reac-
tions performing the same chemical transformations on
different substrates, scoreProt represents the conservation
of enzymes performing these chemical transformations
across the tree of life and scorePageRank shows the topo-
logical importance of the module in the network by high-
lighting chemical hubs. These scores were computed for
all paths and analyzed more precisely for paths of length
2 in the RMS-H2 network (Table 5). It should be noticed
that the scoreProt cannot be computed for about 20 %
of paths as they contain at least one RMS without any
known protein catalyzing the corresponding reactions, i.e.
30 % of the RMS-H2 correspond to orphan enzyme activ-
ities. As depicted in Fig. 5, paths from known metabolic
pathways present statistically significant higher values for
the three scores than in all possible paths computed from
the RMS network (p-value < 2e−16 using Tukey’s HSD
tests). Similar results were obtained for RMS-H1 net-
work (see Additional file 4). These results confirm that
the defined scores are useful to capture biologically rel-
evant paths in the RMS network and should allow us to
discover new metabolic modules. Furthermore, we found
only a weak correlation between scoreRea and scorePageR-
ank (Spearmans’ correlation coefficient of 0.66) and
no correlation between other pairs of scores. There-
fore, the proposed scores can be considered as rather
independent and then used conjointly to explore the
RMS network.
Next, these scores were analyzed in the light of

MetaCyc pathway classification using five main types

Fig. 3 Conservation of β-oxidation module for non-fatty acid compounds. In addition to fatty acids, the β-oxidation module was found conserved
for the transformation of 8 compounds represented in the figure. For the first step, we found 4 reaction variants encoded in different RMS of height
1: three RMS correspond to a dehydrogenation between the alpha and beta carbons but with different acceptors, another corresponds to a
coenzyme A ligation. A color code indicates the corresponding substrates. Only molecules marked with an asterisk were also detected by Muto et al.
(KEGG Reaction Module RM018)
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Fig. 4 A conserved module for the biosynthesis of aldoximes from amino acids. a This module is made of three chemical transformations encoded
by RMS-H2 signatures. It corresponds to the oxidative decarboxylation of an anmino acid to its aldoxime. b The module is conserved in different
MetaCyc pathways for five distinct proteinogenic amino acids. Produced aldoximes are precursors of nitrogen-containing secondary metabolites in
plants, like cyanogenic glycosides for seed germination and defense, or auxin phytohormones

of biological processes: biosynthesis, degradation/
utilization/assimilation, detoxification, generation of
precursor metabolites and energy, and a last type, called
“others”, that gathers other MetaCyc main pathway
classes. By performing pairwise comparisons of pathway
types (i.e. Kruskal-Wallis rank sum tests completed by
post-hoc Tukey’s HSD tests, see Additional file 5), we
found significant differences (p-values < 0.05) among all
pathway types for at least one of the three conservation
scores. These results presume that pathway types could

Table 4 Number of pathways containing at least one conserved
module (length 2, PCI ≥ 2) classified by their type

Pathway type RMS-H1 network RMS-H2 network

Biosynthesis 263 (42%) 154 (24%)

Degradation 172 (47%) 95 (25%)

Detox 3 (27%) 3 (23%)

Energy 61 (78%) 51 (65%)

Other 19 (33%) 10 (17%)

All 518 (46%) 313 (27%)

be predicted by machine learning using a combination of
the three scores. Thus, pathway assignment rules were
generated with the NNge algorithm [35, 36] implemented
in Weka [37]. As the number of RMS paths per pathway
type is very unbalanced (e.g. the “biosynthesis” class
contains almost twice the number of paths than other

Table 5 Statistics on conservation scores for paths of length 2 in
the RMS-H2 network

ScoreRea ScorePageRank ScoreProt

All enumerated
paths (n = 72173)

Min score 0.04 3.32e−6 4.39e−4
Average score 0.61 7.69e−5 25.17

Max score 17.58 1.20e−3 3913.24

Paths in known
pathways (n = 3001)

Min score 0.04 8.63e−6 7.81e−4
Average score 1.07 1.55e−4 118.57

Max score 17.58 1.20e−3 3913.24
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Fig. 5 Boxplots of conservation scores for enumerated and known metabolic paths. For paths of length 2 (two edges and three nodes) in the
RMS-H2 network, distributions of the three conservation scores (i.e. scoreRea, scoreProt and scorePageRank) are presented in all possible paths from
the RMS network (identified as “All paths” in the figure) versus paths solely included in known metabolic pathways (“Known metabolic pathways”).
The latter present significant higher scores (p-value < 2e−16 using Tukey’s HSD tests)

types), classes were virtually balanced using resampling
function of Weka. We successfully obtained rules that
correctly classify RMS paths in pathway types with an
accuracy greater than 89 % (see Additional file 6).

Conclusions
We present here a novel metabolic network repre-
sentation where nodes are chemical transformations
depicted by reaction molecular signatures. This data
model is particularly useful for finding conserved chemi-
cal transformation modules in metabolic pathways as they
correspond to paths in the RMS network. An impor-
tant number of modules was detected and could be
integrated in metabolic databases, like KEGG [16] or
MetaCyc [20], to help biologists looking for similar path-
ways. Furthermore, new metrics (i.e. scoreRea, scoreProt
and scorePageRank) were introduced to evaluate module
conservation according to different biological meanings.
We show that knownmetabolic paths present higher score
values than random ones and that the scores, used con-
jointly, may predict module pathway types. In terms of
improvement of the graph reduction method, it may be
of interest to dynamically adapt the precision of the reac-
tion signatures when merging reaction nodes to take into
account the local graph topology. This could be achieved
taking inspiration from the method proposed by Xu
et al. [38] in which the maximum entropy principle and
theMarkov chain model-reduction problem were applied.
Finally, it should be highlighted that our method can be
easily adapted to other types of reaction classifications
based on chemical transformations.
Although its construction is based on an initial reac-

tion network, the RMS network offers new insights
into metabolism as it could capture relevant metabolic
contexts even without precise definition of initial reaction

sets or metabolite structures. Indeed, more than two
thousand reactions lacking a metabolic pathway were
integrated in the RMS network and now share com-
mon contexts with reactions from known pathways. Fur-
thermore, considering that many orphan enzymes have
network neighbours that are orphans themselves [2],
computational tools [39, 40] have difficulties to find
candidate genes for these missing enzymes by defining
correct genomic contexts (e.g. chromosomal clusters, co-
occurrence profiles) that include candidate proteins and
known enzymes. As a perspective, one of the possible
improvements of thesemethods could be the use of a RMS
network instead of a reaction network as it may be easier
to find proper genomic contexts using relaxed notions of
metabolic context. This enhancement may also be applied
in the discovery of gene clusters corresponding to new
metabolic pathways.
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