Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 17;71(Pt 10):1177–1180. doi: 10.1107/S2056989015016722

Crystal structures of the potassium and rubidium salts of (3,5-di­chloro­phen­oxy)acetic acid: two isotypic coordination polymers

Graham Smith a,*
PMCID: PMC4647356  PMID: 26594400

The two compounds are isotypic and the two-dimensional polymeric structure is based on centrosymmetric dinuclear bridged complex units. Within the layers, which lie parallel to (100), the coordinating water mol­ecule forms an O—H⋯O hydrogen bond to the single bridging carboxyl­ate O atom.

Keywords: crystal structure; coordination polymers; (3,5-di­chloro­phen­oxy)acetic acid; 3,5-D; potassium and rubidium salts; hydrogen bonding

Abstract

The two-dimensional coordination polymeric structures of the hydrated potassium and rubidium salts of (3,5-di­chloro­phen­oxy)acetic acid (3,5-D), namely, poly[μ-aqua-bis­[μ3-2-(3,5-di­chloro­phen­oxy)acetato]­dipotassium], [K2(C8H5Cl2O3)2(H2O)]n, and poly[μ-aqua-bis­[μ3-2-(3,5-di­chloro­phen­oxy)acetato]­dirubidium], [Rb2(C8H5Cl2O3)2(H2O)]n, respectively, have been determined and are described. The two compounds are isotypic and the polymeric structure is based on centrosymmetric dinuclear bridged complex units. The irregular six-coordination about the alkali cations comprises a bridging water mol­ecule lying on a twofold rotation axis, the phen­oxy O-atom donor and a triple bridging carboxyl­ate O atom of the oxo­acetate side chain of the 3,5-D ligand, and the second carb­oxy­ate O-atom donor also bridging. The K—O and Rb—O bond-length ranges are 2.7238 (15)–2.9459 (14) and 2.832 (2)–3.050 (2) Å, respectively, and the K⋯K and Rb⋯Rb separations in the dinuclear units are 4.0214 (7) and 4.1289 (6) Å, respectively. Within the layers which lie parallel to (100), the coordinating water mol­ecule forms an O—H⋯O hydrogen bond to the single bridging carboxyl­ate O atom.

Chemical context  

The phen­oxy­acetic acids are a particularly useful series of compounds since certain members having specific ring-substituents have herbicidal activity, resulting in their being used commercially. Of these, the most common have been the chlorine-substituted analogues (2,4-di­chloro­phen­oxy)acetic acid (2,4-D), (2,4,5-tri­chloro­phen­oxy)acetic acid (2,4,5-T) and (4-chloro-2-methyl­phen­oxy)acetic acid (MCPA) (Zumdahl, 2010). As such, the active members have received considerable attention, particularly with respect to health aspects resulting from residual breakdown components after environmental exposure. Compounds formed from their reaction with a wide range of metals have provided a significant number of crystal structures, e.g. for 2,4-D, there are 60 examples of metal complexes, contained in the Cambridge Structural Database (CSD; Groom & Allen, 2014), e.g. with CaII (Song et al., 2002) and with ZnII (Kobylecka et al., 2012).

Metal complex formation with the phen­oxy­acetic acids has been facilitated by their versatility as ligands, showing various inter­active modes with common metals including monodentate and bidentate-bridging coordinations involving the O carbox­yl, O 1 phen­oxy [(O,O)1] chelate inter­action, first reported for the monomeric copper(II) phen­oxy­acetate complex (Prout et al., 1968) and also found in the potassium–2,4-D salt (Kennard et al., 1983) as well as in the caesium complexes with 4-fluoro­phen­oxy­acetate and (4-chloro-2-meth­yl)phen­oxy­acetate (Smith, 2015a ). In the caesium complex-adduct with 2,4-D (Smith & Lynch, 2014), a tridentate chelate inter­action variant is found which includes, in addition to the O,O 1-chelate, a Cs—Cl bond to the ortho-Cl ring substituent of the ligand. Only occasional examples of the bidentate carboxyl­ate O,O′-chelate inter­action are found, e.g. with the previously mentioned caesium 4-fluoro­phen­oxy­acetate.

However, examples of structures of alkali metal salts of the phen­oxy­acetic acids are not common in the crystallographic literature, comprising, apart from the previously mentioned examples, the following: sodium phen­oxy­acetate hemihydrate (Prout et al., 1971; Evans et al., 2001), anhydrous caesium phen­oxy­acetate (Smith, 2014a ), the lithium, rubidium and caesium complexes of 2,4-D (Smith, 2015a ), caesium o-phenyl­ene­dioxydi­acetate dihydrate (Smith et al., 1989) and the lithium salts of (2-chloro­phen­oxy)acetic acid (O’Reilly et al., 1987), (2-carbamoylphen­oxy)acetic acid (Mak et al., 1986) and (2-carb­oxy­phen­oxy)acetic acid (Smith et al., 1986).graphic file with name e-71-01177-scheme1.jpg

To investigate the nature of the coordination complex structures formed in the potassium and rubidium salts of the 2,4-D isomer, reactions of (3,5-di­chloro­phen­oxy)acetic acid (3,5-D) with K2CO3 and Rb2CO3 in aqueous ethanol were carried out, affording the isotypic polymeric title compounds [K2(C8H5Cl2O3)2(H2O)]n, (I), and [Rb2(C8H5Cl2O3)2(H2O)]n, (II), and the structures are reported herein.

Structural commentary  

The hydrated complexes (I) and (II) are isotypic and are described conjointly. Each comprises a centrosymmetric dinuclear repeating unit (Fig. 1) in which the irregular six-coordination about the K+ or Rb+ cations consists of a bidentate O carboxyl­ate (O13), O phen­oxy (O11) chelate inter­action (Fig. 2), three bridging carboxyl­ate (O13i, O13ii, O14iii; for symmetry codes, see Table 1) inter­actions and a single bridging water mol­ecule (O1W) lying on a twofold rotation axis. The comparative M—O bond length range for the two metals (Tables 1 and 2) is 2.7238 (15)–2.9459 (14) Å (K) and 2.832 (2)–3.050 (2) Å (Rb), for the two O-atom donors in the (O:O 1)-chelate inter­action (O13 and O11, respectively).

Figure 1.

Figure 1

A view of the partially expanded polymeric extension of the structures of (I) and (II), shown with 30% probability ellipsoids (with data taken from the potassium structure). [See Table 1 for symmetry codes; additionally: (vi) x − 1, y, z; (vii) x, y − 1, z.]

Figure 2.

Figure 2

The mol­ecular configuration and atom-numbering scheme for the isomeric K and Rb complexes with 3,5-D [(I) and (II)], with displacement ellipsoids drawn at the 40% probability level (with data taken from the potassium structure). For symmetry codes, see Table 1.

Table 1. Selected bond lengths (Å) for (I) .

K1—O1W 2.7947 (15) K1—O13i 2.7855 (15)
K1—O11 2.9459 (14) K1—O13ii 2.7462 (13)
K1—O13 2.7238 (15) K1—O14iii 2.7309 (16)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Selected bond lengths (Å) for (II) .

Rb1—O1W 2.924 (2) Rb1—O13i 2.874 (2)
Rb1—O11 3.050 (2) Rb1—O13ii 2.894 (2)
Rb1—O13 2.832 (2) Rb1—O14iii 2.842 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Two-dimensional coordination polymeric structures are generated, lying parallel to (100) (Fig. 3), in which the core sheet comprises the M—O complex network with the aromatic rings of the ligands peripherally located between the layers. Within the layers there are a number of short metal⋯metal contacts, the shortest being across an inversion centre [K⋯Kii = 4.0214 (7) Å and Rb⋯Rbii = 4.1289 (6) Å], the longest being K⋯Kvi = 4.3327 (5) Å and Rb⋯Rbvi = 4.5483 (5) Å [symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (vi) −x + 1, y, −z + Inline graphic]. No inter-ring π–π inter­actions are found in either (I) or (II), the minimum ring-centroid separations being 4.3327 (1) Å in (I) and 4.3302 (3) Å in (II), (the b-axis dimensions). The coordinating water mol­ecules on the twofold rotation axes are involved in intra-layer bridging O—H⋯Ocarbox­yl hydrogen-bonding inter­actions (with O14 and O14iv) (Tables 3 and 4).

Figure 3.

Figure 3

The packing of the layered structure of compounds (I) and (II) in the unit cell, viewed approximately along [010]. Non-associated H atoms have been omitted.

Table 3. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O14iv 0.85 (2) 1.90 (2) 2.750 (2) 174 (2)

Symmetry code: (iv) Inline graphic.

Table 4. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O14iv 0.89 (3) 1.87 (3) 2.750 (3) 171 (5)

Symmetry code: (iv) Inline graphic.

The 3,5-D anions in both (I) and (II) adopt the anti­periplanar conformation with the defining oxo­acetate side chain torsion angles C1—O11—C12—O13 of −171.55 (15) and −172.4 (2)° for (I), (II), respectively, that are similar to −172.4 (3)° in the ammonium salt (Smith, 2015b ). These values contrast with the value in the 2:1 3,5-D adduct with 4,4′-biphenyl [−71.6 (3)°] (synclinal) (Lynch et al., 2003).

The present isotypic potassium and rubidium salts of (3,5-di­chloro­phen­oxy)acetic acid provide an example of isotypism which extends to the ammonium salt (Smith, 2015b ). Isotypism is also found in the analogous NH4 +, K+ and Rb+ hemihydrate salts of isomeric 2,4-D (Table 5). It may also be possible that a similar series exists with MCPA for which the structure of only the ammonium hemihydrate salt (NH4 + MCPA·0.5H2O) is known (Smith, 2014b ). It is of note that the sodium salts are not included in the sets, the structures for which are not known.

Table 5. Comparative cell data (Å, °, Å3) for NH4 +, K+ and Rb+ salts of (3,5-di­chloro­phen­oxy)acetic acid (3,5-D), (2,4-di­chloro­phen­oxy)acetic acid (2,4-D) and (4-chloro-2-methyl­phen­oxy)acetic acid (MCPA).

Cell parameters NH4 +3,5-D·0.5H2O K+3,5-D·0.5H2O Rb+3,5-D·0.5H2O NH4 +2,4-D·0.5H2O K+2,4-D·0.5H2O Rb+2,4-D·0.5H2O NH4 +MCPA·0.5H2O
a 39.818 (3) 39.274 (2) 39.641 (3) 39.3338 (8) 36.80 (1) 37.254 (2) 38.0396 (9)
b 4.3340 (4) 4.3327 (3) 4.3302 (3) 4.3889 (9) 4.339 (1) 4.3589 (3) 4.456 (5)
c 12.7211 (8) 12.4234 (10) 12.8607 (8) 12.900 (3) 12.975 (7) 13.238 (1) 12.944 (5)
β (°) 98.098 (5) 99.363 (6) 98.404 (5) 103.83 (3) 102.03 (4) 103.231 (7) 104.575 (5)
V 2178.4 (5) 2085.8 (3) 2183.9 (3) 2074.7 (8) 2026 (2) 2092.6 (3) 2123 (3)
Z 8 8 8 8 8 8 8
Space group C2/c C2/c C2/c C2/c C2/c C2/c C2/c
Reference Smith (2015b ) This work (I) This work (II) Liu et al. (2009) Smith (2015a ) Smith (2015a ) Smith (2014b )

Synthesis and crystallization  

Compounds (I) and (II) were synthesized by the addition of 0.5 mmol of K2CO3 (65 mg) [for (I)] or Rb2CO3 (115 mg) (for (II)] to a hot solution of (3,5-di­chloro­phen­oxy)acetic acid (3,5-D) (220 mg) in 10 ml of 50% (v/v) ethanol/water. After heating for 5 min, partial room temperature evaporation of the solutions gave in all two cases, colourless needles from which specimens were cleaved for the X-ray analyses.

Refinement details  

Crystal data, data collection and structure refinement details for (I) and (II) are summarized in Table 6. Hydrogen atoms were placed in calculated positions [C—Haromatic = 0.95 Å or C—Hmethyl­ene = 0.99 Å] and were allowed to ride in the refinements, with U iso(H) = 1.2U eq(C). The water H-atom in both structures was located in a difference Fourier map and was allowed to ride in the refinements with an O—H distance restraint of 0.90±0.02 Å and with U iso(H) = 1.5U eq(O).

Table 6. Experimental details.

  (I) (II)
Crystal data
Chemical formula [K2(C8H5Cl2O3)2(H2O)] [Rb2(C8H5Cl2O3)2(H2O)]
M r 536.26 629.00
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 200 200
a, b, c (Å) 39.274 (2), 4.3327 (3), 12.4234 (10) 39.641 (3), 4.3302 (3), 12.8607 (8)
β (°) 99.363 (6) 98.404 (5)
V3) 2085.8 (3) 2183.9 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.00 5.01
Crystal size (mm) 0.45 × 0.12 × 0.04 0.40 × 0.12 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD detector Oxford Diffraction Gemini-S CCD detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013) Multi-scan (CrysAlis PRO; Agilent, 2013)
T min, T max 0.774, 0.980 0.369, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 6745, 2061, 1824 7520, 2152, 1910
R int 0.035 0.055
(sin θ/λ)max−1) 0.617 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.031, 0.076, 1.07 0.040, 0.095, 1.06
No. of reflections 2061 2152
No. of parameters 135 136
No. of restraints 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.25 0.98, −1.00

Computer programs: CrysAlis PRO (Agilent, 2013), SIR92 (Altomare et al., 1993), SHELXS97 and SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989015016722/wm5206sup1.cif

e-71-01177-sup1.cif (41.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016722/wm5206Isup2.hkl

e-71-01177-Isup2.hkl (101.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015016722/wm5206IIsup3.hkl

e-71-01177-IIsup3.hkl (105.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016722/wm5206Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015016722/wm5206IIsup5.cml

CCDC references: 1422835, 1422834

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges financial support from the Science and Engineering Faculty, Queensland University of Technology.

supplementary crystallographic information

(I) Poly[µ-aqua-bis[µ3-2-(3,5-dichlorophenoxy)acetato]dipotassium] . Crystal data

[K2(C8H5Cl2O3)2(H2O)] F(000) = 1080
Mr = 536.26 Dx = 1.708 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2400 reflections
a = 39.274 (2) Å θ = 4.2–28.6°
b = 4.3327 (3) Å µ = 1.00 mm1
c = 12.4234 (10) Å T = 200 K
β = 99.363 (6)° Flat prism, colourless
V = 2085.8 (3) Å3 0.45 × 0.12 × 0.04 mm
Z = 4

(I) Poly[µ-aqua-bis[µ3-2-(3,5-dichlorophenoxy)acetato]dipotassium] . Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 2061 independent reflections
Radiation source: Enhance (Mo) X-ray source 1824 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.2°
ω scans h = −48→47
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −5→5
Tmin = 0.774, Tmax = 0.980 l = −15→15
6745 measured reflections

(I) Poly[µ-aqua-bis[µ3-2-(3,5-dichlorophenoxy)acetato]dipotassium] . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.706P] where P = (Fo2 + 2Fc2)/3
2061 reflections (Δ/σ)max = 0.001
135 parameters Δρmax = 0.27 e Å3
1 restraint Δρmin = −0.25 e Å3

(I) Poly[µ-aqua-bis[µ3-2-(3,5-dichlorophenoxy)acetato]dipotassium] . Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) Poly[µ-aqua-bis[µ3-2-(3,5-dichlorophenoxy)acetato]dipotassium] . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 0.53071 (1) 0.71864 (10) 0.40994 (4) 0.0253 (1)
Cl3 0.66484 (1) 1.12106 (12) 0.30636 (5) 0.0351 (2)
Cl5 0.72749 (1) 0.44252 (15) 0.64380 (5) 0.0436 (2)
O1W 0.50000 0.3066 (5) 0.25000 0.0301 (7)
O11 0.59608 (3) 0.5041 (3) 0.53873 (12) 0.0279 (4)
O13 0.53561 (3) 0.2277 (3) 0.54855 (12) 0.0279 (4)
O14 0.55253 (4) 0.0910 (3) 0.72297 (12) 0.0317 (5)
C1 0.62867 (5) 0.5876 (4) 0.52303 (17) 0.0226 (6)
C2 0.63030 (5) 0.7874 (4) 0.43626 (17) 0.0243 (6)
C3 0.66234 (5) 0.8758 (4) 0.41548 (17) 0.0250 (6)
C4 0.69289 (5) 0.7753 (5) 0.47741 (18) 0.0286 (6)
C5 0.69014 (5) 0.5791 (5) 0.56273 (18) 0.0268 (6)
C6 0.65879 (5) 0.4817 (5) 0.58735 (17) 0.0242 (6)
C12 0.59359 (5) 0.3273 (5) 0.63485 (17) 0.0276 (6)
C13 0.55716 (5) 0.2100 (4) 0.63421 (17) 0.0228 (6)
H1W 0.4837 (5) 0.189 (5) 0.263 (2) 0.0340*
H2 0.60980 0.86110 0.39240 0.0290*
H4 0.71470 0.83880 0.46170 0.0340*
H6 0.65780 0.34570 0.64670 0.0290*
H121 0.60060 0.45750 0.70020 0.0330*
H122 0.60960 0.14980 0.63920 0.0330*

(I) Poly[µ-aqua-bis[µ3-2-(3,5-dichlorophenoxy)acetato]dipotassium] . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.0223 (2) 0.0305 (2) 0.0223 (3) −0.0004 (2) 0.0016 (2) −0.0001 (2)
Cl3 0.0440 (3) 0.0342 (3) 0.0282 (3) −0.0098 (2) 0.0095 (3) 0.0029 (2)
Cl5 0.0188 (3) 0.0630 (4) 0.0457 (4) −0.0017 (3) −0.0046 (2) 0.0085 (3)
O1W 0.0230 (11) 0.0293 (11) 0.0381 (14) 0.0000 0.0051 (10) 0.0000
O11 0.0163 (7) 0.0415 (8) 0.0251 (8) −0.0026 (6) 0.0011 (6) 0.0101 (7)
O13 0.0197 (7) 0.0353 (8) 0.0266 (8) −0.0036 (6) −0.0028 (6) −0.0003 (7)
O14 0.0293 (8) 0.0418 (9) 0.0251 (9) −0.0062 (7) 0.0075 (7) 0.0028 (7)
C1 0.0185 (10) 0.0278 (10) 0.0214 (11) −0.0023 (8) 0.0029 (8) −0.0037 (9)
C2 0.0228 (10) 0.0267 (10) 0.0226 (11) −0.0002 (8) 0.0015 (8) −0.0016 (9)
C3 0.0302 (11) 0.0243 (10) 0.0211 (11) −0.0049 (9) 0.0061 (9) −0.0034 (9)
C4 0.0222 (10) 0.0348 (11) 0.0297 (12) −0.0077 (9) 0.0070 (9) −0.0070 (10)
C5 0.0180 (10) 0.0338 (11) 0.0266 (12) −0.0019 (8) −0.0023 (8) −0.0039 (9)
C6 0.0206 (10) 0.0303 (10) 0.0213 (11) −0.0027 (8) 0.0021 (8) −0.0005 (9)
C12 0.0232 (11) 0.0384 (11) 0.0200 (11) −0.0054 (9) 0.0002 (9) 0.0063 (9)
C13 0.0196 (10) 0.0233 (9) 0.0256 (12) 0.0003 (8) 0.0039 (9) −0.0039 (9)

(I) Poly[µ-aqua-bis[µ3-2-(3,5-dichlorophenoxy)acetato]dipotassium] . Geometric parameters (Å, º)

K1—O1W 2.7947 (15) O1W—H1Wiv 0.85 (2)
K1—O11 2.9459 (14) C1—C6 1.393 (3)
K1—O13 2.7238 (15) C1—C2 1.392 (3)
K1—O13i 2.7855 (15) C2—C3 1.379 (3)
K1—O13ii 2.7462 (13) C3—C4 1.386 (3)
K1—O14iii 2.7309 (16) C4—C5 1.377 (3)
Cl3—C3 1.738 (2) C5—C6 1.382 (3)
Cl5—C5 1.742 (2) C12—C13 1.517 (3)
O11—C1 1.374 (2) C2—H2 0.9500
O11—C12 1.435 (3) C4—H4 0.9500
O13—C13 1.250 (2) C6—H6 0.9500
O14—C13 1.257 (2) C12—H121 0.9900
O1W—H1W 0.85 (2) C12—H122 0.9900
O1W—K1—O11 114.95 (4) H1W—O1W—H1Wiv 107 (2)
O1W—K1—O13 85.90 (5) K1iv—O1W—H1Wiv 119.8 (16)
O1W—K1—O13i 157.48 (4) O11—C1—C2 115.78 (17)
O1W—K1—O13ii 82.81 (3) O11—C1—C6 123.74 (18)
O1W—K1—O14iii 75.35 (4) C2—C1—C6 120.48 (18)
O11—K1—O13 56.26 (4) C1—C2—C3 118.42 (18)
O11—K1—O13i 87.00 (4) C2—C3—C4 122.86 (19)
O11—K1—O13ii 133.96 (4) Cl3—C3—C4 118.13 (15)
O11—K1—O14iii 101.01 (4) Cl3—C3—C2 119.01 (15)
O13—K1—O13i 103.70 (4) C3—C4—C5 116.88 (18)
O13—K1—O13ii 85.35 (4) Cl5—C5—C4 119.39 (16)
O13—K1—O14iii 140.71 (4) C4—C5—C6 122.91 (19)
O13i—K1—O13ii 77.83 (4) Cl5—C5—C6 117.71 (17)
O13i—K1—O14iii 106.68 (4) C1—C6—C5 118.45 (19)
O13ii—K1—O14iii 124.93 (5) O11—C12—C13 111.48 (16)
K1—O1W—K1iv 100.60 (7) O13—C13—C12 119.43 (18)
K1—O11—C1 126.11 (11) O14—C13—C12 113.81 (18)
K1—O11—C12 116.68 (10) O13—C13—O14 126.70 (18)
C1—O11—C12 116.72 (15) C1—C2—H2 121.00
K1—O13—C13 123.69 (11) C3—C2—H2 121.00
K1—O13—K1v 103.70 (5) C3—C4—H4 122.00
K1—O13—K1ii 94.65 (4) C5—C4—H4 122.00
K1v—O13—C13 116.55 (11) C1—C6—H6 121.00
K1ii—O13—C13 112.14 (12) C5—C6—H6 121.00
K1v—O13—K1ii 102.18 (4) O11—C12—H121 109.00
K1vi—O14—C13 137.09 (12) O11—C12—H122 109.00
K1iv—O1W—H1W 105.4 (15) C13—C12—H121 109.00
K1—O1W—H1W 119.8 (16) C13—C12—H122 109.00
K1—O1W—H1Wiv 105.4 (15) H121—C12—H122 108.00
O11—K1—O1W—K1iv −146.99 (3) O13—K1—O13ii—K1ii −0.02 (5)
O13—K1—O1W—K1iv 163.37 (3) O13—K1—O13ii—C13ii −129.34 (12)
O1W—K1—O11—C1 99.66 (13) O11—K1—O14iii—C13iii 87.4 (2)
O1W—K1—O11—C12 −88.68 (13) O13—K1—O14iii—C13iii 38.4 (2)
O13—K1—O11—C1 165.74 (15) K1—O11—C1—C2 −1.4 (2)
O13—K1—O11—C12 −22.60 (12) K1—O11—C1—C6 179.21 (14)
O13i—K1—O11—C1 −85.59 (14) C12—O11—C1—C2 −173.08 (17)
O13i—K1—O11—C12 86.08 (12) C12—O11—C1—C6 7.6 (3)
O13ii—K1—O11—C1 −155.47 (13) K1—O11—C12—C13 15.98 (19)
O13ii—K1—O11—C12 16.20 (14) C1—O11—C12—C13 −171.55 (15)
O14iii—K1—O11—C1 20.83 (14) K1—O13—C13—O14 143.75 (15)
O14iii—K1—O11—C12 −167.51 (12) K1—O13—C13—C12 −39.2 (2)
O1W—K1—O13—C13 156.32 (14) K1v—O13—C13—O14 −85.6 (2)
O1W—K1—O13—K1v 20.65 (4) K1v—O13—C13—C12 91.41 (17)
O1W—K1—O13—K1ii −83.10 (4) K1ii—O13—C13—O14 31.6 (2)
O11—K1—O13—C13 32.52 (14) K1ii—O13—C13—C12 −151.35 (14)
O11—K1—O13—K1v −103.16 (5) K1vi—O14—C13—O13 −90.6 (2)
O11—K1—O13—K1ii 153.10 (6) K1vi—O14—C13—C12 92.3 (2)
O13i—K1—O13—C13 −44.32 (15) O11—C1—C2—C3 −179.06 (16)
O13i—K1—O13—K1v 179.98 (9) C6—C1—C2—C3 0.3 (3)
O13i—K1—O13—K1ii 76.26 (5) O11—C1—C6—C5 179.20 (18)
O13ii—K1—O13—C13 −120.58 (14) C2—C1—C6—C5 −0.1 (3)
O13ii—K1—O13—K1v 103.75 (5) C1—C2—C3—Cl3 179.16 (14)
O13ii—K1—O13—K1ii 0.02 (8) C1—C2—C3—C4 −0.3 (3)
O14iii—K1—O13—C13 95.53 (16) Cl3—C3—C4—C5 −179.45 (16)
O14iii—K1—O13—K1v −40.15 (8) C2—C3—C4—C5 0.0 (3)
O14iii—K1—O13—K1ii −143.89 (6) C3—C4—C5—Cl5 179.79 (16)
O11—K1—O13i—K1i 125.82 (4) C3—C4—C5—C6 0.2 (3)
O11—K1—O13i—C13i −13.64 (13) Cl5—C5—C6—C1 −179.71 (16)
O13—K1—O13i—K1i 180.00 (4) C4—C5—C6—C1 −0.2 (3)
O13—K1—O13i—C13i 40.53 (13) O11—C12—C13—O13 12.0 (2)
O11—K1—O13ii—K1ii −31.51 (7) O11—C12—C13—O14 −170.65 (16)
O11—K1—O13ii—C13ii −160.85 (11)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1, z−1/2; (iv) −x+1, y, −z+1/2; (v) x, y−1, z; (vi) x, −y+1, z+1/2.

(I) Poly[µ-aqua-bis[µ3-2-(3,5-dichlorophenoxy)acetato]dipotassium] . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···O14vii 0.85 (2) 1.90 (2) 2.750 (2) 174 (2)

Symmetry code: (vii) −x+1, −y, −z+1.

(II) Poly[µ-aqua-bis[µ3-(3,5-dichlorophenoxy)acetato]dirubidium] . Crystal data

[Rb2(C8H5Cl2O3)2(H2O)] F(000) = 1224
Mr = 629.00 Dx = 1.913 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2435 reflections
a = 39.641 (3) Å θ = 3.6–28.3°
b = 4.3302 (3) Å µ = 5.01 mm1
c = 12.8607 (8) Å T = 200 K
β = 98.404 (5)° Prism, colourless
V = 2183.9 (3) Å3 0.40 × 0.12 × 0.04 mm
Z = 4

(II) Poly[µ-aqua-bis[µ3-(3,5-dichlorophenoxy)acetato]dirubidium] . Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 2152 independent reflections
Radiation source: Enhance (Mo) X-ray source 1910 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.2°
ω–scans h = −45→48
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −5→5
Tmin = 0.369, Tmax = 0.980 l = −15→15
7520 measured reflections

(II) Poly[µ-aqua-bis[µ3-(3,5-dichlorophenoxy)acetato]dirubidium] . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0491P)2] where P = (Fo2 + 2Fc2)/3
2152 reflections (Δ/σ)max = 0.003
136 parameters Δρmax = 0.98 e Å3
1 restraint Δρmin = −1.00 e Å3

(II) Poly[µ-aqua-bis[µ3-(3,5-dichlorophenoxy)acetato]dirubidium] . Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(II) Poly[µ-aqua-bis[µ3-(3,5-dichlorophenoxy)acetato]dirubidium] . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rb1 0.53252 (1) 0.71425 (8) 0.41106 (2) 0.0271 (1)
Cl3 0.66575 (3) 1.1071 (2) 0.31320 (7) 0.0394 (3)
Cl5 0.72802 (2) 0.4700 (3) 0.64713 (9) 0.0510 (4)
O1W 0.50000 0.2897 (8) 0.25000 0.0336 (12)
O11 0.59805 (6) 0.4938 (6) 0.54449 (18) 0.0312 (8)
O13 0.53789 (6) 0.2205 (5) 0.5570 (2) 0.0295 (8)
O14 0.55505 (6) 0.0734 (6) 0.72371 (19) 0.0341 (8)
C1 0.63017 (8) 0.5832 (8) 0.5286 (3) 0.0255 (11)
C2 0.63168 (10) 0.7780 (8) 0.4420 (3) 0.0278 (11)
C3 0.66324 (10) 0.8701 (8) 0.4215 (3) 0.0284 (11)
C4 0.69371 (11) 0.7828 (8) 0.4829 (3) 0.0327 (12)
C5 0.69102 (9) 0.5914 (9) 0.5678 (3) 0.0302 (11)
C6 0.66010 (8) 0.4923 (8) 0.5924 (3) 0.0267 (11)
C12 0.59553 (9) 0.3198 (8) 0.6376 (3) 0.0285 (11)
C13 0.55928 (9) 0.1991 (8) 0.6381 (3) 0.0243 (11)
H1W 0.4832 (8) 0.172 (8) 0.266 (4) 0.0510*
H2 0.61150 0.84410 0.39880 0.0330*
H4 0.71520 0.85090 0.46730 0.0390*
H6 0.65920 0.36420 0.65190 0.0320*
H121 0.60210 0.45220 0.70000 0.0340*
H122 0.61160 0.14340 0.64200 0.0340*

(II) Poly[µ-aqua-bis[µ3-(3,5-dichlorophenoxy)acetato]dirubidium] . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rb1 0.0270 (2) 0.0340 (2) 0.0204 (2) 0.0005 (1) 0.0035 (2) 0.0014 (1)
Cl3 0.0502 (6) 0.0428 (6) 0.0275 (5) −0.0119 (5) 0.0132 (5) 0.0037 (4)
Cl5 0.0231 (5) 0.0802 (8) 0.0474 (6) −0.0029 (5) −0.0022 (5) 0.0124 (6)
O1W 0.028 (2) 0.034 (2) 0.039 (2) 0.0000 0.0057 (19) 0.0000
O11 0.0205 (13) 0.0506 (16) 0.0227 (13) −0.0044 (11) 0.0038 (11) 0.0129 (12)
O13 0.0245 (14) 0.0378 (14) 0.0255 (14) −0.0029 (10) 0.0013 (12) −0.0011 (11)
O14 0.0317 (14) 0.0491 (16) 0.0232 (13) −0.0085 (13) 0.0100 (12) 0.0059 (12)
C1 0.0249 (19) 0.0317 (19) 0.0205 (18) −0.0028 (16) 0.0051 (16) −0.0045 (16)
C2 0.027 (2) 0.035 (2) 0.0215 (19) −0.0002 (15) 0.0038 (17) −0.0013 (15)
C3 0.037 (2) 0.0300 (19) 0.0194 (18) −0.0075 (17) 0.0084 (17) −0.0052 (15)
C4 0.028 (2) 0.044 (2) 0.028 (2) −0.0104 (17) 0.0106 (18) −0.0055 (17)
C5 0.0238 (19) 0.042 (2) 0.0241 (18) −0.0042 (17) 0.0013 (16) −0.0036 (17)
C6 0.0244 (19) 0.035 (2) 0.0207 (18) −0.0020 (15) 0.0036 (15) −0.0013 (16)
C12 0.025 (2) 0.040 (2) 0.0200 (18) −0.0040 (16) 0.0018 (16) 0.0041 (16)
C13 0.024 (2) 0.0269 (18) 0.0231 (19) 0.0007 (15) 0.0071 (17) −0.0048 (15)

(II) Poly[µ-aqua-bis[µ3-(3,5-dichlorophenoxy)acetato]dirubidium] . Geometric parameters (Å, º)

Rb1—O1W 2.924 (2) O1W—H1Wiv 0.89 (3)
Rb1—O11 3.050 (2) C1—C6 1.397 (5)
Rb1—O13 2.832 (2) C1—C2 1.405 (5)
Rb1—O13i 2.874 (2) C2—C3 1.375 (6)
Rb1—O13ii 2.894 (2) C3—C4 1.395 (6)
Rb1—O14iii 2.842 (2) C4—C5 1.387 (5)
Cl3—C3 1.745 (4) C5—C6 1.378 (5)
Cl5—C5 1.741 (4) C12—C13 1.530 (5)
O11—C1 1.374 (4) C2—H2 0.9500
O11—C12 1.431 (4) C4—H4 0.9500
O13—C13 1.248 (5) C6—H6 0.9500
O14—C13 1.261 (4) C12—H121 0.9900
O1W—H1W 0.89 (3) C12—H122 0.9900
O1W—Rb1—O11 116.93 (7) H1W—O1W—H1Wiv 110 (3)
O1W—Rb1—O13 88.71 (7) Rb1iv—O1W—H1Wiv 118 (3)
O1W—Rb1—O13i 157.69 (6) O11—C1—C2 115.8 (3)
O1W—Rb1—O13ii 80.06 (5) O11—C1—C6 124.0 (3)
O1W—Rb1—O14iii 76.32 (6) C2—C1—C6 120.3 (3)
O11—Rb1—O13 54.24 (7) C1—C2—C3 118.1 (3)
O11—Rb1—O13i 84.01 (7) C2—C3—C4 123.3 (4)
O11—Rb1—O13ii 135.28 (7) Cl3—C3—C4 117.8 (3)
O11—Rb1—O14iii 103.36 (7) Cl3—C3—C2 118.9 (3)
O13—Rb1—O13i 98.73 (7) C3—C4—C5 116.6 (4)
O13—Rb1—O13ii 87.72 (7) Cl5—C5—C4 119.1 (3)
O13—Rb1—O14iii 143.47 (7) C4—C5—C6 122.7 (4)
O13i—Rb1—O13ii 79.26 (7) Cl5—C5—C6 118.2 (3)
O13i—Rb1—O14iii 107.73 (7) C1—C6—C5 119.0 (3)
O13ii—Rb1—O14iii 121.19 (7) O11—C12—C13 111.3 (3)
Rb1—O1W—Rb1iv 102.10 (11) O13—C13—C12 119.7 (3)
Rb1—O11—C1 124.0 (2) O14—C13—C12 113.3 (3)
Rb1—O11—C12 118.55 (19) O13—C13—O14 126.9 (3)
C1—O11—C12 116.9 (3) C1—C2—H2 121.00
Rb1—O13—C13 125.9 (2) C3—C2—H2 121.00
Rb1—O13—Rb1v 98.73 (8) C3—C4—H4 122.00
Rb1—O13—Rb1ii 92.28 (7) C5—C4—H4 122.00
Rb1v—O13—C13 117.8 (2) C1—C6—H6 121.00
Rb1ii—O13—C13 116.1 (2) C5—C6—H6 120.00
Rb1v—O13—Rb1ii 100.74 (7) O11—C12—H121 109.00
Rb1vi—O14—C13 134.3 (2) O11—C12—H122 109.00
Rb1iv—O1W—H1W 105 (3) C13—C12—H121 109.00
Rb1—O1W—H1W 118 (3) C13—C12—H122 109.00
Rb1—O1W—H1Wiv 105 (3) H121—C12—H122 108.00
O11—Rb1—O1W—Rb1iv −149.55 (5) O13—Rb1—O13ii—Rb1ii 0.00 (7)
O13—Rb1—O1W—Rb1iv 162.30 (5) O13—Rb1—O13ii—C13ii −132.3 (2)
O1W—Rb1—O11—C1 101.0 (2) O11—Rb1—O14iii—C13iii 88.7 (3)
O1W—Rb1—O11—C12 −87.7 (2) O13—Rb1—O14iii—C13iii 42.2 (4)
O13—Rb1—O11—C1 167.6 (3) Rb1—O11—C1—C2 −2.7 (4)
O13—Rb1—O11—C12 −21.0 (2) Rb1—O11—C1—C6 177.2 (3)
O13i—Rb1—O11—C1 −87.1 (2) C12—O11—C1—C2 −174.3 (3)
O13i—Rb1—O11—C12 84.3 (2) C12—O11—C1—C6 5.7 (5)
O13ii—Rb1—O11—C1 −155.3 (2) Rb1—O11—C12—C13 15.6 (3)
O13ii—Rb1—O11—C12 16.1 (3) C1—O11—C12—C13 −172.4 (3)
O14iii—Rb1—O11—C1 19.7 (3) Rb1—O13—C13—O14 147.4 (3)
O14iii—Rb1—O11—C12 −168.9 (2) Rb1—O13—C13—C12 −35.8 (4)
O1W—Rb1—O13—C13 155.0 (3) Rb1v—O13—C13—O14 −86.3 (4)
O1W—Rb1—O13—Rb1v 21.13 (6) Rb1v—O13—C13—C12 90.5 (3)
O1W—Rb1—O13—Rb1ii −80.10 (5) Rb1ii—O13—C13—O14 33.2 (4)
O11—Rb1—O13—C13 29.9 (3) Rb1ii—O13—C13—C12 −150.0 (2)
O11—Rb1—O13—Rb1v −103.93 (9) Rb1vi—O14—C13—O13 −90.5 (4)
O11—Rb1—O13—Rb1ii 154.83 (10) Rb1vi—O14—C13—C12 92.5 (3)
O13i—Rb1—O13—C13 −46.2 (3) O11—C1—C2—C3 −178.9 (3)
O13i—Rb1—O13—Rb1v 179.98 (11) C6—C1—C2—C3 1.1 (5)
O13i—Rb1—O13—Rb1ii 78.77 (7) O11—C1—C6—C5 178.8 (3)
O13ii—Rb1—O13—C13 −124.9 (3) C2—C1—C6—C5 −1.3 (5)
O13ii—Rb1—O13—Rb1v 101.23 (7) C1—C2—C3—Cl3 179.0 (3)
O13ii—Rb1—O13—Rb1ii 0.00 (7) C1—C2—C3—C4 −0.7 (6)
O14iii—Rb1—O13—C13 90.3 (3) Cl3—C3—C4—C5 −179.3 (3)
O14iii—Rb1—O13—Rb1v −43.54 (14) C2—C3—C4—C5 0.5 (5)
O14iii—Rb1—O13—Rb1ii −144.77 (9) C3—C4—C5—Cl5 179.4 (3)
O11—Rb1—O13i—Rb1i 127.64 (8) C3—C4—C5—C6 −0.7 (6)
O11—Rb1—O13i—C13i −11.0 (2) Cl5—C5—C6—C1 −178.9 (3)
O13—Rb1—O13i—Rb1i 179.98 (10) C4—C5—C6—C1 1.1 (6)
O13—Rb1—O13i—C13i 41.3 (2) O11—C12—C13—O13 10.0 (4)
O11—Rb1—O13ii—Rb1ii −29.37 (12) O11—C12—C13—O14 −172.7 (3)
O11—Rb1—O13ii—C13ii −161.6 (2)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1, z−1/2; (iv) −x+1, y, −z+1/2; (v) x, y−1, z; (vi) x, −y+1, z+1/2.

(II) Poly[µ-aqua-bis[µ3-(3,5-dichlorophenoxy)acetato]dirubidium] . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···O14vii 0.89 (3) 1.87 (3) 2.750 (3) 171 (5)

Symmetry code: (vii) −x+1, −y, −z+1.

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Evans, J. M. B., Kapitan, A., Rosair, G. M., Roberts, K. J. & White, G. (2001). Acta Cryst. C57, 1277–1278. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Kennard, C. H. L., Smith, G. & O’Reilly, E. J. (1983). Inorg. Chim. Acta, 77, L181–L184.
  7. Kobylecka, J., Kruszynski, R., Beniak, S. & Czubacka, E. (2012). J. Chem. Crystallogr. 42, 405–415.
  8. Liu, H.-L., Guo, S.-H., Li, Y.-Y. & Jian, F.-F. (2009). Acta Cryst. E65, o1905. [DOI] [PMC free article] [PubMed]
  9. Lynch, D. E., Barfield, J., Frost, J., Antrobus, R. & Simmons, J. (2003). Cryst. Eng. 6, 109–122.
  10. Mak, T. C. W., Yip, W.-H., Kennard, C. H. L., Smith, G. & O’Reilly, E. J. (1986). Inorg. Chim. Acta, 111, L23–L25.
  11. O’Reilly, E. J., Smith, G., Kennard, C. H. L. & Mak, T. C. W. (1987). Aust. J. Chem. 40, 1147–1159.
  12. Prout, C. K., Armstrong, R. A., Carruthers, J. R., Forrest, J. G., Murray-Rust, P. & Rossotti, F. J. C. (1968). J. Chem. Soc. A, pp. 2791–2813.
  13. Prout, C. K., Dunn, R. M., Hodder, O. J. R. & Rossotti, F. J. C. (1971). J. Chem. Soc. A, pp. 1986–1988.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Smith, G. (2014a). Private communication (refcode WOCGAY). CCDC, Cambridge, England.
  16. Smith, G. (2014b). Acta Cryst. E70, 528–532. [DOI] [PMC free article] [PubMed]
  17. Smith, G. (2015a). Acta Cryst. C71, 140–145. [DOI] [PubMed]
  18. Smith, G. (2015b). Acta Cryst. E71, o717-o718. [DOI] [PMC free article] [PubMed]
  19. Smith, G. & Lynch, D. E. (2014). Acta Cryst. C70, 606–612. [DOI] [PubMed]
  20. Smith, G., O’Reilly, E. J. & Kennard, C. H. L. (1986). Acta Cryst. C42, 1329–1331.
  21. Smith, G., O’Reilly, E. J., Kennard, C. H. L. & Mak, T. C. W. (1989). Acta Cryst. C45, 1731–1733.
  22. Song, W.-D., Huang, X.-H., Yan, J.-B. & Ma, D.-Y. (2008). Acta Cryst. E64, m654. [DOI] [PMC free article] [PubMed]
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Zumdahl, R. L. (2010). In A History of Weed Science in the United States. New York: Elsevier.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989015016722/wm5206sup1.cif

e-71-01177-sup1.cif (41.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016722/wm5206Isup2.hkl

e-71-01177-Isup2.hkl (101.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015016722/wm5206IIsup3.hkl

e-71-01177-IIsup3.hkl (105.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016722/wm5206Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015016722/wm5206IIsup5.cml

CCDC references: 1422835, 1422834

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES