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Aim: To develop a reliable computational approach for predicting potential drug targets based merely on protein sequence.
Methods: With drug target and non-target datasets prepared and 3 classification algorithms (Support Vector Machine, Neural Network 
and Decision Tree), a multi-algorithm and multi-model based strategy was employed for constructing models to predict potential drug 
targets.
Results: Twenty one prediction models for each of the 3 algorithms were successfully developed. Our evaluation results showed that 
~30% of human proteins were potential drug targets, and ~40% of putative targets for the drugs undergoing phase II clinical trials were 
probably non-targets. A public web server named D3TPredictor (http://www.d3pharma.com/d3tpredictor) was constructed to provide 
easy access.
Conclusion: Reliable and robust drug target prediction based on protein sequences is achieved using the multi-algorithm and multi-
model strategy.
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Introduction
Drug target identification and validation is typically the first 
step in the drug discovery process[1].  The estimated number 
of drug targets in the human proteome ranges from nearly 
3000 to more than 10 000[2–4].  However, the number of drug 
targets validated by marketed drugs is very small in compari-
son.  Drews identified 483 drug targets[5], and a more recent 
report showed that oral small-molecule drugs target only 186 
human targets[6], indicating quite an unsettled circumstance 
about how many potential drug targets there are in the human 
proteome.  Furthermore, 30%–40% of experimental drugs fail 
during the drug discovery process because of inappropriate 
target choice[7].  Therefore, the development of reliable compu-
tational approaches for the prediction of new drug targets is 
extremely valuable.

A number of strategies have been reported for predicting 

potential drug targets using protein structures or sequences as 
input[2, 8–16].  The strategies can be generally classified into three 
groups.  The first group nominates new drug targets based on 
their similarity to known drug targets at the sequence, func-
tion and/or domain level[2, 9].  The second group searches for 
potential binding pockets on the protein surface based on 
three dimensional (3D) structures and evaluates the druggabil-
ity of those pockets based on properties such as geometric and 
energetic features[8, 11].  The third group uses machine-learning 
algorithms to classify drug targets and non-targets based on 
descriptors representing biochemical and physicochemical 
features of proteins[15, 16].  The methods, which are based on 
machine-learning algorithms such as Support Vector Machine 
(SVM), Neural Network (NN) and Decision Tree (DT), have 
been validated to be effective for drug target prediction 
according to published studies[15, 17–22].

However, the abovementioned groups of methods have 
their own limitations: the first group is less effective when 
proteins exert no or low homology to known drug targets; the 
second group is constrained by the availability of experimen-
tally determined 3D structures; the third group’s performance 
is highly dependent on the quality and quantity of the training 
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data.  In particular, non-target datasets need to be carefully 
verified because many were built by simply removing target 
proteins from protein databases.  To the best of our knowl-
edge, no multi-algorithm and multi-model approach for pre-
dicting potential drug targets has been reported to date.

In this study, we carefully prepared the target and non-
target datasets and employed three machine-learning algo-
rithms, SVM, NN, and DT, to build multiple sequence-based 
models for the prediction of drug targets.  All models were 
subsequently cross-validated and compared with one other.  
Based on those results, a multi-algorithm and multi-model 
strategy was established to provide reliable drug target pre-
diction using only protein sequence information as input.  The 
method has been implemented as a public web server, D3TPre-
dictor, accessible at http://www.d3pharma.com/d3tpredic-
tor.  Therefore, this study provides the scientific community 
with a new tool and access to drug target prediction.

Materials and methods
Target dataset preparation
The targets of 183 marketed drugs[6] and 172 drug candidates 
currently in phase III clinical trials were extracted from Swiss-
Prot[23] and the Thomson Pharma database[24], respectively.  
After the elimination of identical entries as well as a target 
protein of extreme length (22 152 amino acids), the remaining 
targets were retained as the target dataset (T-Set) (Figure 1B).

Non-target dataset preparation
The non-target dataset (NT-Set) needs to be rationally curated 
and filtered because it is inherently difficult to define a protein 
as not being a drug target.  This step is critical because the 
quality of the non-target dataset greatly affects the reliability 
of mathematical models constructed by the machine-learning 
techniques trained on the target and non-target datasets.  The 

non-target proteins were selected from two sources, the Drug 
Adverse Reaction Target Database (DART)[25] and the Protein 
Data Bank (PDB)[26], based on the following steps (Figure 1A).

Filtration 1
Among the 86 proteins from the DART, only those associated 
with serious side effects, such as carcinogenesis, teratogenesis, 
neurotoxicity and cardiotoxicity, etc, were selected as true 
non-targets for use in Dataset 1 (size: 46) because significant 
clinical adverse effects strongly indicate that the proteins are 
not suitable drug targets.

Filtration 2
The DBREF records in a PDB file provide cross-reference links 
to external databases (eg, GenBank, UNIPROT and Norine).  
Among the 973 human protein entries in the PDB, only those 
with unique UNIPROT accession codes were retained to com-
prise Dataset 2 (size: 400); the cross-reference to UNIPROT[27] 
was important because it offered aggregate knowledge of each 
protein and greatly assisted the extraction of binding site/
pocket information for use in Filtration 4.

Filtration 3
Each entry in Dataset 2 was used to search against the T-Set 
using BLAST[28].  Entries with e-value lower than 0.001 to any 
sequence in the T-Set were considered homologous to a drug 
target and thus removed.  The remaining entries comprised 
Dataset 3 (size: 194).

Filtration 4
To further remove potential drug targets from Dataset 3, a 
binding pocket-based SVM model (pbSVM, Figure 1C) was 
developed based on T-Set (drug targets; Figure 1B) and Data-
set 1 (non-targets; Figure 1A).  Since the binding pocket char-

Figure 1.  Dataset preparation flowchart.
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acterization requires structural data, only entries with known 
structures from T-Set and Dataset 1 were selected to form 
Dataset 4 (size: 130) and Dataset 5 (size: 16), respectively.

The binding pockets of proteins in Dataset 4 and Dataset 5 
were assigned based on literature search.  In cases where there 
was insufficient or conflicting literature information regard-
ing a binding pocket, the corresponding protein was rejected.  
Proteins with large, flat binding sites and those with poor-
quality structures that hindered accurate characterization of 
the binding pockets were also rejected.  The surviving proteins 
comprised Dataset 6 (drug targets, size: 63) and Dataset 7 
(non-targets, size: 15), respectively.  

SYBYL[29] was used to calculate properties for each binding 
pocket in Dataset 6 and Dataset 7, including surface area, vol-
ume, depth, flexibility, hydrophobicity, electrostatic potential 
and hydrogen bonding sites, producing 12 values for each 
pocket.  Those values, related to the binding affinity between 
a target and its ligand[12, 14, 30], were normalized according to 
Equation 1 and used as descriptors to build the pbSVM model 
using the LIBSVM software package[31] with 5-fold cross-vali-
dation (Figure 1C). 

Equation 1 represents the normalization method, where scaled-
Value is the scaled value of a given binding pocket property; 
oriValue is the original value of the given property; minValue 
and maxValue are the minimum and the maximum value, 
respectively, of the given property across both Dataset 6 and 
Dataset 7.  

The resulting binding pocket-based SVM model, pbSVM, 
was used to detect potential drug targets in Dataset 3.  The 
binding pocket descriptors of each protein in the dataset, 
whose binding pockets could be identified through literature 
search and structurally characterized, were calculated and 
normalized according to the aforementioned approach.  Those 
descriptors were then fed into the pbSVM model, and the pro-
tein was classified as either a drug target or a non-target.  All 
entries classified as drug targets were used to search against 
Dataset 3 using BLAST; any hit with e-value less than 0.001 
was deemed a potential drug target and removed from Data-
set 3.  The remaining entries formed Dataset 8 (size: 104, Fig-
ure 1A).

Non-target Dataset
The high-quality non-target dataset (NT-Set) was obtained by 
combining Dataset 1, derived from the DART, and Dataset 8, 
derived from the PDB.  

Descriptor extraction and selection
To build a reliable sequence-based model, a comprehensive 
group of 175 physicochemical features (Table 1) was used to 
represent protein sequences.  The features were calculated 
using our in-house programs as well as free and/or open 
source tools for academic use[14, 15, 32–37].  Each descriptor was 
normalized into the range of 0–1 using Equation 1.  The 175 

normalized descriptors were assembled into a descriptor vec-
tor d175.

Since appropriate combinations of descriptors usually result 
in better performance for machine learning techniques[14, 38], 
two descriptor selection methods were utilized to search for 
such combinations.

Randomized descriptor selection
Let dt be a subset of d175 comprising t descriptors randomly 
selected from the 175 normalized descriptors, where t=100, 
105, 110, ∙∙∙, 170.  For each t, 10 dt vectors were randomly gen-
erated, resulting in a total of 150 descriptor vectors.  Each of 
the 150 descriptor vectors, as well as d175, was used to train a 
model.  The 151 models were evaluated and the descriptor 
vector producing the best-performing model was retained.

F-score based descriptor selection
F-score is a simple, intuitive method used to evaluate the dis-
criminative power of a descriptor.  Given a descriptor vector d, 
if there are Np positive instances (true positives) and Nn nega-
tive instances (true negatives), the F-score of the ith descriptor 
F(i) is calculated as

where                        are the average values of the ith descriptor 
of the entire, the positive, and the negative instances, respec-
tively, and dk,i

P and dk,i
n the values of the ith descriptor of the 

kth positive and negative instance, respectively.  The larger 
the F-score is, the more discriminative the descriptor is statisti-
cally.  Before modeling, the F-score of each descriptor, based 
on the training set, was calculated using Equation 2, and the 
descriptors were sorted by their F-scores in descending order.  
Let dp be a subset of d175 comprising the top p% of the 175 nor-
malized descriptors, where p=10, 20, ∙∙∙, 90.  For each p, 10 dp 
vectors were generated, yielding a total of 90 descriptor vec-
tors.  Each of the 90 descriptor vectors, as well as d175, was used 
to train the models.  The 91 models were evaluated, and the 

scaledValue=  oriValue–minValue                    
(Eq 1)                       maxValue–minValue

Table 1.  Protein sequence based descriptors.

 Dimension	                Properties	                                 References
 
	 1	 Hydrophobicity	 37
	 1	 pI value	 32
	 1	 protein length	 32
	 1	 PEST region	 32
	 1	 O-glycosylation number	 35
	 1	 N-glycosylation number	 34
	 1	 Transmembrane helices number	 32
	 1	 Signal peptide cleavage	 33
	 20	 Composition of 20 amino acid residues	 15
	 21	 Attribute composition	 36, 37
	 21	 Attribute transition	 36, 37
	 105	 Attribute distribution	 36, 37
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combination of descriptors that produced the best-performing 
model was retained.

Modeling strategy
Modeling strategy I
1) 120 non-targets from the NT-Set were randomly selected 
as the negative training dataset; 2) 120 targets were randomly 
selected from the T-Set as the positive training dataset; 3) 
the remaining entries in the T-Set (186) and the NT-Set (30) 
were used as the validation set; 4) three kernel functions were 
independently used to build SVM models using LIBSVM; 5) 
10-fold cross-validation was applied; 6) each modeling proce-
dure was repeated 10 times.

Modeling Strategy II
1) All 150 non-targets in the NT-Set were selected as the nega-
tive dataset, and 150 targets were randomly selected from 
the T-Set as the positive dataset; 2) 100 or 120 entries were 
randomly selected from each of the positive and the negative 
datasets as the training set, and the remaining entries in the 
two datasets served as the validation set; 3) the aforemen-
tioned two descriptor selection methods, randomized and 
F-score based, were utilized independently to search for the 
best combination of descriptors; 4) three classification algo-
rithms were independently implemented and tested to search 
for the best modeling parameters; 5) 10-fold cross-validation 
was applied; 6) each modeling procedure was repeated 10 
times.

Performance evaluation
The performance of a model was assessed by sensitivity (Equa-
tion 3), specificity (Equation 4) and accuracy (Equation 5).

TP, TN, FP, and FN represent true positives, true negatives, 
false positives and false negatives, respectively.

Accumulated standard error (ASE) evaluation
Here i stands for Dataset I, II or III; j is the model serial of 21 
SVM models; Modelij

SVM denotes the accuracy of the SVM 
model j over Dataset i; Modelij

NN denotes the accuracy of the 
NN model j over Dataset i; Modelij

DT denotes the accuracy of 
the DT model j over Dataset i; SD represents standard error 
among three parallel models over an identical dataset.

Multi-algorithm and/or multi-model based strategy
Multi-algorithm based strategy
A query protein sequence is submitted to M*N (M=1, 2, ∙∙∙, 21; 

N=1, 2, 3) models.  M represents the number of selected train-
ing sets, and N represents the number of selected algorithms 
(SVM, NT, DT).  For each training set, N models are con-
structed based on N algorithms, and those N models are called 
“parallel models”.  M*N models are used to classify the query 
sequence, yielding M*N labels (target or non-target) for the 
query sequence.  Then, every N labels based on an identical 
training set are reduced to one label, the one observed in the 
majority of the N labels.  Hence, M*N labels are reduced to M 
labels, which is called a multi-algorithm based strategy.

Multi-model based strategy
A query sequence is submitted to M*N (M=1, 2, ∙∙∙, 21; N=1, 2, 
3) models, yielding M*N labels.  Then, every M labels using 
the same algorithm are reduced to one label, the one observed 
in the majority of the M labels.  Hence, M*N labels are reduced 
to N labels, which is called a multi-model based strategy.

Multi-algorithm and multi-model based strategy
A query sequence is submitted to M*N (M=1, 2, ∙∙∙, or 21; N=1, 
2, or 3) models, yielding M*N labels.  First, the multi-algorithm 
based strategy is implemented to reduce M*N labels to M 
labels; subsequently, the multi-model based strategy is imple-
mented to reduce M labels to one label.  This is called a multi-
algorithm and multi-model based strategy.

Results
Target dataset
T-Set, totaling 306 entries, was prepared from targets of mar-
keted drugs and drug candidates in phase III clinical trials 
through elimination of redundancy and manual selection (Fig-
ure 1B; see Materials and Methods).

Non-target dataset
NT-Set was prepared from 86 potential non-target proteins in 
the DART[25] and 973 human proteins in the PDB[26] through 4 
filtration steps (Figure 1A, 1C; see Materials an methods).

First, 46 non-target proteins (Dataset 1) were extracted from 
the DART through Filtration 1.  Then, sequence-similarity 
based filtrations (Filtrations 2 and 3) extracted 194 (Dataset 3) 
potential non-targets from the 973 human proteins with 3D 
structures.  In Filtration 4, the pbSVM model, whose cross- 
validation accuracy and testing accuracy were 86.7% and 
92.3%, respectively, predicted that there were 104 non-targets 
(Dataset 8) in Dataset 3.  Finally, Datasets 1 and 8 were com-
bined to form the NT-Set of 150 non-target proteins.  This set, 
together with the T-Set of 306 drug targets, was utilized to 
construct sequence-based models for drug target prediction.

Classification algorithms and selection of SVM kernel function
SVM, NN, and DT are three widely used classification algo-
rithms, each with unique advantages and disadvantages.  To 
the best of our knowledge, most studies on drug target pre-
diction employed only a single algorithm[11, 14, 17, 19, 20, 22].  To 
explore potential synergies, all three algorithms were imple-
mented and compared in this study.

Sensitivity=     TP                                          (Eq 3)                      TP+FN

Specificity=    TN                                          (Eq 4)                      TP+FP

Accuracy=         TP+TN                              (Eq 5)                    TP+TN+FP+FN
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Three kernel functions, linear, polynomial and radial basis 
function (RBF), are commonly used in SVM methods.  To 
identify the optimal parameters and the best-performing SVM 
model, all three kernel functions were evaluated according to 
Modeling Strategy I (Materials and methods).  For the linear 
kernel function (Equation 7), only one parameter, the error 
trade-off C, was optimized; for the polynomial kernel function 
(Equation 8), two kernel parameters, γ and d, were optimized; 
and for the RBF (Equation 9), kernel parameter γ and the error 
trade-off C were optimized.

K(xi, xj)=xi
T· xj                                                 (Eq 7)

K(xi, xj)=(γxi
T· xj+1)d, γ>0                                 (Eq 8)

K(xi, xj)=exp(–γ‖xi–xj‖
2), γ>0                     (Eq 9)

Here xi and xj denote the ith and jth data point, respectively, 
and xi

T is the transposed form of xi.
The evaluation results are listed in Table 2.  The RBF kernel 

function shows balanced and consistent predictive power, 
outperforming the two other kernel functions in both specific-
ity and accuracy, while trailing only slightly behind the linear 
kernel function in sensitivity.  Hence, subsequent SVM models 
reported in this study all employed the RBF kernel function.

Descriptor selection and comparison of classification algorithms
In this work, each protein sequence was represented as a 
175-dimension descriptor vector (Materials and methods).  As 
previously reported, choosing a relevant and complementary 
combination of descriptors for a model typically leads to bet-
ter performance in machine learning approaches[14, 38], possibly 
resulting from the removal of noisy descriptors interfering 
with parameter optimization during model construction.  To 
find the best combination of descriptors, two selection meth-
ods were implemented in this study, randomized and F-score 
based[31] (Materials and methods).

The two selection methods were implemented and evalu-
ated according to Modeling Strategy II (Materials and meth-
ods) for three classification algorithms, SVM, NN and DT.  The 
randomized descriptor selection method consistently outper-
formed the F-score based descriptor selection method in all 3 
classification algorithms (Figure 2, Table S1).  Consistent with 
our findings, other groups have also reported superior per-
formance for the randomized descriptor selection method in 
machine-learning algorithms[14, 17].  Therefore, the randomized 
descriptor selection method was employed in all subsequent 
studies.

SVM and NN achieved similar performance and outper-
formed DT in all metrics except specificity (Figure 2).  To fur-
ther discriminate between SVM and NN, the extensibility of 
the model is evaluated, which is defined as the performance of 
other models constructed from the same training set but using 
other algorithms.  Accordingly, 21 SVM models and 36 NN 
models were selected based on the criteria of Accuracy >0.80 
and AUC>0.85.  The training sets of the 21 SVM models were 
used to train 21 NN models and 21 DT models, and the per-
formance metrics are illustrated in Figure 3A (Table S2).  Like-
wise, the training sets for the 36 NN models were utilized to 
train 36 SVM models and 36 DT models (Figure 3B, Table S3).  
Subsequently, an ANOVA statistical test was implemented to 
analyze the difference between the performances of the mod-
els (Figure 4, Table S4), which demonstrates that the training 
sets for the 21 SVM models have better extensibility.  The rele-
vant ROC curves for the 21 SVM models are shown in Figure 5 
(Table S5), and the AUCs of the 21 SVM models vary between 
0.90 and 0.95, suggesting that each SVM model performs well.  
Therefore, we selected the 21 best-performing SVM models 
and used their corresponding training sets to train 21 NN 
models and 21 DT models.  The performance metrics for the 63 
models are shown in Table 3.  For convenience, when the three 
models (one SVM model, one NN model and one DT model) 
are based on an identical training set, they are called “parallel 
models”.  The three algorithms and 21 parallel models were 
applied in subsequent studies.

Qualitative evaluation using multiple datasets
Three datasets were used to further assess our multi-algorithm 
and multi-model based strategy.

Phase II targets
Targets of drugs undergoing phase II clinical trials were 
collected and those that were included in the T-Set were 

Table 2.  10-fold cross-validation results of SVM modelling for kernel 
function selection.

                              Sensitivity (%)	          Specificity (%)	              Accuracy (%)
 
Linear	 94.60±1.44	 31.11±4.63	 73.71±0.68
Polynomial	 56.93±7.35	 91.07±2.66	 68.16±4.36
RBF	 81.87±3.66	 93.02±11.26	 85.54±5.58

Figure 2.  Comparison of three algorithms using two descriptor selection 
methods.  FSBM, F-score based modeling; DRM, descriptor randomization 
modeling.
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removed, resulting in 202 potential drug targets.  As shown in 
Figures 6A and 6D (Table S6), all of the SVM and NN models 
produced consistent classifications, whereas the DT models, 
especially models 15 and 16, exhibited more variation.  Nev-
ertheless, the majority of the models classified over 40% of the 
clinical targets as true drug targets and nearly 60% as non-tar-
gets.  Reports indicate that 66% of compounds entering phase 
II clinical trials fail prior to phase III[39] and that 30% of attri-
tions in clinical trials are caused by a lack of efficacy[40], which 
can often be attributed to inappropriate targets.  This finding 
qualitatively supports our results.

Human proteome
The whole human proteome dataset, including 20 331 pro-

teins, was downloaded from Swiss-Prot[23].  After 306 targets 
originally included in T-Set were removed, all 63 models were 
applied to the remaining 20 025 proteins (Figures 6B and 6E).  
Most models predicted that at least 30% of proteins in the 
human proteome are drug targets, in qualitative agreement 
with other studies[3–5].  Again, DT-models 15 and 16 predicted 
a lower percentage of targets than other models and algo-
rithms, suggesting that these two models should be utilized 
after more careful consideration.  More detailed analyses and 
classification of the whole human proteome are provided later 
in this article.

Figure 3.  Evaluation of extensibility of the training sets of the 21 
SVM models and the 36 NN models.  The X-axis represents all of the 
performance metrics for the three algorithms, and the Y-axis is the model 
serial number.  (A) Evaluation based on the training and testing sets of 
the 21 SVM models for the three algorithms.  (B) Evaluation based on the 
training and testing sets of the 36 NN models for the three algorithms.

Figure 4.  ANOVA statistical test.  Analysis of differences in (A) the 
accuracies and (B) the AUCs between the DT models based on the training 
sets of the 21 SVM models and those of the 36 NN models.  Analysis 
of differences in (C) the accuracies and (D) the AUCs between the NN 
models based on the training sets of the 21 SVM models and those of the 
36 NN models.  Analysis of differences in (E) the accuracies and (F) the 
AUCs between the SVM models based on the training sets of the 21 SVM 
models and those of the 36 NN models.
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Table 3.  Performance metrics of 21 sorted parallel models for each of the three algorithms according to their ASE bars.

#Rank   ASE bar   Model  #Descriptor                               SVM                                                           DT	                                             NN   
              height     serial 	              Sen          Spe           Acc	         AUC	        Sen	       Spe	      Acc	    AUC	  Sen          Spe          Acc         AUC
 
  1	 0.079 	   9	 170	 0.83	 0.87	 0.85	 0.91	 0.70	 0.83	 0.77	 0.77	 0.87	 0.80	 0.83	 0.90
  2	 0.085 	   8	 165	 0.83	 0.87	 0.85	 0.91	 0.70	 0.83	 0.77	 0.77	 0.83	 0.83	 0.83	 0.89
  3	 0.111 	 11	 105	 0.90	 0.83	 0.87	 0.92	 0.73	 0.73	 0.73	 0.73	 0.90	 0.87	 0.88	 0.93
  4	 0.111 	 18	 115	 0.90	 0.83	 0.87	 0.90	 0.73	 0.73	 0.73	 0.73	 0.87	 0.87	 0.87	 0.89
  5	 0.117 	   7	 150	 0.90	 0.83	 0.87	 0.90	 0.77	 0.83	 0.80	 0.80	 0.80	 0.83	 0.82	 0.89
  6	 0.131 	   3	 110	 0.90	 0.87	 0.88	 0.92	 0.70	 0.73	 0.72	 0.72	 0.93	 0.77	 0.85	 0.85
  7	 0.133 	 13	 115	 0.87	 0.83	 0.85	 0.95	 0.87	 0.73	 0.80	 0.80	 0.93	 0.87	 0.90	 0.94
  8	 0.134 	   2	 100	 0.87	 0.90	 0.88	 0.92	 0.77	 0.77	 0.77	 0.77	 0.83	 0.87	 0.85	 0.89
  9	 0.140 	   4	 120	 0.90	 0.87	 0.88	 0.92	 0.83	 0.67	 0.75	 0.75	 0.87	 0.87	 0.87	 0.90
10	 0.157 	 14	 120	 0.90	 0.80	 0.85	 0.93	 0.83	 0.67	 0.75	 0.75	 1.00	 0.87	 0.93	 0.97
11	 0.158 	 20	 140	 0.87	 0.87	 0.87	 0.90	 0.67	 0.67	 0.67	 0.67	 0.90	 0.80	 0.85	 0.91
12	 0.161 	   6	 135	 0.83	 0.90	 0.87	 0.92	 0.77	 0.83	 0.80	 0.80	 0.93	 0.80	 0.87	 0.92
13	 0.163 	 12	 110	 0.87	 0.83	 0.85	 0.93	 0.80	 0.57	 0.68	 0.68	 0.87	 0.93	 0.90	 0.93
14	 0.176 	   5	 125	 0.80	 0.93	 0.87	 0.91	 0.70	 0.83	 0.77	 0.77	 0.90	 0.83	 0.87	 0.94
15	 0.177 	 17	 160	 0.87	 0.83	 0.85	 0.93	 0.83	 0.70	 0.77	 0.77	 0.90	 0.87	 0.88	 0.93
16	 0.180 	 21	 160	 0.87	 0.83	 0.85	 0.90	 0.67	 0.67	 0.67	 0.67	 0.90	 0.83	 0.87	 0.90
17	 0.193 	   1	 100	 0.90	 0.80	 0.85	 0.92	 0.83	 0.60	 0.72	 0.72	 0.93	 0.70	 0.82	 0.92
18	 0.198 	 19	 135	 0.80	 0.93	 0.87	 0.91	 0.70	 0.83	 0.77	 0.77	 0.87	 0.87	 0.87	 0.89
19	 0.222 	 10	 100	 0.87	 0.87	 0.87	 0.91	 0.80	 0.73	 0.77	 0.77	 0.93	 0.87	 0.90	 0.94
20	 0.411 	 16	 155	 0.87	 0.87	 0.87	 0.95	 0.63	 0.90	 0.77	 0.77	 0.87	 0.90	 0.88	 0.96
21	 0.490 	 15	 125	 0.83	 0.87	 0.85	 0.93	 0.63	 0.90	 0.77	 0.77	 0.93	 0.83	 0.88	 0.95

Sen, sensitivity; Spe, specificity; Acc, accuracy; AUC, area under the ROC curve.

Figure 5.  Receiver operating characteristic curves (ROCs) of the 21 SVM models.
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Targets of withdrawn drugs in DrugBank
Among the 109 targets of withdrawn drugs obtained from 
DrugBank[4], 54 entries overlapped with the T-Set and were 
removed.  All 63 models were applied to the remaining 55 
targets.  As shown in Figures 6C and 6F, models 10, 15, and 16 
showed more variation, while other models produced more 
consistent results.  The majority of our models predicted that 
~85%–95% of targets of withdrawn drugs were true targets, 
suggesting that most of the withdrawals of marketed drugs 
may not have been caused by target druggability.  This finding 
is intuitive because most marketed drugs should have demon-
strated at least some efficacy to receive regulatory approval, 
which suggests the validity of the targets.

Quantitative evaluation with accumulated standard error
The above tests qualitatively demonstrated the consistency 
of the models and of the three algorithms.  The Accumulated 
Standard Error (ASE) was used to provide a quantitative 
evaluation for the above tests (Equation 6, see Materials and 
methods).

The ASE bars are shown in Figure 7 (Table S7).  The lower 
the ASE bar, the more robust the model.  Models 8 and 9 
exhibit the least discrepancy across the three algorithms, indi-
cating that they are the most self-consistent models.  On the 
contrary, models 15 and 16 are the most variable across the 
three algorithms. Twenty one models are ranked according 
to their ASE bars, and the ranked performance metrics of the 

Figure 6.  Evaluation of the 21 parallel models against three testing datasets.  Evaluation against (A) Dataset I, clinical phase II targets (size: 202), 
(B) Dataset II, human proteome (size: 20  025), and (C) Dataset III, targets of withdrawn drugs (size: 55).  Mean values and standard errors of the 21 
models using the 3 algorithms against (D) Dataset I, (E) Dataset II, and (F) Dataset III.
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three algorithms are illustrated in Table 3.  The subsequent 
applications of these models in the multi-algorithm and multi-
model based strategy are based on their ranked order.

Assessment of the multi-algorithm and multi-model strategy
Next, we evaluated whether multi-algorithm and/or multi-
model based strategies outperform single-algorithm and 
single-model based strategies.  A graphical illustration of 
multi-algorithm and/or multi-model based strategies is given 
in Figure 8 (see Materials and methods for details).  A total of 
67 targets and 33 non-targets were selected randomly from 
the T-Set and NT-Set, respectively, and each of the strategies 
was applied to the combined set of 100 entries.  This exercise 
was repeated 10 times, and each time a new test set was ran-
domly selected.  In the cases of single-algorithm and single-

model based strategies (Figures 9A, 9B, and 9C, Table S8), the 
accuracy of most SVM and NN models was approximately 
80%, but the error bars were relatively large.  For comparison, 
the accuracy of almost all models utilizing a multi-algorithm 
based strategy and/or a multi-model based strategy was better 
than 80% (Figures 9D, 9E, and 9F).  Furthermore, when multi-
algorithm and multi-model based strategies were combined, 
the accuracy of target prediction increased to approximately 
83%–85%, with higher consistency across the algorithms (Fig-
ure 9F).  For instance, using 3 algorithms and the top 19 par-
allel models for each algorithm, the accuracy was over 85%.  
Therefore, the multi-algorithm and multi-model based strat-
egy seems to be most reliable.

Based on simple sequence properties, Huang et al[22] and Li 
et al[17] also constructed SVM models for drug target predic-
tion.  When Huang et al applied the SVM method to predict 
the potential drug targets among ion channel proteins; the 
accuracy for a random dataset was ~50%.  Even after optimi-
zation of description selection, the accuracy never increased 
beyond 80% for other datasets.  Likewise, the accuracy of the 
SVM models developed by Li et al was less than 85% for both a 
carefully prepared testing dataset and a random dataset.  The 
multi-algorithm and multi-model strategy has higher accu-
racy.

Evaluation of the multi-algorithm and multi-model strategy
Three separate datasets (Phase II, Phase III, and Phase IV) 
were prepared for further validation of the multi-algorithm 
and multi-model strategy.  The proteins included in the Phase 
III and Phase IV datasets that overlapped with the Phase II 
dataset were removed from the Phase II dataset, and the pro-

Figure 7.  Bar chart of accumulated standard errors (ASE).

Figure 8.  Illustration of multi-algorithm and/or multi-model based strategy.  The red colored block represents a predicted non-target; the green colored 
block stands for a predicted target.  Multi-algorithm based strategy: for i (i=1, 2, …, 21), there are three corresponding models: SVM-model-i, NN-
model-i, and DT-model-i.  If a sequence is predicted as a target by no less than 2 models in the three models, the sequence is defined as a potential 
target.  Multi-model based strategy: for algorithm j (j=SVM, NN, DT), there are N models (N=1, 2, …, 21).  If a sequence is predicted as a target by no 
less than [(N+1)/2] models, the sequence is defined as a potential target.  Multi-algorithm and multi-model based strategy: successive combination of 
multi-algorithm based strategy and multi-model based strategy.
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teins included in the Phase IV dataset that overlapped with 
the Phase III data set were removed from the Phase III dataset.  
In addition, the sequences including unknown or nonstandard 
amino acids were removed from the three datasets.  The rates 
of target identification in the three datasets were predicted 
with the 3 algorithms and the top 19 parallel models (Table 4).  
The target identification rates in the three datasets increased in 
the order Phase IV > Phase III > Phase II, which is consistent 
with the logical flow of R&D productivity in the pharmaceuti-
cal industry, indirectly supporting the practical utility of our 
approach.  

Novel drug target prediction
The potential drug targets in the human proteome were pre-
dicted with the 3 algorithms and the top 19 parallel models 
for each algorithm (multi-algorithm and multi-model based 
strategy).  Any protein predicted to be a drug target by all 3*19 
models was classified as a full target, which indicates a high 
confidence level; any protein validated as a potential drug tar-
get but that did not meet the criterion for a full target was clas-
sified as a quasi target.  As shown in Table 5, 1932 (9.6%) of 
20 025 human proteome proteins (excluding the T-Set targets) 
were predicted as full targets and 3990 (20.0%) were quasi 
targets (Dataset S1, Supporting information), suggesting that 
29.6% of the proteins in the human proteome could be poten-
tial drug targets.

To analyze the distribution of target categories and to com-
pare the distribution of all predicted targets and true targets, 
the true targets in the T-Set and all predicted targets were 
classified into 3 main categories and their corresponding sub-
categories based on the annotations of the UNIPROT[27] and 

Table 4.  Evaluation of the multi-algorithm and multi-model strategy.

Dataset             Size	         #Nontarget	   #Quasi target        #Full target
 
Phase II	 202	 116/57.42%	 51/25.25%	 35/17.33%
Phase III	 123	 41/33.33%	 47/38.21%	 35/28.46%
Phase IV	 181	 41/22.65%	 55/30.39%	 85/46.96%

Figure 9.  Multi-algorithm and/or multi-model based evaluation.  Single-algorithm and single-model based evaluation using (A) the SVM algorithm, (B) 
the DT algorithm, and (C) the NN algorithm.  (D) Multi-algorithm based evaluation.  (E) Multi-model based evaluation.  (F) Multi-algorithm and multi-
model based evaluation.
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Pfam[41] databases (Table 5).  Receptor is the largest category 
among the true drug targets, followed by enzyme, represent-
ing 52.2% and 43.7% of the true drug targets, respectively.  
Similarly, receptor is also the largest category among the pre-
dicted full targets, where 52.3%, or 817 proteins, are receptors 
(including 715 GPCRs) and 538 are transporters.  However, 
only 141 receptors (including 83 GPCRs) and 48 transporters 
are found in the T-Set, indicating a large undeveloped poten-
tial target space.  Even if the 422 olfactory and 28 taste recep-
tors are excluded from the original 715 GPCRs[42], there are still 
292 GPCRs in the predicted potential targets for drug develop-
ment.  Thus, GPCRs are still one of the most important groups 
of drug targets[43].  Therewith, membrane proteins, such as 
GPCRs, transporters and ionic channels, should be prioritized 
for target validation studies.  In addition, enzymes should 
not be neglected given their significant proportion among 
true drug targets.  We classified 1407 enzymes as potential 
drug targets, among which transferases and hydrolases domi-
nate.  It is noteworthy that protein kinases, which belong to 
transferases, have successfully been targeted by drugs for 

several decades, and it is likely that this trend will continue 
in the future.  Currently, dozens of inhibitors are undergoing 
clinical trials against protein kinases and several drugs have 
been launched commercially[44–50], demonstrating that protein 
kinases are one of the most important groups of drug targets.  
Therefore, enzymes, especially protein kinases, should also be 
emphasized in the pipeline for target validation.

Web server
We have implemented this work as a web server named 
D3TPredictor.  The server requires only a protein sequence as 
input and classifies it as a full target, a quasi target or a non-
target.  Users can fully customize the combination of algo-
rithms and models for the prediction.  Approximately 1600 
tests, submitted by 40 internal and over 160 external users, 
have been completed, demonstrating that the D3TPredictor 
web server is functional and stable.  The server is available 
free of charge at http://www.d3pharma.com/d3tpredictor.  
This tool should be of significant value and interest to phar-
maceutical research.  

Table 5.  Classification of the targets in the target dataset (T-Set) and the predicted targets in the human proteome*.

           Category	                                             Target dataseta	                          Full targets	                   Quasi targets	          Potential targetsb

 
	 Enzyme	 118 (43.7%)	 305 (19.5%)	 1 102 (66.6%)	 1 407 (43.7%)
	 Oxidoreductase	 32 (11.9%)	 47 (3.0%)	 157 (9.5%)	 204 (6.3%)
	     Transferase	 39 (14.4%)	 127 (8.1%)	 416 (25.1%)	 543 (16.9%)
	     Hydrolase	 37 (13.7%)	 109 (7.0%)	 435 (26.3%)	 544 (16.9%)
	     Lyase	 4 (1.5%)	 13 (0.8%)	 28 (1.7%)	 41 (1.3%)
	     Isomerase	 6 (2.2%)	 4 (0.3%)	 10 (0.6%)	 14 (0.4%)
	     Ligase	 1 (0.4%)	 10 (0.6%)	 82 (5.0%)	 92 (2.9%)

	 Receptor	 141 (52.2%)	 817 (52.3%)	 297 (17.9%)	 1 114 (34.6%)
	     GPCR	 83 (30.7%)	 715 (45.8%)	 27 (1.6%)	 742 (23.1%)

	 Transporterc	 48 (17.8%)	 538 (34.4%)	 355 (21.5%)	 893 (27.8%)
	     Ionic channeld	 28 (10.4%)	 154 (9.9%)	 84 (5.1%)	 238 (7.4%)
	       Calcium channel	 6 (2.2%)	 31 (2.0%)	 16 (1.0%)	 47 (1.5%)
	       Chloride channel	 5 (1.9%)	 36 (2.3%)	 10 (0.6%)	 46 (1.4%)
	       Potassium channel	 3 (1.1%)	 29 (1.9%)	 29 (1.8%)	 58 (1.8%)
	       Sodium channel	 4 (1.5%)	 11 (0.7%)	 4 (0.2%)	 15 (0.5%)
	       Ligand-gated ion channel	 13 (4.8%)	 43 (2.8%)	 19 (1.1%)	 62 (1.9%)
	       Voltage-gated ion channel	 10 (3.7%)	 54 (3.5%)	 42 (2.5%)	 96 (3.0%)
	 Classified targets	 270	 1 562	 1 655	 3 217
	 Unclassified targetse	 36	 370	 2 335	 2 705
	 Targets	 306	 1 932	 3 990	 5 922
	 Total	 306	 20 025	 20 025	 20 025

* Some proteins can be classified as at least two categories, so sum of all the classified categories is more than the number of classified targets. The 
percentage in the bracket is obtained from number of the classified targets divided by the corresponding number of the category, for example, 118 (43.7%) 
in the Target Dataset column is obtained from 118/270.
a Target Dataset (T-Set) composed of 306 targets (Figure 1B).
b Potential Targets are the sum of Full targets and Quasi targets.
c Transporter stands for any protein which are involved in importing, exporting or symporting any kinds of ions, sugars, peptides or proteins, etc.
d Ionic channel stands for any protein which is part of a transmembrane protein complex that forms a channel across the lipid bilayer through which 
specific inorganic ions can diffuse down their electrochemical gradients.
e Unclassified targets are those undetermined proteins that are not classified as the above enzymes, receptors or transporters.
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Discussion
The discovery of novel drug targets is of great importance 
in drug development, but it is laborious and costly.  Hence, 
a reliable computational approach for drug target predic-
tion would be of significant value.  In this study, we care-
fully prepared the drug target and non-target datasets with 
multiple standards and selected appropriate kernel functions 
and descriptor selection approaches, which provide predic-
tive models with superior reliability and robustness. Based on 
high-quality datasets, multiple models in combination with 
three algorithms (SVM, NN, and DT) were constructed.  This 
approach was then evaluated qualitatively and quantitatively 
using three testing datasets, which are consistent with previ-
ously reported studies.  Notably, we showed that the appro-
priate combination of multiple algorithms and multiple mod-
els yields better performance than individual models.  Accord-
ingly, we selected the best combination of 3 algorithms and 19 
parallel models to predict potential drug targets in the human 
proteome.  Approximately 30% of proteins in the human pro-
teome were predicted to be potential drug targets, of which 
1932 proteins were of high confidence level.  Furthermore, 
the enrichment of GPCRs and kinases in the predicted targets 
agrees with the distribution of experimentally validated drug 
targets.  In this regard, we suggest that GPCRs and kinases 
should be prioritized in future target validation studies.

Finally, we implemented our multi-algorithm and multi-
model based strategy as a public web server, D3TPredictor.  
To the best of our knowledge, D3TPredictor is the first public 
web server for drug target prediction using a multi-algorithm 
and multi-model strategy.  In addition, D3TPredictor has been 
tested online internally and externally, highlighting its func-
tion and stability.  This server should facilitate new advances 
in pharmaceutical research.
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