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Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence.  Alcoholism is a serious public 
health problem and has been identified as the third major cause of preventable mortality in the world.  Worldwide, about 2 billion 
people consume alcohol, with 76.3 million having diagnosable alcohol use disorders.  Alcohol is currently responsible for the death of 
4% of adults worldwide (about 2.5 million deaths each year), and this number will be significantly increased by 2020 unless effective 
action is taken.  Alcohol is the most commonly abused substance by humans.  Ethanol (EtOH) is the intoxicating agent in alcoholic 
drinks that can lead to abuse and dependence.  Although it has been extensively studied, the mechanisms of alcohol reward and 
dependence are still poorly understood.  The major reason is that, unlike other addictive drugs (eg, morphine, cocaine or nicotine) 
that have specific molecular targets, EtOH affects much wider neuronal functions.  These functions include phospholipid membranes, 
various ion channels and receptors, synaptic and network functions, and intracellular signaling molecules.  The major targets in the 
brain that mediate EtOH’s effects remain unclear.  This knowledge gap results in a therapeutic barrier in the treatment of alcoholism.  
Interestingly, alcohol and nicotine are often co-abused, which suggests that neuronal nicotinic acetylcholine receptors (nAChRs), the 
molecular targets for nicotine, may also contribute to alcohol’s abusive properties.  Here, we briefly summarize recent lines of evidence 
showing how EtOH modulates nAChRs in the mesolimbic pathway, which provides a perspective that nAChRs are important targets 
mediating alcohol abuse.  
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Introduction 
Alcoholism is a serious public health problem and has been 
identified as the third major cause of preventable mortality in 
the world[1].  Approximately 2 billion people worldwide con-
sume alcohol, with 76.3 million who have diagnosable alcohol 
use disorders (AUDs).  Alcohol is currently responsible for the 
deaths of 4% of the world’s adult population (about 2.5 mil-
lion deaths each year), and this number will increase by 2020 
unless effective action is taken[2].  Economically, in 2005, more 
than $200 billion of the total United States.  healthcare cost 
was attributable directly to the productivity impacts of alco-
hol, such as lost wages, which were significantly higher than 
cancer ($196 billion) or obesity ($133 billion)[3].  Thus, there is 
an urgent need to reduce the global rate of AUDs.  Unfortu-
nately, attempts to combat alcohol abuse have been severely 
confounded.

Alcohol is the most commonly abused substance by humans.  
Ethanol (EtOH) is the intoxicating agent in alcoholic drinks 
that can lead to abuse and dependence[4].  Alcohol use has 
been ascribed both positive and negative effects.  While alco-
hol at low doses has been shown to provide cardiovascular 
protection[5], binge drinking is associated with higher incidents 
of cardiovascular disease and associated mortality[6].  Projec-
tions from the ventral tegmental area (VTA) to the nucleus 
accumbens (NAc), by way of the medial forebrain bundle, 
make up a vital component of the mesolimbic pathway[7].  The 
rewarding effects of EtOH have been linked to the mesolimbic 
dopamine (DA) system[7], wherein an increase in DA in the 
NAc is thought to be vital for reward signaling.  This system 
has been connected to the rewarding effects of many abused 
drugs.  However, unlike other addictive drugs (eg, morphine, 
cocaine or nicotine) which have specific molecular targets, 
EtOH affects much wider neuronal functions including phos-
pholipid membranes, various ion channels and receptors, 
synaptic and network functions, and intracellular signaling 
molecules[8].  Although it has been extensively investigated 
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(especially in GABAA receptors[9]), the major target mediating 
EtOH reward signaling and the precise mechanisms of EtOH 
reward and dependence are still poorly understood[10].  This 
gap in knowledge results in a therapeutic barrier in the treat-
ment of alcoholism.  

It is well known that alcohol and nicotine are often co-
abused.  The number of alcoholics who also smoke has been 
reported to be as high as 96%[11], suggesting that neuronal nic-
otinic acetylcholine receptors (nAChRs), the molecular targets 
of nicotine, may contribute to the abusive properties of alco-
hol.  Mounting genetic, pre-clinical, and clinical evidence dem-
onstrates that EtOH directly and indirectly modulates nAChR 
function in the mesolimbic pathway, which may underlie 
alcohol reward and dependence.  These lines of evidence also 
build the rationale that nAChRs are likely important targets 
which mediate alcohol abuse.  However, a consensus is yet to 
emerge as to which nAChR subtype critically mediates EtOH’s 
central effects.  

Impact of nAChRs in EtOH reward and dependence 
nAChRs are ligand-gated ion channels expressed in a variety 
of compositions with two subtypes, α and β.  Nine types of α 
subunits (α2–α10) are known to be expressed in vertebrates, 
as well as three β subunit types (β2–β4)[12].  The pentameric 
structure of each individual nAChR determines the variety 
of ion that is able to pass through the receptor’s channel[12].  
For example, the α4β2 receptor mostly permits the passage 
of sodium through its pore while the α7 receptor permits 
sodium passage and allows relatively high calcium perme-
ability[12].  The known subunits found in the human brain are 
thought to be α3-α7, β2, and β4, although not all are presently 
known[12, 13].  The most common nicotinic pentamers in the 
human brain consist of heteromeric α4 and β2 subunits or α7 
subunits[14].  These pentamers could be joined as α4(2)β2(3), α4(3)

β2(2), or homomeric α7 receptors.  nAChR α6 subunits are not 
widely expressed in the brain, but are prevalent in midbrain 
DAergic regions associated with pleasure, reward, and mood 
control[15], suggesting that α6*-nAChRs play critical roles in 
nicotine dependence and in the ability to modulate mood and 
emotion attributed to nicotine[16].  

The concept that nAChRs are important targets in the media-
tion of EtOH reward and dependence is built on the phar-
macological blockade of EtOH reward and dependence in a 
variety of alcoholic animal models by a nAChR antagonist 
mecamylamine.  For instance, systemic mecamylamine sig-
nificantly reduces EtOH-mediated extracellular DA release in 
the NAc[17], and reduces EtOH consumption in rats[18].  Local 
injection of mecamylamine into the VTA reduces rat operant 
responding for EtOH and EtOH-associated cues, as well as 
consumption during relapse[19, 20].  Mecamylamine delivered 
systemically reduces EtOH consumption in C57Bl/6J mice in 
restricted access EtOH consumption “drinking in the dark” 
(DID) paradigm[21], a model of binge drinking, as well as in 
the two-bottle choice consumption assay[22].  More recently, 
it has been demonstrated that mecamylamine blocks EtOH-
mediated activation of VTA DAergic neurons in mouse mid-

brain slices[23].  Mecamylamine also blocks the ability of EtOH  
condition place preference in mice[24].  Since mecamylamine 
is a non-specific nAChRs blocker, it usually blocks all nAChR 
subtypes except α7-nAChRs at the doses used in these stud-
ies.  Thus, the effects of nAChR subtype special antagonists 
on EtOH-induced reward, dependence and consumption 
have been examined.  Unfortunately, neither the α4β2 nAChR 
antagonist dihydro-β-erythroidine (DHβE) nor the α7 nAChR 
antagonist methyllycaconitine (MLA) reduce EtOH-mediated 
DA release in the NAc, EtOH intake or consumption[20, 25].  
On the other hand, the nAChR antagonist α-conotoxin MII, 
which blocks α3β2*, β3* and α6* subtypes, inhibits EtOH con-
sumption, operant responding, and DA release in the NAc of 
rats[20, 26].  This pharmacological data suggest that both α4β2 
and α7 nAChR subtypes may not be critical for ethanol reward 
and consumption behavior, while α6* and/or α3* nAChR 
subtypes are likely important targets for these EtOH-induced 
behavioral alterations.  

Further studies using nAChR subunit knock out (KO) mice 
show that nAChR β2, α5*, α6*, or α7 KO mice exhibit similar 
EtOH consumption behavior to WT mice[27–29].  Interestingly, in 
α6 and α5, but not β3, KO mice, high doses of EtOH-induced 
sedation was enhanced[28, 29].  In addition, α4 KO mice show 
significantly less acute EtOH consumption to high (20%) but 
not low (2%) concentrations of EtOH[30].  Considering nAChR 
subunit compensation in a nAChR KO mouse background, 
these results collected from nAChR KO mice will need to be 
verified using shRNAs to knock-down nAChR subunits in 
discreet brain regions, and these data must also be interpreted 
with pharmacological evidence.  

Finally, recent accumulating evidence suggests that com-
mon genes may influence the development of alcohol and 
nicotine behaviors individually, and contribute to both disor-
ders in humans[31].  For example, the mammalian genes that 
code for the α6 and β3 subunits of the nAChRs (Chrna6 and 
Chrnb3, respectively) are located adjacent to one another on 
human and mouse chromosome 8.  These two subunits have 
gained special attention for their expression in the VTA, their 
mRNA increase in the VTA after acute exposure to EtOH[30], 
and their roles in regulating EtOH-induced increase in DA 
release[26].  More importantly, human genetic studies have 
shown that variation in these genes is associated with alcohol 
phenotypes[32].  These lines of evidence suggest that the α6* 
and β3* nAChRs may modulate alcohol behaviors.  Collec-
tively, mounting lines of evidence suggest that various nAChR 
subtypes are involved in alcohol reward and dependence[33].  
Although having very limited investigation, the α6* nAChRs 
in the VTA have attracted special attention[33] (Figure 1).

Cellular mechanisms of nAChR-mediated EtOH reward 
and dependence 
Neuronal nAChRs mediate cholinergic modulations in brain 
function through both pre- and post-synaptic mechanisms.  
Most nAChRs in the central nervous system are located on 
presynaptic terminals/boutons[34, 35], where they modulate 
various neurotransmitter releases[36], including acetylcholine 
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(ACh) itself when nAChRs are activated (or desensitized).  
nAChRs are also expressed on neuronal somatodendritic 
regions, where they presumably modulate neuronal excit-
ability directly.  Therefore, EtOH reward and dependence 
through nAChRs involved these pre- and post-synaptic 
mechanisms.  On one hand, EtOH alters cholinergic modula-
tions in neurotransmitter releases in the mesolimbic pathway.  
On the other hand, EtOH directly modulates nAChR expres-
sion, up or down regulation, and functions such as allosteric 
modulation, stabilization, desensitization or internalization[37].  
Through these mechanisms, EtOH enhances mesolimbic DA 
signaling and consequently triggers reward and dependence.  
For example, systemic EtOH-induced DA release in the rat 
NAc.  This DA release was completely abolished by nAChR 
antagonist, mecamylamine[17].  Interestingly, only perfused 
mecamylamine in the VTA, but not in the NAc, prevented 
the accumbal DA overflow after systemic EtOH[38].  The 
voluntary EtOH self-administration demonstrated an increase 
in DAergic and cholinergic neurotransmission[39], suggesting 
that VTA nAChRs may play an important role in mediating 
the mesolimbic activating and reinforcing properties of 
EtOH[40].  During in vitro preparations, EtOH potently modu-
lates nAChRs at low concentrations (100 µmol/L–10 mmol/L), 
suggesting nAChRs as potential targets for EtOH action[41].  In 
Xenopus oocytes, acute EtOH (75 mmol/L) potentiated ACh-
induced current of α2β4, α4β4, α2β2, and α4β2 nAChRs, while 
lower concentrations of EtOH (20–50 mmol/L) inhibited 
nicotine-induced current of α7 nAChRs and all concentrations 
of EtOH tested have no effect on α3β2 or α3β4 nAChRs[42].  In 
cultured cortical neurons, EtOH potentiated non-α7 nAChR- 
but inhibited α7 nAChR-mediated currents[43].  In brain 
slices[44] or isolated neurons[45], EtOH excited VTA DAergic 
neurons and increased neuronal firing rate.  Taken together, 
EtOH directly and/or indirectly modulates nAChR functions, 
which in turn alters mesolimbic function, and leads to reward 
and dependence.  

nAChR-associated ligands as a new therapeutic strategy 
to treat alcoholism 
There have been three FDA approved medications for treat-
ing alcoholism; (1) Disulfiram, approved in 1954, is an acet-
aldehyde dehydrogenase inhibitor which improves alcohol 
symptoms such as headache, nausea, vomiting, weakness, 
mental confusion, or anxiety[46].  (2) Naltrexone, available since 
1994, is a competitive opioid receptor antagonist that works 
by decreasing the euphoric effects produced by alcohol[47].  
(3) Acamprosate is a partial agonist of NMDA receptors and 
an antagonist of metabotropic glutamate receptors and is 
thought to act as an anti-craving medication by inhibiting glu-
tamate signaling[48].  Unfortunately, only 20%–30% of treated 
patients respond positively to these drugs[49] and some of these 
drugs have shown serious negative side effects.  Thus, there 
is an urgent need to develop new drugs for the treatment of 
alcoholism.  Recently, nAChR-associated ligands have been 
shown as potential candidates for this purpose.  For example, 
pharmacotherapeutic targeting nAChRs such as cytisine, 
sazetidine A, varenicline, lobeline mecamylamine, PF-4575180 
and CP-601932 are the new strategies to treat alcohol depen-
dence including reducing voluntary alcohol consumption or 
modulating alcohol drinking behavior in animal models and 
humans[50].

In conclusion, alcoholism is a complex disorder which alters 
many brain functions.  EtOH induces an array of neuronal 
functions.  The action of EtOH on nAChRs in the mesolimbic 
pathway marks these receptors as important for EtOH reward 
and dependence.  Current evidence establishes nAChRs as 
new and promising pharmacological targets in the develop-
ment of new drugs for the treatment of alcoholism.
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