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A predictive structural model for bulk metallic
glasses
K.J. Laws1, D.B. Miracle2 & M. Ferry1

Great progress has been made in understanding the atomic structure of metallic glasses, but

there is still no clear connection between atomic structure and glass-forming ability. Here we

give new insights into perhaps the most important question in the field of amorphous metals:

how can glass-forming ability be predicted from atomic structure? We give a new approach to

modelling metallic glass atomic structures by solving three long-standing problems:

we discover a new family of structural defects that discourage glass formation; we

impose efficient local packing around all atoms simultaneously; and we enforce structural

self-consistency. Fewer than a dozen binary structures satisfy these constraints, but

extra degrees of freedom in structures with three or more different atom sizes significantly

expand the number of relatively stable, ‘bulk’ metallic glasses. The present work gives a

new approach towards achieving the long-sought goal of a predictive capability for bulk

metallic glasses.
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F
rom the moment metallic glasses were discovered in 1960
(ref. 1), questions arose about their atomic structure. The
dense random packing (DRP) model was introduced

independently to describe the structure of monatomic
liquids2–4. The metallic glass community adopted the DRP
model, even though it consisted of single-sized atoms and
metallic glasses always had atoms of different sizes. Attempts
to put smaller atoms in the natural gaps of the DRP model5,6

were abandoned since the gaps were too small and too few
to agree with metallic glasses7. In a dramatic break from the DRP
model, the stereo-chemically defined (SCD) model used
efficiently packed, solute-centred clusters with total
coordination of 9 as structural building blocks for metal-
metalloid glasses8. This model included atoms of unequal size
and gave a physical basis for chemical short-range order (SRO)
known to exist in metallic glasses. However, it could not explain
the medium-range order (MRO) found soon after the SCD model
was introduced9, there was never a satisfying description of how
efficiently packed clusters were arranged to avoid packing
frustration10, and it could not explain the full range of atom
sizes and concentrations that produced metallic glasses. Studies
clearly showed that metallic glass structures were, indeed,
efficiently packed11–14, but none were able to explain how glass
structures accomplished this feat. Reviews of the first 30 years of
metallic glass structural modelling are available15–17.

Thus, 40 years after their discovery1, three seminal questions
for metallic glasses remained: what is their atomic structure; how
does structure influence glass-forming ability (GFA); and what
chemical interactions are needed for good GFA? Great strides
have been made in the past 10 years in resolving the first
question. By extending ideas from the SCD model, a new model
that uses efficiently packed solute-centred atom clusters as
structural building blocks has been established18,19, and
quantitative predictions of SRO20, MRO21 and density22 have
validated and refined this efficient cluster-packing (ECP) model.
This model gives new ways to interrogate atomic simulations19,
opens new ways to analyse experimental data23 and has inspired
new experimental techniques24. Bulk metallic glasses (BMGs,
glasses with the smallest amorphous dimension Z1 mm)
were first discovered nearly 25 years ago25,26, but finding new
BMGs still requires tedious trial-and-error methods. However,
the ECP model has inspired the discovery of new BMGs
without full recourse to empiricism27–30. Efficient local atomic
packing around the minority (solute) atoms and a preference for
bonds between unlike atoms gives the physical motivation
for structure-forming clusters16. Efficient packing is achieved
for specific radius ratios between solute and solvent atoms, R�Z ,
that give solute-lean clusters with a central solute atom
surrounded by Z solvent atoms31. The most stable glasses are
typically solute rich, where the solute atom first shell contains
both solute and solvent atoms. The ECP model gives a good
account of both solute-lean and solute-rich structures32.
Additional details of this model are given in ref. 21.

In spite of this progress, current structural models are not
predictive. The ECP model describes the structure once a glass is
formed, but it cannot predict which structures will have good
GFA (defined here as the maximum fully amorphous thickness or
diameter produced by quenching from the liquid), which will
form marginal glasses, and which will not produce glasses at all.
Important questions that may give insights into GFA remain
unanswered. Of the dozen R�Z values that give efficient local
atomic packing (9rZr20), there is no explanation why five
values are strongly preferred, giving all of the most stable binary
glasses32. Even more troubling, the basis for preferred radius
ratios that underpins the ECP model seems to disappear in
solute-rich glasses, where efficient filling of the first coordination

shell can be achieved at any radius ratio by adjusting the
constitution of the first shell. The structural features that
are essential for metallic glasses to compete with crystalline
phases thus remain a mystery.

Here we solve three persistent problems to give new insights
into this seminal question: we identify a new family of structural
defects that discourage metallic glass formation; we learn how to
enforce efficient packing around every atom in the glass
simultaneously; and we determine the relative atom sizes
and concentrations and the distinct clusters that they enable for
self-consistent compositions. These ideas are consistent with
earlier work on the ECP model, and solution of these
problems emphasizes atomic structures that are ‘solute-rich’
(have sufficiently high concentrations so that cluster first shells
must contain all of the atom species present) or where the
smaller atoms are the majority species. Such structures represent
a large number of BMGs, and their inclusion was not always
clear in earlier developments of the ECP model. The present
work thus gives a more predictive, robust and complete
description of metallic glass atomic structures.

Results
Glass suppression via super-substitutional atomic defects. To
predict which alloys will form glasses, we must first understand
why some alloys do not. We consider binary systems of A and B
atoms with radii rAorB and A atom fraction fA. Atom
size-concentration space is bounded by 0rfAr1 and radius
ratios 0rRA/Br1, where RA/B¼ rA/rB. Metallic glasses are
generally limited to 0.6rRA/Br1 due to the radii of
metallic elements32. Glasses with fA40.6 account for 40% of
atom size-composition space but fewer than 20% of binary
metallic glasses, so that some unknown feature seems to
discourage binary glasses when the small atom is the majority
species (Fig. 1a).

Binary glasses are forbidden below a minimum solute fraction,
fA, min¼ 1/(Zþ 1), where each solute is surrounded only by
solvent atoms and each solvent touches only one solute. Glasses
can form above fA, min, but they are discouraged between fA, min

and the higher solute fraction, fcrit, that is needed for glasses to
compete more effectively with crystals. Solute atoms produce
local elastic strains in crystal structures that compete with the
glass, and a glass can form when the volume strain throughout
the competing crystal reaches a critical value, ecrit (refs 33,34).
Solutes with large local strains can be far apart (have low fcrit),
while solutes with smaller strains must have higher
concentrations to reach ecrit. The magnitude of elastic strains
depends on the type of defects. Substitutional defects dominate
when RA/B40.81 and A atoms are solutes (left-hand side of
Fig. 1a)33,34 and interstitial defects occur when RA/Bo0.81 (ref.
34). The critical concentration to destabilize competing crystals,
fcrit, decreases as RA/B decreases, reaches a minimum near
RA/B¼ 0.81, then increases with further reduction in RA/B

(Fig. 1a). For B-atom solutes (right-hand side of Fig. 1a), earlier
approaches only considered substitutional defects where a solute
replaced a single solvent atom33,34. This gives fcrit values that
decrease continuously as RA/B decreases (fcrit¼ 1–fA when B is
the solute), and a large portion of the sparsely populated
size-composition space for fA40.6 remained unexplained.

Here we show that large solutes may replace more than one
solvent atom. These super-substitutional defects (see Methods)
have lower strains—and higher fcrit values—than single
substitutional defects near the radius ratios where these defects
form. Five super-substitutional fcrit peaks now discourage most
size-composition combinations on the right-hand side of Fig. 1a.
This new family of atomic defects explains for the first time why
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the large portion of atom size-composition space at fA40.6
produces relatively few metallic glasses.

Simultaneous efficient packing in binary metallic glasses. We
now turn our attention from excluded and discouraged glasses to
predicting those that are most likely to form metallic glasses.
Packing efficiency has long been considered important12,14,35 and
local packing efficiency around solute atoms is the basis for the
ECP model. The concept that packing may be efficient around
both solute and solvent atoms36 was not included in the ECP
model earlier due to several problems. The packing efficiency
bounds (±10%) were too broad to be meaningful, validation was
given for only a small number of marginal glasses, and the earlier
work did not give a physical model proving that efficient packing
could be achieved around all atoms simultaneously. Broad
statements have suggested that local packing is efficient around
solute and solvent atoms37, but this remains an unproven concept
that still requires a compelling physical model.

Here we develop a new approach to enforce efficient local
packing around all atom species that overcome these concerns.
We start by plotting efficiently packed cluster curves for each total
coordination number (Fig. 1). These curves hold constant the
packing efficiency (Pi) and the total number of atoms in the first
shell of i-centred clusters (Zi,tot). Composition is changed by
adjusting the partial coordination numbers, Zij, given as the
number of j atoms in the first shell of i-centred clusters. The atom
fractions of structures derived from these clusters are

f i
j ¼

Zijþ l
Zi; tot þ l

when i¼j f i
j ¼

Zij

Zi; totþ l
when i 6¼ j ð1Þ

where j is the atom for which the composition is given. l is the
number of solute atoms on solute sites per cluster (1rlr4, and
the value of l has only a minor effect in the present work). We
adjust RA/B for each Zij to keep clusters efficiently packed (Fig. 1
inset). The radius ratios in these efficiently packed A- and
B-centred clusters are (see Methods)

RA
A=B¼

ZAB

XA�ZAA
RB

A=B¼
XB�ZBB

ZBA
ð2Þ

where Xi ¼ Pið Þ Zi;tot
� �

=R�;iZ and R�;iZ is the radius ratio that gives
ideal packing for an integer number Z of identical atoms in the
first shell of i-centred clusters31.

All binary BMGs essentially fall within P¼ 100±1% of at least
one cluster (Fig. 1b), as do glasses discouraged by substitutional,
interstitial and super-substitutional defects (Fig. 1a). Where two
curves intersect, fA, RA/B and P are the same in A-centred
and B-centred clusters simultaneously. This is a remarkable
convergence, and some of the most stable binary BMGs
(Pd100� xSix, 18rxr20, Cu64Zr36 and Cu65Hf35) are nearly
coincident with two such intersections. However, there is no
compelling correlation between these intersections and the full set
of binary BMGs (Fig. 1b). Below we show that such a convergence
can be achieved in some (but not all) binary systems, but at
different atom sizes and compositions than those indicated by
curve intersections.

Structural self-consistency in binary metallic glasses. Two
conditions must be satisfied rigorously in physical systems. First,
the nominal radius ratios of i-centred clusters, Ri

A=B, must be
identical in both A- and B-centred clusters

RA
A=B ¼ RB

A=B ð3Þ

Structural self-consistency is the second requirement. Self-con-
sistency recognizes that the number of A–B bonds in a structure
is fixed, so that the number of A–B bonds ‘originating’ from
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Figure 1 | Efficient cluster-packing curves. Efficiently packed

(P¼ 100±1%) A- and B-centred clusters of fixed total coordination

numbers oZA,tot4 (blue lines) and oZB,tot4 (red lines) as a function of

RA/B (nominal radius ratio) and fA (A atom fraction). These curves are

superimposed with (a) all binary metallic glasses (empty circles).

Horizontal bars show the composition range for each system. Regions

excluded by a minimum solute criterion are shown by grey regions and

relative atom sizes and concentrations discouraged by competing

crystalline defects are shown by yellow areas. (b) Binary BMGs (black

crosses) and glasses with DTx410 K (grey circles) occur near S-points

(eight-point stars), where packing is efficient around both clusters

simultaneously. (c) RA/B decreases with increasing ZAA and fA in clusters of

fixed oZA,tot4, since the size difference between A and B atoms has to

increase to maintain efficient packing as smaller A atoms replace larger B

atoms in the 1st shell. In B-centred clusters, the size difference between A

and B atoms has to decrease (RA/B increases) with increasing fA. Data are

taken from refs 32,51. The atom radii used in the present work are given in

Supplementary Table 1.
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A atoms equals the number of A–B bonds ‘originating’ from B
atoms. This gives the self-consistency equation

f G
A ZAB ¼ f G

B ZBA ð4Þ

where f G
i is the global atom fraction of element i. equation (4)

is used in diffraction analyses38, but has not been used previously
in structural modelling. To determine the structures that
allow efficient packing around both atoms in the same structure,
we solve equations (3 and 4) simultaneously (see Methods).
The results are given in Table 1 and Fig. 1b. More detailed
discussion of excluded, discouraged and preferred atom sizes and
concentrations is given in Supplementary Notes 1–3 and
Supplementary Figs 1–3.

S-points and the most stable binary metallic glasses. Discrete
atom sizes and concentrations that simultaneously satisfy
equations (3 and 4) are called S-points. These are the only points
in binary size-composition space where packing is efficient
around both atoms simultaneously. Each oZA,tot, ZB,tot4curve
intersection has two solutions. A-reference S-points (blue stars
in Fig. 1b) set the A atom fraction in the glass, f G

A , to the
composition of A-centred clusters, f A

A . B-reference S-points
(red stars in Fig. 1b) give solutions where f G

A ¼ f B
A . Some S-points

are near the corresponding oZA,tot, ZB,tot4 intersection, but
some are not. Some S-points are close together and some S-points
are suppressed by the ecrit criterion, so that only about a dozen
distinct S-points exist. A graphical description of how S-points
are determined is given in Supplementary Note 3 and
Supplementary Fig. 3.

Pd–Si glasses are by far the most stable binary BMGs, suggesting
that some S-points have better GFA than others. The local
compositions of A- and B-centred clusters, f A

A and f B
A , are not the

same in binary glasses (see Table 1). This is because self-consistency
requires partial coordination numbers that give different
compositions in A- and B-centred clusters. However, how can
A- and B-centred clusters have different local compositions in the
same glass? The cluster compositions in equation (1) are only
preferences. For example, equation (1) implies that all i-centred
clusters are identical. While particular clusters dominate
a given glass, a range of quasi-equivalent clusters can occur19.
Further, the number of occupied b and g sites (structural sites
between an octahedron and a tetrahedron of clusters,
respectively21) in a structure may vary. Finally, the ECP model
assumes that b and g sites are vacant or are occupied by solute
atoms21, but solvent atoms may also occupy these sites. The curves
in Fig. 1 thus show preferences and do not give exact glass
compositions.

The composition difference between A- and B-centred clusters
gives a chemical frustration that needs to be minimized.
We propose that S-points with the best GFA will have the
smallest composition difference,

DfA ¼ f A
A � f B

A

�� �� ð5Þ
DfA is the degree to which a structure must adjust from
preferences in equation (1) to achieve efficient packing around
both species and to satisfy self-consistency. Compositions cannot
adjust by changing ZAB or ZBA, which are fixed by equations
(3 and 4), but can change by altering the number of l sites
occupied or by changing the types of atoms on l sites. A
change of one atom per cluster gives a composition change of
±1/(Zi,totþ 1) as a benchmark against which DfA can
be compared. The three best S-points have DfA below this
benchmark and are shown by larger stars in Fig. 1b. Table 1 sorts
S-points by increasing DfA. Pd–Si glasses have the best GFA of
any binary BMG and have the second smallest DfA. Few glasses

Table 1 | Simultaneous efficiently packed clusters (S-points) and their glasses.

ZA,tot ZB,tot Ref. cluster ZAB ZBA fA
A fB

A DfA fG
A RA/B tcrit (mm) RA/B(actual) Reported systems*

12 14 A 9.00 5.00 0.357 0.313 0.045 0.357 0.874 1 0.873
0.899

Ti–Co (fA¼0.30, 0.40)
Zr–Pd (fA¼ 0.30)

10 14 A 9.08 2.92 0.243 0.182 0.061 0.243 0.783 7–8 0.775
0.797
0.797

Pd–Si (fA¼0.18–0.20)
Zr–Cu (fA¼ 0.25–0.48)
Zr–Ni (fA¼0.25–0.40)

11 14 A 8.60 4.40 0.339 0.275 0.063 0.339 0.856 0.844 Mg–Zn (fA¼ 0.35)
12 16 B 5.35 12.65 0.618 0.703 0.085 0.703 0.804 0.797 Zr–Cu (fA¼ 0.72)
12 15 B 7.02 9.98 0.499 0.587 0.088 0.587 0.843 1–2 0.840 Nb–Ni (fA¼0.60–0.62)
12 14 B 10.34 5.66 0.261 0.354 0.092 0.354 0.888 0.900 Zr–Pd (fA¼ 0.30)
12 15 A 5.65 8.35 0.596 0.491 0.105 0.596 0.813 2 0.818 Ta–Ni (fA¼0.59–0.62)
11 16 B 5.72 12.28 0.560 0.682 0.122 0.682 0.798 2

1.2–2
0.797
0.797
0.797
0.797

Hf–Cu (fA¼0.65)
Zr–Cu (fA¼0.64, 0.645)
Zr–Cu (fA¼ 0.60–0.66)
Zr–Ni (fA¼0.63–0.67)

11 15 B 7.41 9.59 0.430 0.564 0.134 0.564 0.837 1–2 0.840 Nb–Ni (fA¼0.60–0.62)
11 15 A 5.49 7.51 0.578 0.442 0.136 0.578 0.792 1–1.5

1
0.797
0.797
0.797

Hf–Cu (fA¼0.55, 0.60)
Zr–Cu (fA¼0.56, 0.60)
Zr–Cu (fA¼ 0.55)

10 15 A 6.44 5.56 0.463 0.327 0.136 0.463 0.719 0.715 Zr–Be (fA¼ 0.30—0.50)
11 14 B 10.68 5.32 0.178 0.332 0.154 0.332 0.881 0.844 Mg–Zn (fA¼ 0.35)
10 15 B 9.52 7.48 0.206 0.440 0.233 0.440 0.791 1.2–2 0.797

0.797
0.797

Zr–Cu (fA¼0.45, 0.46, 0.50)
Zr–Cu (fA¼ 0.25–0.48)
Zr–Ni (fA¼0.25–0.40)

9 16 B 9.28 8.72 0.157 0.485 0.328 0.485 0.716 0.715 Zr–Be (fA¼ 0.30—0.50)
9 15 B 10.83 6.17 0.015 0.363 0.348 0.363 0.747 1 0.734

0.734
0.703

Ca–Al (fA¼0.336)
Ca–Al (fA¼0.35)
Ca–Zn (fA¼0.35)

The o9,144A,B, o9,154A, o9,164A, o10,144B, o10,164A,B, o11,164A and o12,164A structures are either non-physical or are suppressed by the ecrit analysis and are not shown.
*Glasses in bold font are BMGs and all other glasses have DTxZ10 K. Data are taken from refs 32,51.
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have been made near the remaining two preferred S-points
(compare Fig. 1a,b), suggesting a good place for future exploration.

There has never been an explanation for why the most
common RA/B in binary glasses is near 0.80 and why BMGs
form over a nearly continuous composition range of
0.45rfAr0.65 at this radius ratio32. Four S-points
(o10,154B, o11,154A, o11,164B and 12,164B, where the
subscript indicates the reference structure) fall within an
exceptionally narrow range of RA/B¼ 0.798±0.007 and span
compositions from 0.44rfAr0.70. Over half the known
binary BMGs fall between these S-points. This shows that
glasses can form between S-points that have the same RA/B values
and are compositionally close to each other. The GFA of such
glasses may depend on the compositional distance from the
bounding S-points. Thus, relatively stable glasses form between
o10,144A and o10,154B S-points in the range 0.25rfAr0.40
(Fig. 1), but they do not form BMGs because the composition
distance between the bounding S-points is large. The radius ratio
of Cu–Zr and Cu–Hf glasses (RA/B¼ 0.797) is very close to
the radius ratio of these S-points, and the widest composition
range allowed by the ecrit criteria also occurs near RA/B¼ 0.80.
Together, these features explain for the first time why alloys with
RA/BD0.80 are by far the most common and the most stable
binary glasses.

It seems fortuitous that the favoured radius ratio RA/BD0.80 is
so close to the ideal radius ratio R�10 ¼ 0:799 for efficient
packing of o104 clusters with only B atoms in the first shell.
The present work shows that solute-rich clusters with Zi,tot¼ 11,
12, 14, 15 and 16 are also produced at this radius ratio (Fig. 1),
consistent with experimental Zij data20.

Agreement between predicted and observed binary glasses is
good. No glasses occur in excluded regions. Glasses discouraged
by atomic defects in competing crystals (yellow regions of Fig. 1)
are relatively few, generally have one efficiently packed cluster
(Fig. 1a) and are always marginal glasses (amorphous thickness,
tao1 mm with a difference between crystallization and glass
transition temperatures, DTxD0 K). S-points are uncommon,
consistent with the restricted number of BMGs and near-BMGs
(tao1 mm but DTxZ10 K). Each S-point has BMGs or near-
BMGs (or both) nearby and all BMGs and near-BMGs are close
to S-points. A most favoured S-point (o10,144A) gives the only
exceptional binary BMG (Pd–Si glasses with ta45 mm). The
present model thus not only predicts whether or not a glass
will form, but indicates whether the glass will be marginal,
near-BMG, BMG or an exceptional BMG. The results in Table 1
for PA¼PB¼ 100% are not substantially changed by varying PA

and PB within ±1%, but agreement degrades outside these
bounds. Thus, essentially all of the most stable binary metallic
glasses discovered in over 50 years of extensive experimentation
are well-represented by the present predictions.

Simultaneous efficient packing and ternary BMGs. The present
approach shows a good ability to predict binary GFA, but the
number of binary BMGs is small. There are many ternary BMGs,
and so we extend these concepts to ternary glasses to better
explore their robustness. We use systems of A, B and C atoms
with radii rAorBorC and radius ratios RA/C¼ rA/rC, RB/C¼ rB/rC

and RC/C¼ 1. Some glasses with four or more chemically
distinct species have only three significantly different atom sizes.
For example, Zr–Al–[Cu,Ni] and Pd–[Ni,Cu]–P are generally
considered as quaternary glasses, but since rNiDrCu these glasses
have only three significantly different atom sizes. Such glasses are
considered as structural ternary glasses, since equal-sized atoms
will occupy similar structural sites. For convenience, we show
atoms of nearly equal size in brackets. In the same way, glasses
with only four significantly different atom sizes are considered

structural quaternary glasses, regardless of the number of che-
mical species. The relative atom sizes and concentrations of many
ternary BMGs are plotted in Fig. 2.

Predicted relative atom sizes and concentrations for ternary
BMGs are found using the same approaches for binary glasses.
Excluded and discouraged structures fill ternary corners using fcrit

values from Fig. 1. For simplicity, a straight line connects pairs of
fcrit values on the ternary edges. Simultaneous efficient packing in
ternary systems occurs along straight lines (see Methods). The
bands in Fig. 2 show packing efficiencies of 100±2% for each
oZA,tot, ZB,tot, ZC,tot4 structure. Self-consistency significantly
limits the number of binary atom sizes and concentrations with
efficient packing around all species, but self-consistency is always
achieved when the cluster composition is the same as the glass
composition in ternary glasses due to extra degrees of freedom
(see Methods). Thus, discrete S-points are not needed in more
complex glasses and all of the ternary glass structures shown in
Fig. 2 satisfy self-consistency. Details of the ternary systems in
Fig. 2 are given in Supplementary Note 4 and Supplementary
Table 3.

The present model is validated by comparing predicted atom
sizes and concentrations with more than 230 reported ternary
BMGs in 57 chemically distinct systems. Essentially all of these
BMGs have atom sizes and concentrations where packing is
simultaneously efficient around all atoms (all three bands overlap
in Fig. 2). Over 40 of these ternary BMGs and 20 quaternary
BMGs27–30 were first predicted using some of the present ideas,
indicating their predictive capabilities. To further establish their
predictive abilities, we used the present ideas to find 35 new
Mg-based BMGs (Supplementary Table 4). These new discoveries
include ternary systems never reported before: Mg–Ag–Yb;
Mg–Pd–Ca and Mg–Pd–Yb. We also find the highest glass
transition temperature for any Mg-based BMG (485 K for
Mg67.5Pd25Ca7.5). To put this achievement in perspective,
thousands of compositions are usually needed using
conventional trial-and-error methods to discover one new
BMG. Combinatorial methods accelerate this process, but the
failure-to-success ratio is still over 1,000 to 1 (ref. 39). The present
model dramatically improves these odds—we produced 35 new
BMGs from 44 predicted alloys.

These ideas suggest that the best BMGs will have atom sizes
and concentrations that fall nearest the ideal packing lines
in Fig. 2. The largest known glass diameter is 80 mm for
fluxed Pd42.5[Cu30Ni7.5]P20 (ref. 40), an alloy that lies perfectly
on ideal packing lines for o10,13,154 structures. Since
identical structures can occur in different chemical systems,
Fig. 2 mixes contributions to glass stability from structure
(efficient packing) and chemical effects. To isolate the structural
contribution, we consider ternary BMGs with different concen-
trations of the same elements. The glasses must fall in a relatively
narrow composition band to avoid transitioning to a different
structure. We plot glass thickness against the mean packing
efficiency around the n constituent atoms, �P ¼ 1

n

Pn
i Pi (Fig. 3).

Pd–Ni–P and Ca–Mg–Zn ternary glasses both show the
maximum amorphous thickness when the mean packing
efficiency is closest to 100%. The amorphous thickness drops
significantly as atoms become over-packed (�Po100%) or under-
packed (�P4100 % ). This figure shows a sharp ‘cusp’ behaviour
similar to the effect of composition on GFA documented for
many other systems41.

Preferred atom sizes and concentrations in Fig. 2 with no
reported BMGs may be regions for future exploration. However,
some efficiently packed structures may lack combinations of ‘real-
world’ atoms to give the radius ratios and chemical interactions
needed to form BMGs. Thus, BMGs might not be produced in
every preferred region.
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Simultaneous efficient packing and higher order metallic glasses.
We extend analysis to structural quaternary and quinary
BMGs—glasses with four or five different atom sizes, respectively,
and with as many as seven different elements. Alloys from com-
mon quaternary and quinary systems (Supplementary Tables 5 and
6) were used to validate the present ideas. The packing efficiencies
of considered glasses all have �P ¼ 100 � 3 % . It’s difficult to
visualize and plot results for quaternary and quinary glasses as was
done in Figs 1 and 2 for binary and ternary glasses (Supplementary
Note 5 and Supplementary Fig. 4). We plot glass thickness versus �P
for quaternary glasses made of the same elements. Comparisons
are shown in Fig. 3 for Zr–Ti–[Cu,Ni]–Be and Mg–Cu–Ag–Gd.
The results are generally the same as for ternaries—BMGs occur
when �P ¼ 100 � 2 % and the best GFA is achieved when �P is
closest to 100%.

Challenging new ideas. Equal-sized spheres are frustrated in three
dimensions, so that packing is non-ideal around every atom42.
Thus, the distance between symmetrically-placed spheres in the
first shell of an icosahedron is 5% larger than the distance to the
icosahedron centre. This frustration can be overcome by packing
tetrahedra of equal-sized hyperspheres on the curved surface of a
four-dimensional sphere42,43, but adding unequal spheres is a

much simpler three-dimensional approach to reduce frustration.
For example, the gaps in an icosahedron disappear when the
central sphere has a radius that is 0.9022 that of the surrounding
spheres, eliminating packing frustration around the central sphere.
Structures built from such efficiently packed clusters are more
efficiently packed than equal-sized spheres but remain frustrated,
since packing around the first shell atoms is still inefficient. This
frustration is apparent by the gaps between clusters–called b and g
sites in the ECP model. In principle, packing frustration can be
further reduced by filling b and g sites, but these sites are typically
smaller than metallic atoms so that filling these sites pushes the
surrounding clusters apart and actually decreases global packing
efficiency22. Thus, unequal spheres can reduce packing frustration
relative to systems of equal-sized spheres, but most atoms remain
inefficiently packed. This example uses iscosahedra—the same is
true for structures of efficiently packed clusters with different total
coordination numbers.

Here we further reduce packing frustration and increase global
packing efficiency by establishing the specific conditions for
efficient packing around all atoms simultaneously in systems of
unequal spheres. Simply stated, if every atom is efficiently packed
locally, then the structure may be more efficiently packed
globally. This becomes apparent by realizing that atoms in the
first shell of one efficiently packed cluster are the centres for other
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Figure 2 | Ternary diagrams indicating simultaneous efficient packing (P¼ 100±2%) of A- (blue-dashed lines and shading), B- (green-dashed lines and

shading) and C- (red-dashed lines and shading) centred clusters at fixed oZA,tot4, oZB,tot4, oZC,tot4 for different radius ratios. (a) RA/C¼0.72,

RB/C¼0.82; (b) RA/C¼0.70, RB/C¼0.89; (c) RA/C¼0.76, RB/C¼0.89 and (d) RA/C¼0.78, RB/C¼0.89. Exclusion zones based on binary limits are

indicated in yellow. Reported BMG compositions (black crosses) are also shown. Data are taken from ref. 52. The atom radii used in the present work are

given in Supplementary Table 1.
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efficiently packed clusters (Fig. 4). Simultaneous efficient packing
and self-consistency are achieved only on average throughout the
structure, since some variability in actual partial coordination
numbers, and hence in local packing efficiency, is expected due to
kinetic constraints. Using atomic volumes and measured
densities, global packing fractions above 0.70 and as high as
0.76 are typical for the most stable binary metallic glasses22. The
face-centred cubic (fcc) cluster-packing scheme of the ECP model
is still an essential feature, since it gives the medium-range atomic
order observed in metallic glasses18,21,44.

Another advance is a description of the origin and impact of
compositional frustration in metallic glasses. Compositional
frustration cannot be avoided in binary glasses due to the limited
degrees of freedom, and structures that minimize this frustration
give the best binary glasses. Extra degrees of freedom in structures
with three or more different atom sizes overcome this limitation,
so that the composition around all atom types can simultaneously
match the bulk composition. The GFA of ternary and higher
order glasses is consequently improved. While compositional
frustration is not required in complex glasses, it may nevertheless
exist due to kinetic constraints from quenching.

The present work introduces new ways to think of metallic
glass structures. The ECP model has the simple view that an atom
occupies either a solute site at a cluster centre (a, b or g) or a
solvent site in the cluster first shell (O). Here we fundamentally
change this simple description by showing that an atom satisfies
requirements for both of these sites at the same time. Thus, an
atom that is the centre of one cluster is also in the first shell of
other atoms. While this seems self-evident, none of the earlier
structural models were able to formalize this dual identity.

These ideas are illustrated in Fig. 4 for the Al25La55Ni20 BMG.
The three constituent clusters are all inter-connected and have
partial coordination numbers that combine with the relative atom
sizes to give efficient local atomic packing. Not only are the partial
coordination numbers self-consistent, but their arrangements are
also self-consistent. This is seen by careful inspection of Fig. 4,
which shows that any atom site common to two clusters is
occupied by the same atom. Figure 4 also illustrates the surprising
result that the preferred SRO around each atom type (reflected by
partial coordination numbers and cluster composition) matches
the bulk composition. This is unusual, since strong SRO is usually
associated with chemical heterogeneity. For example, the local
solute concentrations of metalloid-centred clusters in metal-
metalloid glasses are typically half the bulk concentration. Here
we show that strong SRO is achieved with essentially no local
chemical heterogeneity in ternary and more complex glasses.
Figure 4 illustrates the elegant inter-connections that allow
structures to achieve this challenging set of conditions
simultaneously.

Structure, kinetics and chemistry. The present work seems to
suggest that GFA can be predicted without considering kinetics.
A more robust interpretation is that structure and kinetics are
tightly linked—efficiently packed structures are expected to have
reduced kinetics and fragility. This has previously been
demonstrated35, but a quantitative connection between structure
and kinetics is still missing. A clue is offered by studies on Cu–Zr
metallic glasses—packing efficiency (density) was found to be
important in defining compositions with best GFA45. Subsequent
analysis suggested that other properties such as expansivity
are important46, but more recent work strengthens the
connection between structure and kinetics by demonstrating a
direct relationship between structural ordering and kinetic
fragilities in metallic glasses47. This connection between atom
sizes and kinetics supports the foresight of Cahn48, a well-
respected metallic glass researcher and a pioneer in establishing
the field of materials science, who predicted that, ‘‘simple
geometry. . . atomic sizes. . . will prove to be the main criterion
that in various subtle ways incorporates the others’’ . The present
work is also able to explain the positive effect of small additions,
4–7 atom %, of large atoms on GFA (Supplementary Note 6).

Chemistry is expected to have a direct impact on GFA, since
structures of chemically distinct atoms can have significantly
different GFA. For example, BMGs form in the Zr–Cu system but
not in Zr–Ni. Since Cu and Ni atoms are essentially the same size,
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Figure 4 | Three efficiently packed, inter-penetrating, self-consistent

clusters in the Al25La55Ni20 BMG. The three atoms outlined by dashed

lines and connected by triangles are each the centres of one cluster and are

in the first shells of the other two clusters, and so are common to all three

clusters. The partial and total coordination numbers are: ZAlAl¼ 2, ZAlLa¼ 7,

ZAlNi¼ 3, ZAl,tot¼ 12 for the Al-centred cluster; ZLaAl¼4, ZLaLa¼8,

ZLaNi¼ 3, ZLa,tot¼ 15 for La-centred clusters; and ZNiAl¼ 3, ZNiLa¼6,

ZNiNi¼ 1, ZNi,tot¼ 10 for Ni-centred clusters. These partial coordination

numbers are self-consistent, allowing clusters to inter-penetrate with local

(cluster) compositions that equal the bulk composition. The relative atom

sizes combine with the glass composition and partial coordination numbers

to give efficient local packing around all three atom species simultaneously.
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this GFA difference is attributed to a chemical effect49. The full
predictive power of the present model has therefore not yet been
achieved, since it predicts the same GFA of structures regardless
of their chemical make-up. Nevertheless, the present work gives a
major new capability that is orders of magnitude more effective
than current trial-and-error methods. It gives a necessary
condition for good GFA, since every BMG we have compared
against our model satisfies the present constraints. But it is not
sufficient—a clear description of the chemical contribution is
needed for a fully predictive model. The specific nature of this
chemical effect remains an important, unsolved problem.

The present work resolves a seminal question in metallic
glasses by establishing important details of the structures, derived
from relative atom sizes and concentrations, needed to form
BMGs. We identify new structural defects that significantly limit
binary BMGs but have a less dramatic effect in more complex
glasses. We show that BMGs require efficient local packing
around all atom species and show how this is accomplished.
Structural self-consistency gives constraints that are met by only a
limited set of binary glass structures, but additional degrees of
freedom in higher order systems dramatically expand the number
of BMGs. The present model thus gives significant progress
towards the long-sought goal of a predictive capability for the
most stable metallic glasses. These conditions are necessary but
not sufficient and some feature is missing—this is suggested to be
a chemical contribution that forms the remaining seminal
question in metallic glass stability. And while some of the
connections between structure, free volume, fragility, viscosity
and GFA are emerging, a more quantitative connection between
these features is still desired.

Methods
Critical concentration of super-substitutional defects. Consider A and B atoms
in a face-centred cubic (fcc) crystal33,34 that competes with the metallic glass, where
B is the minority (solute) species. A solute atom can replace N41 solvent atoms
when it is sufficiently large. For example, a tetrahedron of solvents (N¼ 4) leaves a
symmetric space that can be filled by a larger B atom. In addition to this tetrahedral
‘super-substitutional’ defect, three other sufficiently symmetric defects occur within
the radius ratios relevant for metallic glasses. These are listed in Supplementary
Table 2, along with the radius ratios that just fill these super-substitutional defects.

Foppl notation50 gives a simple description of each defect configuration. As
used here, (n1,n2y)hkl is the number of atoms, ni, in successive parallel h,k,l planes
of an fcc structure and Sni¼N. Critical defect concentrations are calculated as in
ref. 34. The strain given by each defect vanishes and the defect concentration, fB,
approaches 1 at the RA/B values shown. We truncate the defect concentration at
fB¼ 0.50 for convenience, the actual value may be different. This analysis gives the
atom fraction of B atoms, fB, which is transformed to fcrit¼ 1—fB in Fig. 1. A spike
in the fB versus RA/B curve near the minimum in fcrit between competing defects is
due to partial occupancy of both defects34. We eliminate this artifact by assuming
only the defect with the lowest strain energy is occupied.

The N¼ 3 defect is asymmetric but may also be important. The solute that just
fits in this defect has RB/A¼ (4/O3)� 1 within the plane of the defect and RB/A¼ 1
normal to the defect plane. This gives an average RB/A of 2/O3, so that an excluded
region is expected near RA/B¼O3/2¼ 0.866. The averaging used here is only an
approximation, but the result is included in Fig. 1 and Supplementary Fig. 2c,d for
completeness.

This approach is for super-substitutional defects that are largely symmetric. We
can represent the degree of asymmetry of a super-substitutional defect as the
difference between the minimum and maximum sphere radii that can fit in the
super-substitutional defect normalized by the size of the host sphere. A divacancy
has an asymmetry factor of 100%—this is too asymmetric to be meaningful and
such defects are not included here. Super-substitutional defects for clusters of four
vacancies (a tetrahedron) and six vacancies (an octahedron) are symmetric and
have asymmetry factors of 0%. Super-substitutional defects with 8 and 10 vacancies
are nearly symmetric, and the most asymmetric super-substitutional defect used in
the present work has three vacancies and an asymmetry factor of 30%.

Radius ratios for A- and B-centred clusters. The effective radius ratio in
i-centred clusters, �Ri , is

�Ri ¼ rið Þ Zi; tot
� �

rið Þ Ziið Þþ rj
� �

Zij
� �

þ rkð Þ Zikð Þþ rlð Þ Zilð Þþ . . .
ð6Þ

so that for binary A–B systems

�RA ¼ RA=B ZA; tot
� �

RA=B ZAAð Þþ ZABð Þ
�RB ¼ ZB; tot

� �
RA=B ZBAð Þþ ZBBð Þ ð7Þ

The packing efficiency of atoms in the first shell of an i-centred cluster is30

Pi ¼ R�;iZ
�Ri

ð8Þ

This extends an earlier approach for solute-lean clusters to solute-rich glasses and
has been validated elsewhere20,30. Combining equation (7,8) gives the nominal
radius ratios of A- and B-centred clusters in equation (2).

Simultaneous solution of structural self-consistency: binary glasses. We
combine equations (2) and (3) to give

ZABð Þ ZBAð Þ ¼ XA �ZAA
� �

XB �ZBB
� �

¼ Af gþZABð Þ Bf gþZBAð Þ ð9Þ

where if g ¼ Xi �Zi; tot
� �

and Xi ¼ Pið Þ Zi; tot
� �

=R�; i
Z . Expanding the product gives

Af g ZBAð Þþ Bf g ZABð Þ ¼ � Af g Bf g ð10Þ

Two solutions exist for each intersection—one where f G
A ¼ f A

A (A-reference solution)
and one where f G

A ¼ f B
A (B-reference solution). For the A-reference solution, we

substitute f A
A from equation (1) into equation (4) and rearrange terms to give

ZBA ¼ ZA; totþ l
� �

�ZAB ð11Þ

Rearranging equation (10) gives

ZBA ¼ � Bf gþ Bf g
Af g ZABð Þ

� �
ð12Þ

Setting equation (11) and (12) equal and solving for ZAB gives

ZAB ¼
ZA;totþ l
� �

þ Bf g
1� Bf g= Af g ð13Þ

Using l¼ 2, ZAB gives f A
A and RA

A=B; we determine ZBA from equation (4) and
calculate f B

A from equation (1).
The B-reference solution follows a similar approach to give the final solution,

ZBA ¼
ZB;totþ l
� �

þ Af g
1� Af g= Bf g ð14Þ

Efficient packing in ternary metallic glasses. From equation (6), the effective
radius ratios around A, B and C atoms are

�RA ¼ rAð Þ ZA; tot
� �

rAð Þ ZAAð Þþ rBð Þ ZABð Þþ rCð Þ ZACð Þ

¼ RA=C ZA; tot
� �

RA=C

� �
ZAAð Þþ RB=C

� �
ZABð Þþ ZACð Þ ð15Þ

�RB ¼ rBð Þ ZB; tot
� �

rAð Þ ZBAð Þþ rBð Þ ZBBð Þþ rCð Þ ZBCð Þ

¼ RB=C

� �
ZB; tot
� �

RA=C

� �
ZBAð Þþ RB=C

� �
ZBBð Þþ ZBCð Þ ð16Þ

�RC ¼ rCð Þ ZC; tot
� �

rAð Þ ZCAð Þþ rBð Þ ZCBð Þþ rCð Þ ZCCð Þ

¼ ZC; tot
� �

RA=C

� �
ZCAð Þþ RB=C

� �
ZCBð Þþ ZCCð Þ ð17Þ

where rAorBorC, and Ri/j¼ ri/rj. Combining (Pi ¼ R�;iZ
�Ri ) and rearranging terms

gives

RA=C

� �
ZAAð Þþ RB=C

� �
ZABð Þþ ZACð Þ ¼ RA=C

� �
ZA; tot
� �

Pyð Þ
Ry

ZA; tot

ð18Þ

RA=C

� �
ZBAð Þþ RB=C

� �
ZBBð Þþ ZBCð Þ ¼ RB=C

� �
ZB; tot
� �

PBð Þ
R�;BZB; tot

ð19Þ

RA=C

� �
ZCAð Þþ RB=C

� �
ZCBð Þþ ZCCð Þ ¼ ZC; tot

� �
PCð Þ

R�;C
ZC; tot

ð20Þ

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9123

8 NATURE COMMUNICATIONS | 6:8123 | DOI: 10.1038/ncomms9123 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


From equation (1)

f A
A þ f A

B þ f A
C ¼

ZAA þ l
ZA; totþ l

þ ZAB

ZA; totþ l
þ ZAC

ZA; tot þ l
¼ 1 ð21Þ

f B
A þ f B

B þ f B
C ¼

ZBA

ZB; totþ l
þ ZBBþ l

ZB; tot þ l
þ ZBC

ZB; tot þ l
¼1 ð22Þ

f C
A þ f C

B þ f C
C ¼

ZCA

ZC; tot þ l
þ ZCB

ZC; totþ l
þ ZCC þ l

ZC; totþ l
¼ 1 ð23Þ

Efficiently packed clusters in the A�B�C ternary diagram have compositions
along specific lines (Fig. 2). For A-centred clusters, the efficient packing line
intercepts the A�C binary when ZAB¼ 0 and ZAA¼ZA,tot�ZAC. Inserting these
into equation (18) and rearranging terms gives

ZAC ¼
RA=C

� �
ZA; tot
� �

1�RA=C

� � PA

R�;A
ZA; tot

� 1

" #
ð24Þ

Combining with equation (21) and using f A
A ¼ 1� f A

C gives

f A
A ¼ f A

A�C ¼ 1� RA=C

� �
ZA; tot
� �

1�RA=C

� � PA

R�;AZA; tot

� 1

" #
1

ZA; tot þ l

� �
ð25Þ

These values are given as f A
A�C in Supplementary Table 3, where the superscript is

the atom at the cluster centre, the subscript is the binary line contacted by the
intercept and the first letter in the subscript is the atom for which the concentration
is given. Following a similar approach, efficiently packed A-centred clusters
intercept the B–A binary boundary at

f A
B�A ¼ 1� RA=C

� �
ZA; tot
� �

RB=C �RA=C

� �� �
PAð Þ

R�;AZA; tot

� 1

" #
1

ZA; totþ l

� �
ð26Þ

Using the same approach, intercepts for efficiently packed B-centred clusters are
given by

f B
B�A ¼ 1� RB=C

� �
ZB; tot
� �

RA=C �RB=C

� �� �
PB

R�;B
ZB; tot

� 1

" #
1

ZB; tot þ l

� �
ð27Þ

f B
CB ¼

RB=C

� �
ZB; tot
� �

1�RB=C

� �� �
PB

R�;BZB; tot

� 1

" #
1

ZB; totþ l

� �
ð28Þ

Finally, the intercepts for efficiently packed C-centred clusters are determined from

f C
AC ¼

ZC; tot
� �

RA=C � 1
� �� �

PC

R�;CZC; tot

� 1

" #
1

ZC; tot þ l

� �
ð29Þ

f C
C� B ¼ 1� ZC; tot

� �
RB=C � 1
� �� �

PC

R�;C
ZC; tot

� 1

" #
1

ZC; tot þ l

� �
ð30Þ

For a given oZA,tot, ZB,tot, ZC,tot4 structure, the efficient packing lines for A- and
C-centred clusters both intersect the A�C binary boundary at the same compo-
sition using the RA/C and RB/C values in Supplementary Table 3. The same is true
for efficient packing intercepts of A- and B-centred clusters on the A�B binary
boundary and of B- and C-centred clusters on the B�C binary boundary. The
compositions of A-centred clusters do not intersect the B�C binary boundary,
B-centred clusters do not intersect the A�C boundary and C-centred clusters do
not intersect the A�B boundary, since the minimum i atom fraction for structures
of i-centred clusters is fi¼ 1/(Zi,totþ l). At these minimum compositions, the j
atom fractions of i-centred clusters, f i

j , are

f A
C ¼

ZA; tot

ZA; tot þ l

� �
RA=C

� �
PAð Þ

R�;A
ZA; tot

�RB=C

" #
1

1�RB=C

� �� �
ð31Þ

f B
A ¼

ZB; tot

ZB; totþ l

� �
RB=C

� �
PBð Þ

R�;BZB; tot

� 1

" #
1

RA=C � 1
� �� �

ð32Þ

f C
B ¼

ZC; tot

ZC; totþ l

� �
PC

R�;CZC; tot

�RA=C

" #
1

RB=C �RA=C

� �� �
ð33Þ

These compositions, together with fi¼ 1/(Zi, totþ l), lie on the efficiently packed
lines given by equations (24–30). Thus, all three clusters for each given oZA,tot,
ZB,tot, ZC,tot4 structure have the same efficiently packed lines. Using Pi¼ 1, l¼ 1
and the specific RA/C and RB/C values from Supplementary Table 3 for each
oZA,tot, ZB,tot, ZC,tot4 structure gives the efficient packing intercepts in Fig. 2 and
Supplementary Table 3. The shaded bands of efficient packing are obtained using
Pi¼ 0.98 and Pi¼ 1.02.

Structural self-consistency: ternary, quaternary and quinary glasses. Struc-
tural self-consistency provides three equalities in ternary systems

ZAB

ZBA
¼ f G

B

f G
A

ZBC

ZCB
¼ f G

C

f G
B

ZCA

ZAC
¼ f G

A

f G
C

ð34Þ

This gives the surprising result

ZAB

ZBA

� �
ZBC

ZCB

� �
ZCA

ZAC

� �
¼ f G

B

f G
A

� �
f G
C

f G
B

� �
f G
A

f G
C

� �
¼ 1 ð35Þ

Using the Zij values in equation (34) for the glass compositions via equation (1)
gives the same result. Thus, self-consistency is always satisfied in ternary glasses
when the cluster composition is the same as the glass composition. Following a
similar approach for quaternary alloys,

ZAB

ZBA

� �
ZBC

ZCB

� �
ZCD

ZDC

� �
ZDA

ZAD

� �
¼ fB

fA

� �
fC

fB

� �
fD

fC

� �
fA

fD

� �
¼ 1 ð36Þ

There are two solutions to self-consistency for quinary glasses

ZAB

ZBA

� �
ZBC

ZCB

� �
ZCD

ZDC

� �
ZDE

ZED

� �
ZEA

ZAE

� �
¼ fB

fA

� �
fC

fB

� �
fD

fC

� �
fE

fD

� �
fA

fE

� �
¼ 1 ð37Þ

ZAC

ZCA

� �
ZBD

ZDB

� �
ZCE

ZEC

� �
ZDA

ZAD

� �
ZEB

ZBE

� �
¼ fC

fA

� �
fD

fB

� �
fE

fC

� �
fA

fD

� �
fB

fE

� �
¼ 1 ð38Þ

As for ternary glasses, self-consistency is always satisfied in quaternary and quinary
glasses when the cluster composition is the same as the glass composition.
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