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Novel endogenous angiogenesis inhibitors and their 
therapeutic potential

Nithya Rao, Yu Fei Lee, Ruowen Ge*

Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore

Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue 
homeostasis.  It also plays critical roles in diseases such as cancer and retinopathy.  A delicate balance between pro- and anti-angio-
genic factors ensures normal physiological homeostasis.  Endogenous angiogenesis inhibitors are proteins or protein fragments that 
are formed in the body and have the ability to limit angiogenesis.  Many endogenous angiogenesis inhibitors have been discovered, 
and the list continues to grow.  Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of 
drug resistance, which makes them attractive as drug candidates.  In this review, we highlight ten novel endogenous protein angiogen-
esis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 
and JWA.  Although some of these proteins have been well characterized for other biological functions, we focus on their new and spe-
cific roles in angiogenesis inhibition and discuss their potential for therapeutic application.
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Introduction
Angiogenesis is the formation of new blood vessels from the 
existing vasculature.  It is a tightly regulated process that 
is essential for embryonic development and several adult 
physiological processes such as wound healing and reproduc-
tion[1, 2].  Angiogenic regulation is achieved by a fine balance 
between stimulators and inhibitors that act together to main-
tain physiological homeostasis[3].  Pathological angiogenesis 
is a consequence of a disruption in this fine balance, resulting 
in diseases such as cancer, rheumatoid arthritis, and heart dis-
ease.

Angiogenesis is an important hallmark of cancer[4, 5].  The 
angiogenic switch, a process that signifies tumor develop-
ment from an avascular stage to a vascularized stage through 
the initiation of angiogenesis, is essential for tumors to grow 
beyond 1-2 mm3.  Hence, angiogenesis has been actively 
explored as a drug target for cancer therapy.  Over the years, a 
large number of angiogenesis inhibitors have been discovered 
and developed, ranging from endogenous angiogenesis inhibi-
tors, such as proteins, protein fragments and microRNAs, to 
monoclonal antibodies and small molecule drugs.  

Many proteins have been identified as endogenous angio-
genesis inhibitors including thrombospondins 1 and 2[6, 7], 
vasohibin[8], chondromodulin[9], pigment epithelial derived 
factor[10], platelet factor 4[11], and several members of the inter-
leukin and interferon families.  In addition, several proteins 
harbor or generate protein fragments that are anti-angiogenic 
including endostatin (fragment of collagen XVIII)[12], angio-
statin (fragment of plasminogen)[13], tumstatin (fragment 
of collagen IV)[14], etc.  Furthermore, a growing number of 
microRNAs have been identified as a new class of endogenous 
angiogenesis inhibitors[15].

Endogenous angiogenesis inhibitors have continuously been 
discovered in recent years.  The identification of novel endog-
enous angiogenesis inhibitors and the elucidation of their bio-
logical functions are essential for our understanding of angio-
genesis homeostasis in physiology and their dysregulation in 
pathology.  This new knowledge will help us design new and 
better drugs for angiogenesis-related diseases such as cancer.  

In this review, we discuss ten endogenous anti-angiogenic 
proteins discovered within the last five years.  These anti-
angiogenic proteins are representative but not exhaustive.  
The list includes isthmin1 (ISM1), FK506-binding protein-
like (FKBPL), carboxy-terminus of Hsc70 interacting protein 
(CHIP), Rho GTPase activating protein 18 (ARHGAP18), 
multimerin-2 (MMRN2), suppressor of cytokine signaling-3 
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(SOCS-3), tumor protein 73-alpha (TAp73), zinc finger protein 
24 (ZNF24), G-protein coupled receptor 56 (GPR56) and JWA.  
All of these endogenous proteins have proven anti-angiogenic 
functions, particularly in inhibiting pathological angiogenesis 
such as in cancer and retinopathy.  Hence, these proteins have 
the potential to be developed into anti-angiogenic drugs for 
cancer or other diseases that involve excessive angiogenesis.   

Isthmin 1 (ISM1) 
Ism1 was first identified as a gene that is highly expressed 
in the isthmus organizer in the Xenopus midbrain-hindbrain 
boundary during embryonic development[16].  This secreted 
protein has an N-terminus signal peptide, a centrally located 
thrombospondin type-1 repeat domain (TSR) and a C-terminal 
adhesion-associated domain in Mucin 4 (MUC4) and other 
proteins (AMOP) domain.  Although this gene is present in 
all major vertebrates, its biological function was completely 
unknown until recently.  

We identified ISM1 to be a novel endogenous angiogenesis 
inhibitor[17].  Recombinant ISM1 (rISM) inhibited endothelial 
cell (EC) capillary network formation on Matrigel largely 
through its C-terminal AMOP domain.  In vivo, ISM1 potently 
inhibited vascular endothelial growth factor (VEGF)/basic 
fibroblast growth factor (bFGF)-induced angiogenesis in an 
implanted Matrigel plug.  ISM1 inhibited VEGF, bFGF and 
serum-induced EC proliferation without affecting EC migra-
tion.  Significantly, ISM1 also induced EC apoptosis in the 
presence of EC survival factors such as VEGF through a 

caspase-dependent pathway.  Both stable overexpression of 
ISM1 in cancer cells and systemic intravenous infusion of rISM 
potently suppressed xenograft tumor growth and angiogen-
esis in mice[17, 18].  	

Two EC cell-surface ISM1 receptors have been identified 
by our lab[18, 19].  While αvβ5 integrin serves as a low-affinity 
receptor that binds ISM1 with µM affinity, cell-surface glucose 
regulated protein 78 (GRP78) is a high-affinity receptor that 
binds ISM1 in the nM range.  We demonstrated that ISM1 
exerts its anti-angiogenic effect and induces EC apoptosis 
through two independent signaling pathways mediated by its 
two cell-surface receptors (Figure 1).  ISM1 induces EC apop-
tosis through αvβ5 integrin-mediated death by direct recruit-
ment and activation of caspase-8 without causing anoikis[19].  
Further, ISM1-GRP78 interaction triggers endocytosis of this 
ligand-receptor complex.  The internalized ISM-GRP78 com-
plexes are targeted to the mitochondria, leading to mitochon-
drial dysfunction and cell death[18].  

GRP78 is a member of the HSP70 heat shock chaperon fam-
ily.  It is a major endoplasmic reticulum (ER) stress response 
protein that is overexpressed in cells under stress and protects 
stressed cells from cell death[20].  In normal cells, GRP78 is 
dominantly localized to the ER lumen.  However, in stressed 
cells, GRP78 is overexpressed, and a portion of GRP78 is trans-
located to the cell surface and serves as a signaling receptor.  
Knockdown of GRP78 expression by siRNA or blocking of 
cell-surface GRP78 by anti-GRP78 antibody both disrupt the 
pro-apoptotic function of ISM[18].  

Figure 1.  Mechanism of action of isthmin on endothelial cells.  On the left, ISM1 binds to integrin αvβ5 and triggers apoptosis via the recruitment and 
activation of caspase-8.  On the right, ISM1 binds to cell surface GRP78 and is internalized via clathrin-mediated endocytosis.  ISM1-GRP78 is then 
trafficked to mitochondria where it binds to AAC and induces apoptosis by interfering with ADP/ATP exchange.
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Upon interaction with cell-surface GRP78, ISM1 is internal-
ized together with GRP78 through clathrin-dependent endo-
cytosis.  Interestingly, the internalized ISM-GRP78 complex is 
targeted to the mitochondria.  Both cell fractionation and fluo-
rescent imaging experiments have shown the mitochondrial 
targeting of ISM1 via GRP78.  An analysis of ISM1’s interac-
tion partners within the mitochondria revealed members of 
the mitochondrial ATP/ADP carriers (ATP/ADP transporter), 
AAC2 and AAC3.  AAC, also known as adenine nucleotide 
translocase or ADP/ATP translocase, is the major ADP/ATP 
transporter located in the mitochondrial inner membrane[21].  
By interacting with AACs, ISM1 interfered with ADP/ATP 
exchange, blocking ATP transport from mitochondria to cyto-
sol and ADP entry into the mitochondria from the cytosol.  
Nevertheless, ISM does not disrupt the mitochondrial mem-
brane potential and integrity.  Consistently, no release of the 
mitochondrial apoptotic pathway components such as cyto-
chrome c into the cytosol was observed.  These data indicate 
that ISM1 induces apoptosis mainly by blocking ATP/ADP 
exchange on the mitochondrial inner membrane[21].  The two 
ISM receptors, GRP78 and αvβ5, thus mediate independent 
signaling pathways without convergence inside the cell (Fig-
ure 1).  

Cell-surface GRP78 is preferentially present in cancer 
cells and cancer ECs; thus it is an attractive target for cancer 
therapy[22-24].  High levels of cell-surface GRP78 result from 
its overexpression, which is associated with tumor progres-
sion and metastasis.  Accordingly, ISM1 selectively induces 
apoptosis in cancer cells and active ECs, which harbor high 
levels of cell-surface GRP78.  In contrast, ISM1 has no effect 
on normal cells or benign tumor cells, which harbor little or 
no cell-surface GRP78 protein.  Indeed, systemic delivery of 
rISM potently inhibited xenograft melanoma and breast cancer 
growth in mice[18].  Recombinant adenovirus expressing ISM1 
significantly suppressed orthotropic glioma growth through 
intracerebral delivery[25].  

Thus, ISM, or its peptide derivatives, has the potential to be 
developed into anticancer drugs that target cell surface GRP78.  
To date, no drug that specifically targets cell surface GRP78 
has been developed.  Development in this direction is highly 
anticipated in the next few years.  

FK506 binding protein like (FKBPL)
FKBPL (FK506 binding protein like) was initially discovered 
as DIR1 with a potential role in induced radioresistance[26].  It 
was later renamed FKBP-like due to its similarity to the FKBP 
family of heat-shock related proteins known as immunophil-
ins.  FKBPL has been implicated in cellular stress responses 
and control of the cell cycle[27].  It has a C-terminally located 
tetratricopeptide repeat domain (TPR), which is important for 
its interaction with Hsp90[28].  It has also been shown to inter-
act with the steroid receptor family members, glucocorticoid 
receptors and androgen and estrogen receptors, and it plays a 
role in cellular signaling[29-31].  

A recent study highlighted the importance of FKBPL as a 
prognostic and predictive marker of breast cancer[31].  FKBPL 

expression correlated with overall survival and distant metas-
tasis-free survival in breast cancer patients.  It increases the 
sensitivity to anti-estrogens such as tamoxifen in breast cancer 
cells[31].  Overexpression of Hsp90 is known to induce neovas-
cularization in vivo[32], and Hsp90 inhibitors have been shown 
to possess anti-angiogenic properties[33].  As an Hsp90 intracel-
lular co-chaperone, FKBPL may be an anti-angiogenic protein.

Indeed, a recent study demonstrated that overexpression of 
FKBPL or treatment with recombinant FKBPL (rFKBPL) inhib-
ited angiogenesis both in vitro and in vivo.  FKBPL suppressed 
migration and tube formation in human microvascular endo-
thelial cell line HMEC-1, without affecting proliferation[34].  
rFKBPL also dose dependently inhibited blood vessel forma-
tion in an ex vivo rat aortic ring angiogenesis assay and in vivo 
subcutaneously implanted sponge angiogenesis assay[34].  The 
antiangiogenic domain of FKBPL was mapped to amino acids 
34 to 57 at the N-terminus of the protein.  This region is out-
side of the Hsp90 binding region suggesting an alternative tar-
get for FKBPL.  CD44, the cell surface receptor for hyaluronan, 
was identified as the target of the anti-migration function of 
extracellular FKBPL.  CD44 is known to play important roles 
in cell adhesion, migration, in vivo angiogenesis and tumor 
progression[35, 36].  FKBPL inhibited HMEC-1 migration via 
the inhibition of CD44 and its downstream target, the small 
GTPase Rac.  Furthermore, a 24 amino acid synthetic peptide 
spanning the anti-angiogenic domain of FKBPL from aa34-
aa57, termed AD-01, functions similarly to full-length protein 
in inhibiting angiogenesis[34].  Direct intratumoral injection of 
FKBPL cDNA expression vector into DU145 prostate cancer 
xenografts exhibited dramatic reduction in tumor growth and 
angiogenesis compared to vector injected control tumors.  In 
addition, systemic delivery of AD-01 peptide suppressed 
tumor growth in two different tumor models – DU145 prostate 
cancer and MDA-MB-231 breast cancer[34].

Several characteristics suggest the great potential for FKBPL 
and its derivative, AD-01 synthetic peptide, to be developed 
into anticancer drugs.  First, treatment with AD-01 led to 
potent inhibition of tumor progression in both prostate and 
breast cancer models with a dose as low as 0.003 mg.kg-1.d-1.  
Extensive central necrosis of the tumor core resulting in an 
empty core with a viable tumor rim, which is a classical pre-
sentation similar to other angiogenesis inhibitors in clinical 
trials, was also observed upon AD-01 treatment[37].  Second, 
intravital microscopy of the tumor blood vessels revealed not 
only decreased blood vessel numbers but also increased ves-
sel diameter, which is suggestive of vessel normalization and 
is favorable for drug delivery.  Third, AD-01 treatment did 
not affect the normal vasculature as evidenced by the lack of 
any inhibitory effect on the retinal vasculature.  Fourth, fail-
ure of angiogenesis inhibitors is often attributed to the drastic 
side effects associated with their anti-proliferative effects[38].  
Because FKBPL and AD-01 have no effect on EC proliferation 
and showed no observable cytotoxicity in mice, they appear 
to be attractive anti-angiogenic compounds.  Fifth, FKBPL’s 
effects are mediated by CD44 in the tumor vasculature; hence, 
it offers broad applicability over a wide range of solid tumors.  
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Lastly, in addition to showing promise as a single agent, 
combination therapy with docetaxel showed significantly 
increased anticancer activity[34].

Carboxy-terminus of Hsc70 interacting protein (CHIP)
CHIP (carboxy-terminus of Hsc70 interacting protein) was first 
discovered as a chaperone-associated ubiquitin ligase[39].  The 
CHIP protein has a TPR domain at its N-terminus, through 
which it interacts with the molecular chaperones Hsc70, 
Hsp70 and Hsp90 and modulates their chaperone activity.  
At its carboxyl-terminus, CHIP has a U-box domain through 
which it acts as an E3 ubiquitin ligase, triggering proteosomal 
degradation of known chaperone substrates[40].  CHIP has been 
shown to ubiquitinate and degrade several oncogenic proteins, 
such as mutant p53[41], estrogen receptor α[42], c-ErbB2/neu[43], 
Dbl[44], Smad3[45], hypoxia inducible factor 1α[46], Runx1[47], Met 
receptor and steroid receptor coactivator-3 (SRC-3)[48, 49], which 
is supportive of a tumor suppressor role for the protein.

CHIP is a tumor suppressor for breast cancer and suppresses 
several oncogenic pathways.  CHIP levels were negatively cor-
related with malignant breast tumors and survival of breast 
cancer patients.  Interestingly, knockdown of CHIP in breast 
tumors resulted in increased vascularization, indicating an 
anti-angiogenic function for CHIP[49].  Surprisingly, Xu et al in 
2011 reported that CHIP contributes to enhanced tumorigen-
esis of human glioma both in vitro and in vivo[50].  Malignant 
gliomas are characterized by a marked increase in blood vessel 
density[51].  However, the authors did not explore CHIP’s role 
in tumor angiogenesis in glioma.  

Recently, CHIP’s role in inhibiting tumor angiogenesis 
in human gastric cancer (GC) was demonstrated[52].  Using 
human gastric cancer cell line BGC823, Wang et al showed 
that the stable overexpression of CHIP resulted in a signifi-
cant reduction of microvessel density in these gastric tumors 
in vivo compared to vector controls.  To study the specific 
effect on GC angiogenesis, conditioned media from stable 
CHIP overexpressing and knockdown BGC823 derivative cell 
lines were tested on human umbilical vein endothelial cells 
(HUVEC).  Overexpression of CHIP resulted in 48% inhibi-
tion of HUVEC growth whereas CHIP knockdown caused a 
1.82 fold increase in growth compared to corresponding vec-
tor controls.  A marked reduction in EC tube formation upon 
CHIP overexpression and an increase in tube formation were 
observed when CHIP levels were knocked down[52].  CHIP 
interacts directly with p65 NF-κB via its U-box domain, caus-
ing ubiquitin-mediated proteosomal degradation of NF-κB.  
Consistently, NF-κB responsive genes such as interleukin-8 
(IL-8), matrix metalloproteinase-2 (MMP-2) and VEGF[52] were 
inhibited in GC.  

IL-8 production is closely linked to increased vasculariza-
tion, malignant phenotype and poor prognosis in several can-
cer types[53, 54].  While CHIP reduced both IL-8 mRNA and pro-
tein secretion, IL-8 rescued the inhibitory effects of CHIP on 
GC angiogenesis[52].  By inhibiting NF-κB activation, CHIP trig-
gered a wide array of downstream genes and had a profound 
impact on many cellular processes, such as adhesion and inva-

sion, in addition to angiogenesis.  The fact that reduced CHIP 
levels are correlated with malignant phenotype in both GC 
and breast cancer supports the notion that restoration of CHIP 
may be a novel strategy for anti-angiogenic therapy for human 
cancer.

Rho GTPase activating protein 18 (ARHGAP18)
ARHGAP18 was initially identified as Mac guanosine triphos-
phatase activating protein (MacGAP) expressed in the human 
epididymis[55].  ARHGAP18 contains the traditional RhoGAP 
domain in its C-terminus and is one of the crucial factors that 
regulate RhoA to control cell shape, spreading and migration.  
It is required for remodeling the actin cytoskeleton in response 
to integrin engagement[56].  

The association of ARHGAP18 with angiogenesis was first 
noticed in an expression profiling screen for functionally 
important genes during in vitro angiogenesis[57].  Later, the 
same group identified ARHGAP18 as an endothelial senes-
cence-associated gene termed SENEX[58].  Relative to other 
RhoGAPs, ARHGAP18 expression is the highest in ECs, and 
its localization is predominantly cytosolic[59].  The overexpres-
sion of ARHGAP18 in EC results in an induction of premature 
senescence in ECs.  During in vitro HUVEC tube formation, 
ARHGAP18 mRNA was down-regulated during the early 
migration phase but was later upregulated during the stabili-
zation phase[58].  

Knockdown of ARHGAP18 promoted EC migration in a 
scratch wound assay.  The migratory front was protrusive and 
irregular, with the proximal edge of the leading cell having 
disrupted cell junctions[60].  The increased migration was also 
observed in an in vitro 3D spheroid sprouting assay, with a 
significant increase in both sprout length and the number of 
sprouts.  Interestingly, knockdown of ARHGAP18 in epithelial 
cells (MDA-MB-231 cells) resulted in delayed migration, indi-
cating a possible cell-specific function for this protein[56].

In vivo studies with zebrafish embryos confirmed the above 
in vitro findings.  Knockdown of ARHGAP18 lead to enhanced 
angiogenic sprouting of intersegmental vessels (ISV) in zebra
fish embryos.  The hyper-sprouting phenotype was further 
characterized by increased filopodia extensions and reduced 
lumen diameter at least in the dorsal aorta at 24 hpf.  This 
phenotype was vascular specific as there were no effects on 
lymphatic vessels[60].  Using an ex-vivo aortic ring assay, it was 
revealed that loss of ARHGAP18 in ARHGAP18-/- knockout 
mice resulted in a hyper-sprouting phenotype with a pro-
pensity to form branches instead of linear sprouts, which is 
reminiscent of the tip-cell phenotype[61].  Knockdown of ARH-
GAP18 in cultured ECs caused a higher and prolonged acti-
vation of Akt and increased mRNA expression of the tip cell 
marker genes such as Dll4, Flk1 and Flt4, which is consistent 
with additional tip cell formation[60].  

ARHGAP18 expression was localized to VE-cadherin 
expressing EC junctions in spheroid sprouts[62].  ARHGAP18 is 
dynamically regulated during angiogenesis.  Upon thrombin 
stimulation, ARHGAP18 quickly re-localized from the cytosol 
to EC junctions within 2 min and was found at the junctional 
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edges in an active junction at 10 min.  Upon achieving junc-
tional maturity, ARHGAP18 was lost and returned to the 
cytosol within 60 min.  ARHGAP18 knockdown was linked to 
RhoC activation but not the activation of RhoA, Rac1, Cdc42 
and RhoJ.  Thus, ARHGAP18 seems to act as RhoCGAP and 
control EC junctional integrity[60].

ARHGAP18-/- animals developed subcutaneous B16F10 mel-
anoma faster than wildtype mice, and the tumors were also 
hypervascularized, which is consistent with ARHGAP18 act-
ing as an angiogenesis inhibitor[60].  Furthermore, ARHGAP18 
is a cancer risk locus and showed loss of copy number in 30%-
56% of breast, lung and ovarian cancers[63-65].  ARHGAP18 was 
also down-regulated under conditions of chronic activation of 
rat sarcoma (RAS) and tyrosine kinase with immunoglobulin-
like and EGF-like domains 1 (TIE2), often found associated 
with hemangiomas and venous malformations, respectively[66].  
Because ARHGAP18-/- mice are phenotypically normal, target-
ing this protein in pathological angiogenesis could be a thera-
peutic possibility.  

Multimerin2 (MMRN2)
Multimerin2 (MMRN2), also known as endoglyx-1, is an ECM 
glycoprotein that is closely associated with the cell surface.  It 
comprises four different disulfide bonded subunits of p125, 
p140, p110 and p200, with an approximate molecular mass of 
500 kDa.  It is an EMILIN-like protein with a signal peptide, an 
N-terminal EMI domain and a C-terminal C1q domain sepa-
rated by a central coiled-coil rich region, and it is a member of 
the EDEN (EMI Domain ENdowed) protein family[67].  

MMRN2 exhibits a pan-endothelial expression in both nor-
mal and tumor vasculature, including hot spots of neovascu-
larization in some tumors[68].  It is specifically deposited in EC 
in tight juxtaposition to blood vessels and is also present in the 
luminal side of the vessels.  Nevertheless, its function in angio-
genesis and EC function has remained elusive until recently.

Lorenzon et al recently discovered an anti-angiogenic role 
for MMRN2: it inhibits EC migration and blood vessel orga-
nization without affecting proliferation[69].  MMRN2 dose-
dependently impaired the formation of microvessels in a 
fibroblast/EC co-culture system and dramatically reduced 
vessel sprouting from rat aortic rings.  In vivo, MMRN2 inhib-
its angiogenic sprouting towards a VEGF containing sponge 
in a CAM assay but not towards a b-FGF containing sponge[70].  
Indeed, MMRN2 was found to directly bind VEGF-A with a 
Kd of 50 nM and to interfere with VEGF/VEGFR2 signaling in 
ECs.  

MMRN2 displaced radiolabelled VEGF bound to HUVEC 
cells, indicating that the protein interfered with VEGF-VEGFR 
binding.  Consistent with the fact that MMRN2 closely associ-
ates with the EC surface, it is likely that the pericellular con-
centration of MMRN2 is enriched and serves as an important 
competitor for VEGF binding to VEGFR2, sequestering and 
regulating VEGF activity.  Stable overexpression of MMRN2 
in HT1080 human fibrosarcoma cells dramatically inhibited 
xenograft tumor growth in nude mice through inhibiting 
tumor angiogenesis[69].  Direct intratumoral injection of recom-

binant MMRN2 adenovirus also led to tumor suppression and 
anti-angiogenic effects, although to a lesser extent[69].  

Several key features implicate MMRN2 as an attractive 
angiogenesis inhibitor.  First, although MMRN2 exhibits pan-
endothelial expression, it does not seem to affect normal EC 
growth, proliferation or apoptosis.  Second, with a unique 
mechanism of VEGF sequestration, this ECM molecule could 
serve to limit local angiogenesis to either maintain a quiescent 
state or in pathological conditions as a feedback regulator of 
VEGF signaling.  Indeed, most ECM members that sequester 
VEGF also affect EC proliferation[71,72], but MMRN2 exhib-
its a unique inhibitory effect restricted to EC motility alone.  
Finally, the dramatic effects of MMRN2 on tumor growth and 
angiogenesis opens the possibility to the develop MMRN2 into 
a new anti-angiogenic drug for cancer therapy.

Suppressor of cytokine signaling-3 (SOCS3)
Suppressor of cytokine signaling-3 (SOCS3) belongs to the 
family of suppressors of cytokine signal transduction that 
regulate important cellular processes such as proliferation 
and differentiation[73].  Members of this family are transiently 
induced by inflammatory mediators such as lipopolysac-
charide[74], interleukin-6 (IL-6)[74] and tumor necrosis factor-α 
(TNF-α)[75].  SOCS3 has been shown to disrupt JAK/STAT 
kinases and deactivates receptor tyrosine kinase signaling[73, 76].  

Pathological vascular growth is often triggered by massive 
inflammatory and growth factor stimuli, which could be coun-
tered by endogenous angiostatic regulators.  As a suppressor 
of inflammatory and cytokine signaling, SOCS3 is a newly 
identified endogenous negative regulator of angiogenesis that 
acts on both inflammation and growth factor–mediated vessel 
formation specifically in pathologic contexts[77].  

SOCS3 expression is temporally associated with pathologi-
cal retinal angiogenesis.  In an oxygen-induced retinopathy 
(OIR) model[78, 79], hypoxia-induced pathological angiogenesis 
peaks on postnatal day 17 (P17).  This pathological angiogen-
esis coincided with increased TNF-α and SOCS3 expression[80].  
In particular, SOCS3 expression was highly and specifically 
localized to pathologic retinal vessels.  Given that Socs3 knock-
out mice are embryonic lethal[81], a Tie2-driven EC-specific 
Socs3 knockout mouse (Tie2-Socs3ko) line was generated.  After 
being subjected to OIR, these conditional Tie2-Socs3ko mice 
exhibited increased pathological neovascularization compared 
to littermate controls (Socs3flox/flox) at P17.  Notably, Tie2-Socs3ko 
mice also exhibited normal retinal vascular development, 
similar rates of vascular loss during the first phase of OIR and 
normal vessel repair and regrowth, suggesting that SOCS3 
specifically suppresses pathological angiogenesis[77].  Further-
more, when LLC (lung carcinoma) and B16F10 melanoma cells 
were injected into Tie2-Socs3ko mice, enhanced tumor growth 
was observed in both xenograft models with a concomitant 
increase in tumor vascular density[77].  

Both growth factor and inflammatory signals trigger patho-
logical angiogenesis in OIR and cancer[82-85].  As a negative 
regulator of both signaling pathways, SOCS3 was shown to 
suppress the downstream signaling of both insulin growth 
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factor-1 (IGF-1) and TNF-α.  Silencing of SOCS3 expression 
by siRNA in ECs increased EC proliferation when stimulated 
with both agents.  Both mTOR and STAT-3 pathways exhib-
ited transient activation upon Socs3 silencing.  This activation 
became sustained when ECs were pre-stimulated with TNF-α 
prior to IGF-1 treatment.  Thus SOCS3 acted as a negative 
feedback regulator of growth factor signaling by modulating 
mTOR and STAT-3 activation[86].  

SOCS3 represents a new class of angiogenic modulators 
that target an integrated endothelial response rather than 
suppressing individual growth factors or receptors.  A recent 
report also closely links the loss of SOCS3 to an aggressive 
phenotype in breast carcinoma[87].  As a novel angiogenesis 
inhibitor, SOCS3 has particular application potential in both 
proliferative retinopathy and cancer due to its specific activity 
toward pathological angiogenesis.  

Tumor protein 73-alpha (TAp73)
TAp73 or p73-alpha is a 636-amino-acid isoform of tumor 
protein 73 (TP73)[88].  TP73 generates several isoforms through 
both alternative splicing and alternative promoter usage[89, 90].  
TAp73 along with the other TP73 variants are known as trans-
activation (TA) variants, as they all share an N-terminal trans-
activation domain.  

The primary role of TAp73 is the transcriptional control 
of proapoptotic genes in the response to genotoxic stress by 
inhibiting p53[91, 92].  Unlike p53, a tumor suppressor gene 
whose mutations are widely found in human cancers, TAp73 
is rarely mutated in cancer and instead is highly upregulated 
in several cancers[93, 94].  Thus, the role of TAp73 in tumorigen-
esis has been elusive.  On one hand, isoform specific deletion 
of TAp73 resulted in spontaneous and carcinogen-induced 
tumors, with a high incidence of lung adenocarcinomas, indi-
cating that TAp73 is a tumor suppressor[95].  Nevertheless, the 
high incidence of TAp73 protein expression in cancers sug-
gests that the protein may afford proliferative advantages to 
tumor cells.  Indeed, a recent report supports a role for TAp73 
in regulating metabolism and promoting oncogenic cell 
growth[96].

 TAp73 has been linked to VEGF expression with contradic-
tory reports; however, the specific roles of TAp73 in angiogen-
esis are still unknown.  One report attributes an inhibitory role 
for TAp73 in controlling VEGF expression by transcriptional 
repression of the VEGF promoter[97].  However, another report 
states that overexpression of TAp73 resulted in increased 
expression of VEGF at both the mRNA and protein levels[98].  
A recent study by Amelio et al clarified the role of TAp73 in 
angiogenesis and demonstrated that TAp73 suppresses angio-
genesis by promoting HIF-1α ubiquitination and degradation.  

Using a two-stage chemical carcinogenesis model in mouse 
skin, Amelio et al showed that TAp73-/- mice displayed accel-
erated initial lesion development, large tumor sizes and 
increased progression to squamous cell carcinoma compared 
to TAp73+/+ mice.  Both peritumor vascularization and aortic 
ring angiogenesis increased in TAp73-/- mice compared to 
wildtype mice[99].  

HIF-1 is a master regulator of tumor growth and angiogen-
esis, and its expression is under the tight control of oxygen 
levels within the microenvironment[100].  In the absence of p53, 
TAp73 knockdown resulted in enhanced HIF-1α expression.  
Nonetheless, TAp73 induced downregulation of HIF-1α in an 
oxygen-independent manner.  TAp73 directly interacts with 
HIF-1α and promotes its ubiquitination and degradation, pos-
sibly functioning as a scaffold to bring HIF-1α in close proxim-
ity for subsequent ubiquitination and degradation[99].  

Accordingly, the overexpression of TAp73 led to down-
regulation of both VEGF-A and VEGFR2 mRNA, while stable 
knockdown of TAp73 in tumor cells resulted in dramatic 
increases in subcutaneous tumor growth and vessel density[99].  
In human lung adenocarcinoma, individuals with high TAp73 
expression showed significantly better prognosis, whereas 
HIF-1α activity and angiogenic signatures were inversely cor-
related with TAp73 expression[99].  

In conclusion, the tumor suppressor TAp73 has emerged 
as a novel inhibitor of tumor angiogenesis and plays a critical 
role in cancer pathogenesis.  How it can be used effectively in 
therapeutics still requires investigation.

Zinc finger protein 24 (ZNF24)
ZNF24, also known as ZFP191 or KOX17, was identified as a 
member of the SCAN domain family of Krüppel-like C2H2 
zinc finger transcription factors[101].  It possesses four C2H2 
zinc finger domains at the c-terminus that function as DNA 
binding domains and one scan domain in its N-terminus[102, 103].  
ZNF24 is ubiquitously expressed during embryonic develop-
ment[104], and ZNF24 knockout mice die prematurely at 7.5 d 
post fertilization, suggesting its key functions in normal 
development[105].  At the cellular level, ZNF24 is involved in 
the regulation of the proliferation, migration, differentiation 
and invasion of cells of different lineages[104-108].  In addition to 
regulating normal cells, ZNF24 has been shown to play per-
plexing roles in cancer initiation and progression.

The ZNF24 gene is located on chromosome 18q12.1[109] and 
is frequently deleted in several human cancers[110-113].  In addi-
tion, down regulation of ZNF24 mRNA expression was also 
observed in malignant colon and breast carcinoma[114, 115].  
However, ZNF24 has also been shown to promote cell prolif-
eration of hepatocarcinoma cells[116].  ZNF24 represses VEGF 
transcription in MDA-MB-231 breast cancer cells in vitro and 
exhibits an inverse correlation with VEGF in angiogenic tumor 
nodules as well as malignant human colon and breast biop-
sies[114].  It also represses PDGFR-β transcription[117], a gene 
known to be essential for vascular stability[118, 119].  

How ZNF24 represses VEGF transcription and the in vivo 
consequences of this repression were recently revealed by Jia 
et al[120].  ZNF24 binds to an 11 bp segment within the proximal 
promoter region of the VEGF gene and targets VEGF directly.  
This 11-bp VEGF proximal promoter region can serve as a 
decoy to abolish VEGF repression by ZNF24.  ZNF overexpres-
sion in zebrafish resulted in decreased VEGF expression and 
severe vascular defects including pericardial edema, abnormal 
formation of caudal vascular plexus, defects in ISV formation 



1183

www.chinaphar.com
Rao N et al

Acta Pharmacologica Sinica

npg

and impaired circulation[120].  These defects are consistent with 
the VEGF knockdown phenotype.  

MDA-MB-231 breast cancer cells overexpressing ZNF24 
exhibited significantly reduced VEGF levels both extracellu-
larly and intracellularly.  Using an in vivo tumor cell induced 
dermal angiogenesis assay, MDA-MB-231 cells overexpressing 
ZNF24 induced significantly lower numbers of blood vessels 
in the injected dermal tissue compared to control cells.  In 
addition, a high percentage of human breast cancer tissues 
showed significantly lower levels of ZNF24 staining, corre-
lated with a higher VEGF level compared to adjacent normal 
breast tissues.  These resulted suggested that ZNF24 may 
play a suppressive role in the initiation and/or progression of 
human breast cancer[120].

Paradoxically, a recent paper from the same lab reported 
that ZNF24 positively regulates the angiogenic potential of 
human microvascular endothelial cells (HMVEC)[121].  They 
showed that knockdown of ZNF24 in HMVECs resulted in 
decreased cell migration, invasion, proliferation and decreased 
formation of vascular networks along with significantly 
impaired VEGFR2 signaling[121].  These results seem to suggest 
that ZNF24 serves as a positive stimulator of the angiogenic 
potential of microvascular ECs.  How ZNF could exhibit diver-
gent functions in different cell types (endothelial vs cancer 
cells) is very intriguing.  Its role in tumor endothelium war-
rants further investigation.  

Although ZNF24 seems to function as an inhibitor of 
angiogenesis in both zebrafish embryonic development and 
in human breast cancer by suppressing VEGF transcrip-
tion[120], its therapeutic potential is still unclear.  In addition, 
how ZNF24 regulates the transcription of other angiogenesis-
related genes warrant future investigation.  For example, 
ZNF24 also represses the transcription of PDGFR-β, a gene 
that is important in regulating angiogenesis[117].  Elucidating 
the mechanisms and consequences of PDGFR-β repression by 
ZNF24 would be important for fully understanding the func-
tion of this gene in angiogenesis.  

G-protein-coupled receptor 56 (GPR56)
G-protein-coupled receptor (GPR56), or seven transmembrane 
molecule containing a long N-terminus (TM7XN1), is an atypi-
cal G-protein-coupled receptor (GPCR) that belongs to the 
subfamily of adhesion G-protein-coupled receptors (GPCRs).  
GPR56 was previously found to be anti-tumorigenic and anti-
metastatic in melanoma, where overexpression of GPR56 
suppressed tumor growth and metastasis[122].  The expression 
levels of GPR56 were inversely correlated with the progres-
sion of human melanomas[123].  GPR56 was reported to exert 
anti-angiogenic function by inhibiting VEGF secretion/release 
from melanoma cells[123].  This function requires the proteolytic 
cleavage fragments, the extracellular N-terminal fragment 
(GPRN) and the transmembrane C-terminal fragment (GPRC), 
to associate with each other.  A 70-amino acid serine threonine 
proline-rich (STP) segment in the GPRN is required for this 
function.  GPR56 inhibits VEGF secretion by inhibiting pro-
tein kinase Cα (PKCα)[123, 124].  PKCs are proteins that regulate 

VEGF release from specific granules in multiple cell types[125-127].  
Hence, inhibiting PKCα prevents VEGF release from mela-
noma cells and inhibits angiogenesis.    

GPR56 is the first adhesion GPCR attributed with anti-angio-
genic function.  Moreover, its anti-angiogenic mechanism of 
preventing VEGF release at the source is unique.  Thus, GPR56 
complements the current anti-angiogenic drugs and raises the 
efficacy of these drugs, which do not inhibit the production 
of VEGF.  GPR56 can also be used as a prognostic marker as 
GPR56 down-regulation is correlated with melanoma progres-
sion.  

JWA
JWA is also known as Prenylated Rab acceptor 1 domain 
family member 3 (PRAF3) and ADP-ribosylation factor-like 
6 interacting protein 5 (ARL6IP5)[128].  It is part of the prenyl-
ated rab acceptor 1 domain family (PRAF), whose members 
are involved in intracellular protein transport.  JWA func-
tions as a microtubule-binding protein and is involved in the 
mitogen activated protein kinase (MAPK) signaling pathway, 
regulating cancer cell migration[129].  Tumor suppressor func-
tions such as inducing apoptosis[129], inhibiting metastasis in 
melanoma[130], osteosarcoma, breast and cervical cancers have 
also been reported[128].  Recently, JWA was found to function 
as a tumor angiogenesis inhibitor in melanoma and gastric 
cancer[131, 132].  Overexpression of JWA in melanoma and gastric 
cancer cell lines inhibited angiogenesis in vitro and in vivo.  

Different anti-angiogenic mechanisms for JWA exist in 
melanoma and gastric cancer.  In melanoma, JWA suppresses 
angiogenesis by down-regulating integrin-linked kinase (ILK) 
expression through integrin αvβ3 and transcription factor 
Sp1[130].  ILK signaling activates NF-κB/IL-6/STAT3/VEGF 
angiogenic signaling pathways.  JWA overexpression signifi-
cantly inhibited IL6 and VEGF expression, but this inhibition 
is lost when ILK is also overexpressed.  By suppressing ILK 
expression, JWA inhibits melanoma angiogenesis.  Regarding 
gastric cancer, JWA down-regulates the expression of MMP-
2, a pro-angiogenic molecule.  Down-regulation of MMP-2 
expression is also through inhibiting transcription factor Sp1 
via an ubiquitin-proteasome dependent mechanism[132].  

To the best of our knowledge, JWA is the first microtubule-
binding protein that has been shown to have anti-angiogenic 
function.  JWA thus has the potential to be developed into an 
attractive therapeutic drug for cancer and other angiogenesis-
related illnesses.  JWA expression correlates with melanoma 
survival.  Patients with melanoma expressing high levels of 
JWA and low levels of ILK had significantly increased 5-year 
survival rates[133].  Similarly for gastric cancer, patients with 
high JWA and low MMP2 had better survival rates[132].  Hence, 
JWA can be both a prognostic marker and a potential thera-
peutic for melanoma and gastric cancer.  

Conclusion
Angiogenesis inhibitors play important roles in regulating 
both physiology and pathology.  Endogenous protein inhibi-
tors have the advantage of low toxicity, high tolerance, low 
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risk of drug resistance and a higher chance of specifically 
blocking pathological neovascularization, without affecting 
the normal vasculature[134, 135].  

Over the years, many endogenous angiogenesis inhibitors 
have been discovered, and some of them have reached clinical 
trial stages or are already in the market; these include end-
ostatin (Endostar) and angiostatin[136-139].  Other inhibitors have 
served as parent molecules from which derivative analogues 
have been developed and reached clinical trial stage, such as 
thrombospondin-1 and its analogue ABT-510[140].  Neverthe-
less, to date, clinical efficacy in humans is still questionable.  
Only endostar, a modified recombinant endostatin, has been 
approved as an anticancer drug in China.  In addition, the 
anti-angiogenic drugs currently in clinical use are predomi-
nantly based on inhibiting VEGF signaling pathways.  Lack of 
long-term therapeutic efficacy and the development of drug 
resistance are prevalent with the current drugs.  This under-

scores the importance of discovering novel angiogenesis inhib-
itors to not only fully understand the biology of angiogenesis 
regulation but also identify unique mechanisms of action and 
additional cellular targets to design more effective drugs.

In this review, we selectively presented ten novel endoge-
nous angiogenesis inhibitors discovered in the past five years.  
All of these inhibitors have demonstrated inhibitory roles in 
pathological angiogenesis such as in cancer, retinopathy or 
fracture healing (summarized in Table 1) but do not affect 
normal physiological angiogenesis.  These proteins have vari-
ous subcellular localizations including secreted/extracellular 
(isthmin, FKBPL and multimerin-2), transmembrane (GPR56), 
cytoplasmic (CHIP, ARHGAP18, SOCS-3, TAp73 and JWA) 
and nuclear (ZNF24).  Each of the proteins has distinct and 
diverse mechanisms of action (summarized in Figures 1 and 2) 
including the prevention of VEGF release, VEGF sequestra-
tion, promoting proteosomal degradation of angiogenesis 

Figure 2.  Mechanism of action of endogenous angiogenesis inhibitors.  Angiogenesis inhibitors affect the fundamental processes leading to 
angiogenesis such as proliferation, survival, adhesion, migration and junctional stability.  The secreted angiogenesis inhibitors such as MMRN2 and 
FKBPL act on specific cell surface receptors modulating their pro-angiogenic function.  In the case of membrane proteins such as GPR56, binding to 
its specific ligand results in the activation of a signaling cascade leading to angiogenic inhibition.  The cytoplasmic angiogenesis inhibitors such as 
CHIP, TAp73 and JWA function via a common mechanism: by promoting proteosomal degradation of their cellular targets, thereby preventing their 
nuclear translocation and subsequent action.  ARHGAP18 achieves angiogenic inhibition via influencing EC junctional stability.  Finally, ZNF24 acts via 
transcriptional repression of the angiogenic stimulator VEGF.  
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stimulators, or interfering with multiple angiogenic stimulator 
signaling pathways.  Thus, these proteins have great potential 
to function as anti-angiogenic drugs.  Further studies on these 
proteins will expand our understanding of their biology and 
help to design efficacious drugs for angiogenesis-related dis-
eases.  In addition, molecules such as CHIP, TAp73, GPR56 
and JWA have been shown to have an inverse correlation with 
several types of human cancers and could potentially also 
serve as prognostic markers.
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