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Abstract
A number of medically important microbial pathogens target and proliferate
within macrophages and other phagocytic cells in their mammalian hosts.
While the majority of these pathogens replicate within the host cell cytosol or
non-hydrolytic vacuolar compartments, a few, including protists belonging to
the genus , proliferate long-term within mature lysosomeLeishmania
compartments.  How these parasites achieve this feat remains poorly defined.
In this review, we highlight recent studies that suggest that Leishmania
virulence is intimately linked to programmed changes in the growth rate and
carbon metabolism of the obligate intra-macrophage stages. We propose that
activation of a slow growth and a stringent metabolic response confers
resistance to multiple stresses (oxidative, temperature, pH), as well as both
nutrient limitation and nutrient excess within this niche. These studies highlight
the importance of metabolic processes as key virulence determinants in 

.Leishmania
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Introduction
Macrophages play key roles in the mammalian innate and adap-
tive immune responses1. These cells are actively recruited to sites 
of tissue damage and infection and are able to kill a wide range 
of invading bacterial, fungal, and protozoan pathogens following 
phagocytosis and their delivery to the lysosome compartment1. Not 
surprisingly, a number of medically important microbial pathogens 
have developed strategies to either avoid phagocytosis by macro-
phages or to subvert uptake into the mature lysosome compart-
ment. The latter group either prevent maturation of the phagosomes 
within which they are internalized or escape into the cytosol, or 
both (for example, Mycobacterium tuberculosis, Salmonella spp., 
Trypanosoma cruzi)2,3. Other pathogens invade macrophages via 
phagocytosis-independent mechanisms and reside within non-
hydrolytic compartments in these cells (for example, Toxoplasma 
gondii)4. However, a small number of pathogens are internalized 
into the mature phagolysosome compartment of macrophages and 
are capable of long-term survival and proliferation within this 
compartment5–7. These include the protozoan parasites belonging 
to the genus Leishmania which in humans cause a spectrum of 
diseases ranging from localized cutaneous skin lesions to dissemi-
nating mucocutaneous infections and deadly visceral infections7. 
Strikingly, mammalian-infective stages of Leishmania lack many 
of the conventional virulence determinants of other pathogens, such 
as a thick cell wall, or cytoprotective pigments, suggesting that they 
may be more dependent on physiological changes. Although some 
progress has been made in identifying signaling pathways and other 
processes that are important for Leishmania virulence in the mam-
malian host6,8–11, major gaps in our understanding of Leishmania 
amastigote survival strategies remain. Here, we summarize recent 
studies that suggest that intracellular survival is linked to a marked 
decrease in parasite growth and a rewiring of central carbon metab-
olism. These changes may underlie the intrinsic resistance of these 
parasite stages to many stresses (temperature, pH) and their toler-
ance of both nutrient limitation and nutrient excess (feast and fam-
ine) in this intracellular niche.

Living in the macrophage phagolysosome
Leishmania spp. develop as flagellated promastigotes in the lumen 
of their sandfly vectors and are transmitted to a range of human and 
animal hosts when the sandfly takes a bloodmeal. After injection 
into the skin, promastigotes are initially internalized by neutrophils 
before being phagocytosed by macrophages and delivered to the 
mature phagolysosome compartment where they differentiate to 
the small, round, aflagellate amastigote stage6. The further recruit-
ment of macrophages to the site of infection results in the forma-
tion of lesions or granuloma-like structures that are the hallmark 
of all Leishmania infections11,12. Macrophages are the predominant 
cell type within lesions and can be infected with a few to several 
hundred amastigotes that, depending on the species involved, 
reside either within individual tight-fitting vacuoles (one parasite 
per vacuole) or within large spacious communal vacuoles. These 
vacuoles have a low pH (~5.4) and contain all of the membrane and 
luminal markers of a mature phagolysosome, including the charac-
teristic suite of hydrolases and the membrane NADH oxidase that 
generates anti-microbial oxidative burst. The Leishmania-occupied 
phagolysosome compartment appears to be highly dynamic, receiv-
ing a wide range of host macromolecules via fusion with vesicles 
from the phagocytic, endocytic, and autophagic pathways as well 

as the endoplasmic reticulum (Figure 1)6,13. These macromolecules 
are degraded by luminal hydrolases (proteases, lipases, glycosi-
dases) to generate free sugars, lipids, and peptides/amino acids 
which can be taken up by amastigote plasma membrane transport-
ers. Amastigotes can also internalize host macromolecules directly 
and degrade many of them within their own lysosome. Thus, the 
phagolysosome compartment may contain a wide array of carbon 
sources and essential nutrients, in contrast to other compartments 
in the endo-lysosomal network14. Consistent with this notion, 
Leishmania are auxotrophic for many essential nutrients, including 
purines, vitamins, heme, and a range of amino acids, which must be 
scavenged from the lysosome. Similarly, a number of Leishmania 
mutants have been generated with defects in pathways for de novo 
synthesis of other metabolites (glycine, amino sugars) or nutrient 
salvage pathways (nucleotide/nucleoside/purine base) that retain 
virulence in animal models, suggesting considerable redundancy 
in nutrient uptake/de novo biosynthetic pathways15–18. Indeed, we 
have previously proposed that the complex auxotrophic require-
ments of these parasites may underlie their tropism for this intracel-
lular niche6 (Figure 1). Interestingly, the Gram-negative bacterium 
Coxiella burnetii, one of the few other microbial pathogens to sur-
vive long term within in the macrophage phagolysosome, exhib-
its a similar broad range of nutrient auxotrophies19. Therefore, the 
macrophage phagolysosome may represent a relatively permissive 
intracellular niche with regard to nutrient availability, if microbes 
can establish suitable strategies for inhibiting or evading the activa-
tion of highly effective host cell microbiocidal processes.

Leishmania amastigotes enter a quiescent state and 
exhibit a stringent metabolic response
Up until recently, information on the growth rate and metabolic 
state of Leishmania amastigotes in inflammatory lesions and granu-
lomas was limited. A number of studies have tracked changes in 
Leishmania parasite load in both susceptible and resistant murine 
models by monitoring changes in parasite numbers or by follow-
ing transgenic parasites lines expressing luciferase or fluorescent 
reporter proteins20–23. These studies suggest that Leishmania amas-
tigotes undergo progressive and continuous replication in suscep-
tible mice strains (such as BALB/c), leading to systemic infection 
and death. In contrast, while parasite numbers increase in resistant 
mice strains (such as C57BL/6) during early stages of infection, 
numbers subsequently plateau and eventually are reduced to a low 
level as a protective host immune response develops. Thus, net 
changes in Leishmania parasite burden are determined by both par-
asite growth rate and the rate of parasite clearance or dissemination 
to other tissues (or both), which will vary with the immune status of 
the host. Recently, two distinct approaches have been developed to 
more precisely determine both the growth rate and metabolic state 
of Leishmania amastigotes in vivo. In the first approach, transgenic 
L. major lines were generated expressing a photo-convertible fluo-
rescent protein and used to monitor both amastigote dissemination 
in inflammatory lesions and overall protein turnover as a proxy of 
their growth and metabolic state24. This study showed that there was 
very little migration of L. major amastigote-infected macrophages 
into or out of these lesions and that intracellular amastigotes exhib-
ited surprisingly low rates of protein turnover and, by inference, 
replication. Interestingly, the slow rate of parasite replication in 
these tissues appeared to reflect, at least partially, the production of 
sub-lethal concentrations of nitric oxide by lesion macrophages24.
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In the second approach, the growth rate of L. mexicana amastigotes 
in inflammatory lesions in susceptible BALB/c mice was measured 
by labeling infected mice with heavy water (2H

2
O)25. 2H

2
O labe-

ling results in the incorporation of deuterium into a wide range 
of metabolic precursors in both host tissues and resident parasite 
populations, and the subsequent incorporation of these building 
blocks into macromolecules can be used to determine the turno-
ver of key cellular components (DNA, RNA, proteins, and lipids). 
With this novel approach, L. mexicana amastigotes were found to 
divide at a very slow, but constant, rate (t

1/2
 ~12 days on the basis of 

DNA turnover) throughout lesion development25. The growth rate 
of lesion parasites was substantially slower than in cultured mac-
rophages, supporting the notion that parasite growth in lesions is 
constrained, by either autonomous or host-microbicidal responses. 
Furthermore, the empirically determined amastigote growth rates 
closely matched those calculated from overall parasite burden (total 
parasites and parasites per macrophage), suggesting that parasite 
killing in BALB/c lesions is rare and that infected lesion macro-
phages are very long-lived. The 2H

2
O labeling approach was further 

extended to measure global rates of RNA and protein turnover in 

lesion amastigotes25. Both processes were found to be repressed to 
a greater extent than in non-dividing insect (promastigote) stages, 
suggesting that lesion amastigotes enter into a semi-quiescent 
state in which major energy-consuming processes are specifically 
repressed.

Metabolite profiling and 13C-stable isotope labeling of isolated 
lesion amastigotes have suggested that entry into this metaboli-
cally quiescent state is associated with major rewiring of key fluxes 
in central carbon metabolism26,27. In particular, lesion amastigotes 
have dramatically reduced rates of glucose and amino acid uptake 
and use these carbon sources much more efficiently than rapidly 
replicating or non-dividing promastigotes27 (Figure 2). Specifically, 
both dividing and non-dividing promastigote stages take up more 
glucose than is needed to maintain or increase biomass and exhibit 
high levels of overflow metabolism (secretion of partially oxidized 
glucose end-products, such as acetate, succinate, and alanine). 
In contrast, amastigotes exhibit much reduced rates of glucose 
uptake but negligible rates of overflow metabolism (glucose- 
sparing) (Figure 2). This switch to a more economical metabolism 

Figure 1. Leishmania replicate within the mature phagolysosome compartment of macrophages. This compartment is predicted to 
contain a range of carbon sources (sugars, amino acids, and fatty acids) and essential nutrients (major auxotrophic requirements listed in 
insert) that are delivered to the phagolysosome via different endocytic pathways, autophagy, lysosomal membrane transporters, and fusion 
with the endoplasmic reticulum (ER). Macromolecules delivered to this compartment are degraded by a barrage of luminal hydrolases or 
internalized by amastigotes and degraded within their own hydrolytically active lysosomes, or both. Arg, arginine; EE, early endosome; 
Glc, glucose; Glc6P, glucose 6-phosphate; GlcA, glucuronic acid; GlcN, glucosamine; His, histidine; Ile, isoleucine; LE, late endosome; 
Leu, leucine; Lys, lysine; Man, mannose; Phe, phenylalanine; Rib, ribose; TAG, triacylglycerol; Trp, tryptophan; Tyr, tyrosine; Val, valine; 
Xyl, xylose.
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in amastigotes has been termed the stringent response and is associ-
ated with reduced uptake of other potential carbon sources, such 
as amino acids27. This response appears to be hard-wired into the 
amastigote differentiation process as a similar downregulation of 
glucose and amino acid uptake also occurs in in vitro differentiated 
amastigotes regardless of the availability of glucose or other carbon 
sources in the medium.

How this stage-specific switch in metabolism is regulated remains 
largely undefined. Leishmania are unusual in lacking conventional 
gene-specific transcriptional regulation (and transcription factors) 
and constitutively transcribe gene-rich regions of their genome 
as long polycistronic mRNAs that are subsequently processed to  
generate individual mRNA28. As a result, the levels of most protein- 
encoding mRNAs remain constant in both dividing and non- 
dividing developmental stages29. Similarly, most metabolic 
enzymes are constitutively expressed and any stage-specific differ-
ences in protein levels, where present, are modest (generally less 
than a twofold) or variable (or both) across different Leishmania 
species30,31. Post-translational mechanisms are therefore likely to 
play an important role in the induction of the amastigote stringent 
response. There is accumulating evidence that several key nutrient 

transporters involved in glucose and amino acid uptake are down-
regulated in amastigotes. In the case of glucose transporters, down-
regulation can be mediated by ubiquitination of the cytoplasmic 
tail and internalization and degradation of the transporter in the 
parasite lysosome32. Ubiquitination or sumoylation has also been 
shown to regulate key pathways, such as fatty acid β-oxidation33. 
The upstream signals and processes that trigger these changes are 
poorly defined. However, amastigote differentiation is associated 
with marked changes in the phosphorylation state of many proteins, 
including those involved in stress responses34, and several protein 
kinases8,9 and phosphatases8–10,35 have been shown to be essential 
for virulence, suggesting that different signaling cascades may be 
required for the activation of the stringent response.

What is the function of metabolic quiescence?
The finding that Leishmania amastigotes enter a slow growth/ 
metabolically quiescent state was unexpected given the available 
evidence suggesting that the phagolysosome compartment con-
tains a variety of potential carbon sources. One explanation for this 
apparent paradox is that the phagolysosome, while containing high 
levels of some carbon sources, may be growth-limiting with regard 
to the availability of other (micro)nutrients. Consistent with this 

Figure 2. Intracellular amastigotes exhibit a stringent metabolic response. The differentiation of Leishmania promastigotes (insect stage) 
to amastigotes (macrophage host) is associated with major changes in central carbon metabolism. Promastigotes exhibit high rates of glucose 
and (non-essential) amino acid uptake that are co-catabolized via the major pathways of central metabolism. Promastigotes also take up 
fatty acids, but these are primarily incorporated into membrane lipids and not used as carbon sources (downward arrow). Amastigotes also 
preferentially use glucose as a carbon source. However, they exhibit much lower (~10-fold) rates of sugar and amino acid uptake and overflow 
metabolism (note that amastigotes continue to take up essential amino acids but primarily use these for protein synthesis). Amastigotes also 
actively catabolize fatty acids in the tricarboxylic acid (TCA) cycle, as a result of reduced glucose uptake. The downregulation of hexose/
amino acid uptake in amastigotes (stringent response) is hardwired to differentiation, as it occurs in vitro irrespective of nutrient levels and is 
coupled to a reduced growth rate27.
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notion, intracellular amastigote growth in ex vivo infected macro-
phages and in vivo is promoted by increasing the availability of 
select amino acids, such as arginine36–41. In the latter case, it remains 
unclear whether promotion of amastigote growth is due to increased 
availability of arginine, an essential amino acid, or conversion of 
arginine to growth-promoting polyamines by the host cell arginase. 
Moreover, active salvage of arginine by intracellular parasites may 
deplete arginine pools in the macrophage and affect the capacity of 
these host cells to generate nitric oxide via inducible nitric oxide 
synthase41, further complicating the interpretation of these sup-
plementation experiments. Similarly, there is strong evidence that 
phagolysosomal levels of micronutrients, such as iron and heme, 
can regulate intracellular parasite growth42–46. Host cell transport-
ers in the macrophage phagolysosomal membrane pump iron and 
heme out of the phagolysosome lumen to the cytosol and thus are 
important determinants of amastigote growth42,43,47–49. In response, 
Leishmania amastigotes upregulate expression of a surface ferric 
reductase (that converts Fe3+ to Fe2+) and a ferrous (Fe2+) iron trans-
porter, LIT1, allowing efficient salvage of iron, an essential cofactor 
in many parasite enzymes, including the parasite iron superoxide 
dismutase (FeSOD) and iron-sulphur containing enzymes involved 
in the mitochondrial tricarboxylic acid (TCA) cycle. Interestingly, 
L. amazonensis mutants that lack the LIT1 transporter are unable 
to retain viability when promastigote stages reach stationary phase 
or to effectively differentiate to amastigotes43. Differentiation was 
found to be dependent on FeSOD-mediated conversion of superox-
ide to hydrogen peroxide, which appears to stimulate amastigote 
differentiation. Thus, iron restriction within the phagolysosome may 
have a dual effect of preventing induction of the stringent response 
as well as limiting operation of energy-generating pathways in the 
mitochondria. Together, these studies suggest that selected nutri-
ent restriction occurs in the phagolysosome and that Leishmania 
adapt to this niche by upregulating the expression of specific nutri-
ent sensing and salvage pathways as well as downregulating global 
energy requirements (stringent response).

The Leishmania amastigote stringent response is induced in response 
to elevated temperature and reduced pH in culture, suggesting that 
these physiological changes may protect parasites from these spe-
cific environmental stresses or that it is part of a programmed stress 
response to multiple stresses (that can be triggered by these key sig-
nals in vivo) or both. In support of the latter proposal, the stringent 
response is enhanced in lesion amastigotes compared with cultured 
(axenic) amastigotes. As mentioned above, amastigote growth in 
developing lesions may be restricted by sublethal concentrations 
of reactive nitrogen species (RNS), which can inactivate many 
enzymes in the mitochondrial TCA cycle and respiration chain con-
taining iron-sulphur clusters50. A switch to increased dependency 
on glycolysis and an overall reduction in basal energetic require-
ments would reduce amastigote vulnerability to macrophage-
derived RNS. Interestingly, a number of other bacterial pathogens 
that invade macrophages also appear to be dependent on sugars as 
their major carbon source51, and decreased bacterial respiration is 
associated with resistance to a range of external stresses, including 
microbicidal NO and drug treatments52.

The stringent response may also protect amastigotes from nutrient 
excess. The concept that nutrient excess can lead to cellular stress 

is now well established in diseases such as obesity, metabolic syn-
drome, and diabetes53,54 but less commonly considered in microbes, 
particularly those in intracellular niches55. Metabolic stress induced 
by nutrient overload (that is, excess glucose) can occur as a result 
of multiple mechanisms, of which the most prevalent are increased 
production of mitochondrial NADH (that is, increased NADH/NAD+ 
ratio) and concomitant elevated production of endogenous reactive 
oxygen species (ROS) as a result of leakage of electrons from the 
mitochondrial respiratory chain53. Leishmania are potentially highly 
vulnerable to reductive stress, as they lack the capacity to transcrip-
tionally downregulate TCA cycle enzymes involved in NADH gener-
ation and, owing to the compartmentalization of glycolytic enzymes 
into modified peroxisomes, termed glycosomes, also appear to have 
lost classic allosteric regulatory mechanisms that result in feedback 
inhibition of glycolysis6 (Figure 3). The absence of allosteric feed-
back mechanisms in upper glycolysis means that glycolytic fluxes are 
largely regulated by glucose uptake rates. Leishmania promastigotes 
can exploit high concentrations of glucose and avoid excessive flux 
into the TCA cycle (with concomitant NADH production) by secret-
ing partially oxidized intermediates, such as alanine, acetate, and 
succinate into the medium26 (Figure 2). A similar strategy is used 
by other microorganisms, such as Saccharomyces cerevisiae, during 
periods of rapid growth on fermentable carbon sources56. However, 
the profligate use of carbon sources and secretion of partially oxi-
dized intermediates is likely to be deleterious for intracellular para-
site stages and could also impact on host cell physiology. The global 
downregulation of amastigote nutrient transporters after activation 
of the stringent response32 may constitute an important strategy for 
minimizing nutrient uptake and reductive stress within the restrictive 
environment of the phagolysosome32.

Rewiring of carbon metabolism may also be used to 
deal with nutrient excess?
Activation of the Leishmania stringent response in amastigotes 
is linked to additional changes in carbon metabolism that could 
also contribute to parasite survival within macrophages. Detailed 
13C-tracer studies27 have shown that lesion amastigotes, in common 
with promastigote, appear to preferentially use sugars, although 
rates of uptake are much lower than in promastigotes. Whereas 
most compartments within the endolysosomal system of macro-
phages are thought to contain low luminal concentrations of sugars, 
the (phago)lysosome compartment may be an exception. Macro-
phages constitutively internalize a wide range of complex glycopro-
teins, proteoglycans, and glycosaminoglycans that are degraded by 
lysosomal glycosidases to generate free sugars or oligosaccharides. 
Leishmania hexose transporters57 and enzymes involved in the catab-
olism of host-derived amino sugars are essential for Leishmania 
virulence58,59. Furthermore, intracellular growth of Leishmania 
amastigotes in cultured macrophages can be stimulated by the addi-
tion of glycosaminoglycans such as hyaluronan, highlighting the 
importance of amino sugar catabolism for Leishmania survival and 
virulence58,59.

Amastigotes also co-utilize fatty acids as a significant carbon source 
(Figure 3). This contrasts with promastigotes that preferentially 
co-utilize non-essential amino acids, aspartate, alanine, and gluta-
mate with glucose26,27. The increased β-oxidation of fatty acids in 
amastigotes appears to be a direct consequence of reduced glucose 
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Figure 3. Carbon metabolism of Leishmania amastigotes. Leishmania amastigotes appear to depend primarily on the uptake and 
catabolism of sugars scavenged from the macrophage phagolysosome. Hexose phosphates are catabolized in the glycolytic and pentose 
phosphate pathway (PPP) and converted to intracellular and surface glycoconjugates (GPI, N-glycans, mannogen). Key enzymes involved 
in glycolysis are partially or exclusively sequestered within glycosomes (modified peroxisomes), and ATP and NAD+ within this organelle are 
regenerated by fermentation of phosphoenolpyruvate to succinate (succinate fermentation pathway, or SFP) or pyruvate66. The end-products 
of glycosomal catabolism are further catabolized in the mitochondrion, together with acetyl-CoA generated by fatty acid β-oxidation, to 
produce anabolic precursors, such as glutamate. Most of the glutamate (and other non-essential amino acids) in amastigotes is synthesized 
de novo rather than taken up from macrophages. Excess NADH production in the mitochondrion might lead to increased endogenous reactive 
oxygen species (ROS) production via the respiratory chain. The gluconeogenic enzyme, fructose-1,6-bisphosphatase (FBP), is also required 
for amastigote survival in vivo. This enzyme is sequestered in glycosomes with phosphofructokinase (PFK) and might allow amastigotes 
to transiently use other carbon sources or regulate glycolytic fluxes by cycling FBP back to fructose 6-phosphate (futile cycling), or both. 
αKG, α-ketoglutarate; AcCoA, acetyl-CoA; Fru6P, fructose-6-phosphate; Glc6P, glucose-6-phosphate; GlcNAc6P, N-acetylglucosamine-
6-phosphate; Glu, glutamate; Man6P, mannose-6-phosphate; PEP, phosphoenolpyruvate; Pyr, pyruvate; Rib5P, ribose-5-phosphate; 
Triose-P, triose phosphates.

uptake by this stage27, and the resultant acetyl-CoA produced by fatty 
acid oxidation is used primarily to top up the TCA cycle (anapleuro-
sis) providing intermediates for the biosynthesis of amino acids, such 
as glutamate, glutamine, and aspartate (catapleurosis) (Figure 3). 
Pharmacological inhibition of enzymes involved in the synthesis 
of non-essential amino acids via the TCA cycle results in complete 
inhibition of amastigote growth and survival27. These amino acids 
are required for nucleotide, thiol and amino-sugar biosynthesis, and 
the dependence on de novo synthesis is consistent with the finding 
that amino acid uptake by amastigotes is limited57,59,60. Similarly, 
genetic disruption of fatty acid β-oxidation or proteins involved 
in the mitochondrial respiratory chain also results in a loss of 
virulence33,61. Together, these studies suggest that amastigotes are 
highly dependent on sugar and fatty acids scavenged from the 
lumen of the phagolysosome.

Paradoxically, Leishmania amastigote mutants lacking the key 
gluconeogenic enzyme, fructose 1,6-bisphosphatase (FBPase), are 

also poorly virulent in mice62. FBPase catalyzes the conversion of 
fructose-1,6-bisphosphate to fructose-6-phosphate and is expressed 
in the same glycosome compartment as the glycolytic enzyme, 
phosphofructokinase (PFK), that catalyzes the reverse reaction62 
(Figure 3). The functional significance of the constitutive expres-
sion of these two enzymes in the same organelle remains unclear. 
Sugar levels in the phagolysosome could fluctuate in response to 
changes in membrane transport and the delivery of cargo to this 
compartment, leading to periods of sugar starvation and transient 
dependency on gluconeogenesis for the synthesis of essential gly-
coconjugates, DNA/RNA synthesis, and production of reducing 
equivalents via the pentose phosphate pathway63. In this context, 
co-expression of both FBPase and PFK could allow Leishmania 
amastigotes to rapidly respond to changes in carbon source avail-
ability. However, lesion-derived amastigotes exhibit very low rates 
of amino acid uptake and intracellular stages appear to be depend-
ent on glucose catabolism even when infected macrophages are 
supplied with excess amino acids27. Furthermore, Leishmania lack 
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a glyoxylate cycle and therefore are unable to switch to using fatty 
acids (a likely plentiful carbon source in this compartment) as a sole 
gluconeogenic carbon source. It is possible that FBPase may have 
acquired non-enzymatic functions, other than its role in gluconeo-
genesis, that account for the dependency of intracellular stages on 
this enzyme. FBPase has recently been shown to regulate glycoly-
sis in mammalian cells via at least two mechanisms, one of which 
involves transcriptional regulation of signaling proteins and is not 
dependent on its enzymatic activity64. Alternatively, FBPase may 
be required for parasite growth under growth conditions in which 
glucose uptake and glycolysis are still active (Figure 3). This has 
recently been shown to be the case in Toxoplasma gondii, another 
intracellular parasite that resides in a distinct vacuolar compartment 
and is also primarily dependent on glucose catabolism for growth65. 
As with L. major, genetic disruption of T. gondii FBPase resulted 
in strong attenuation of intracellular growth in host cells and loss 
of virulence in animal models. Loss of virulence of the T. gondii 
∆FBPase mutant was associated with increased glycolytic flux at 
the expense of glucose flux into other essential metabolic pathways. 
Thus, under normal growth conditions, T. gondii FBPase may func-
tion in a futile (ATP-consuming) metabolic cycle with the PFK and 
potentially restrict excessive flux through glycolysis and ensure bal-
anced growth. Whether metabolic cycling between FBPase and PFK 
occurs in the Leishmania amastigote’s glycosome and the extent to 
which it regulates glycolytic fluxes remains to be determined.

Conclusions
Leishmania parasites are unusual in their capacity to proliferate 
long-term within the mature phagolysosome compartment of host 
macrophages. It is likely that the complex nutritional requirements 
of Leishmania and the need to have access to a broad range of 
metabolites underlie Leishmania’s tropism for this hostile intrac-
ellular niche. However, successful colonization of this niche must 
have been linked to the parallel evolution of strategies for combating 
a range of host cell microbicidal processes (ROS, RNS, hydrolases) 
that are normally effective at eradicating pathogens that are deliv-
ered to this compartment. Intriguingly, Leishmania amastigotes lack 
many of the virulence factors found in promastigotes or other micro-
bial pathogens (cell walls, surface coats, protective pigments, and so 
on), suggesting that the extraordinary resilience of these pathogens 
is dependent on more fundamental physiological changes that confer 
cytoprotection against a variety of stresses. Very recent studies, using 
new fluorescent protein reporters and stable isotope (2H,13C) labeling 
approaches for measuring amastigote physiology and metabolism 

in vivo, suggest that amastigotes enter into a semi-quiescent growth 
state in vivo. This state is distinct from that observed in non- 
dividing promastigotes and appears to be programmed by differen-
tiation signals independent of external nutrient levels. It is proposed 
that induction of the stringent metabolic response may (i) prevent 
depletion of essential limiting (micro)nutrients in the phagolyso-
some compartment, (ii) reduce the bioenergetic needs of amastig-
otes and hence their dependence on high-energy-yielding pathways 
(such as oxidative phosphorylation) that are highly susceptible to 
inhibition by RNS/ROS, and (iii) minimize endogenous reductive 
stress induced by excessive utilization of abundant carbon sources 
in the phagolysosome and overflow metabolism. Thus, the strin-
gent metabolic response may protect amastigotes from both feast 
and famine within this compartment. Further studies are needed to 
understand how amastigote metabolism is regulated in the absence 
of significant gene-specific transcriptional regulation, while the 
identification of key steps in carbon metabolism that are essen-
tial for amastigote virulence opens up new opportunities for the 
development of novel anti-microbial strategies.
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