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Abstract

The actin crosslinking domain (ACD) is an actin-specific toxin produced by several pathogens, 

including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. 

Actin crosslinking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual 

sequestration of actin in the form of nonfunctional oligomers. Here we found that ACD converted 

cytoplasmic actin into highly toxic oligomers that potently “poisoned” the ability of major actin 

assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most 

abundant cellular protein by employing actin oligomers as secondary toxins to efficiently subvert 

cellular functions of actin while functioning at very low doses.
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Bacterial toxins are the deadliest compounds on the planet. As little as a single molecule of a 

delivered toxin can compromise vital functions or even kill an affected host cell (1, 2). This 

is achieved by amplification of a toxin enzymatic activity via signaling cascades (e.g. by 

cholera, pertussis, and anthrax toxins) or via enzymatic inhibition of vital host complexes 

present in relatively few copies (e.g. Shiga and diphtheria toxins acting on ribosomes). Such 

efficiency is crucial because i) the amount of a toxin produced early upon infection is 

limited by an initially small number of bacterial cells; ii) the host is protected by commensal 

bacteria; and iii) the host immune system efficiently neutralizes toxins by means of adaptive 

(antibodies) and innate (e.g. defensins) (3) humoral defense factors.

Owing to its importance in multiple cellular processes, actin is a common target for 

bacterium- and parasite-produced toxins. Upon delivery to the cytoplasm of host cells via 

Type I (as part of MARTX toxin) (4) or Type VI (within VgrG1 toxin) (5) secretion 

systems, the actin crosslinking domain toxin (ACD) catalyzes the covalent crosslinking of 

K50 in subdomain 2 of one actin monomer with E270 in subdomain 3 of another actin 

monomer via an amide bond, resulting in the formation of actin oligomers (6, 7). The actin 

subunits in the oligomers are oriented similar to short-pitch subunits in the filament, except 

that a major twist of the subdomain-2, required to accommodate such orientation, disrupts 

the normal inter-subunit interface and precludes polymerization (6).

The currently accepted mechanism of ACD toxicity, via sequestering of bulk amounts of 

actin as non-functional oligomers, is compromised owing to the high concentration 

(hundreds of micromolar) of actin in a typical animal cell. Extrapolation of in vitro 

determined rates of the ACD activity (7) to cellular conditions suggests that a single ACD 

molecule per cell (i.e. ~ 1 pM) would require over six months to covalently crosslink half of 

all cytoplasmic actin.

In contrast to these estimations, the integrity of the intestinal cell monolayers was disrupted 

when only a small fraction of cellular actin (2-6%) was crosslinked by ACD (Fig. 1A-C; fig. 

S1). To account for such dramatic effects, we hypothesized that the ACD-crosslinked actin 

oligomers are highly toxic because they can exert an abnormally high affinity to actin-

regulatory proteins containing several actin-binding domains. To identify potential high-

affinity partners of the actin oligomers, anthrax toxin delivery machinery was used to deliver 

ACD (8) into HeLa cells transfected with double-tagged (Twin-Strep-tagII and 

hemagglutinin) actin (SHA-actin; fig. S2) and used for a pull-down assay. Several formins 

(DIAPH1, DIAPH2, DAAM1, and INF2) preferentially bound to the ACD-crosslinked actin 

oligomers (Fig. 1D). Treatment of epithelial monolayers with the formin inhibitor SMIFH2 

affected the monolayer integrity similar to ACD, whereas the Arp2/3 complex inhibitor 

CK-666 did not (fig. S3).

Formins are a major family of actin assembly factors involved in numerous actindependent 

cellular processes. The major functional domains of formins, formin homology domains 1 

(FH1) and 2 (FH2), cooperate in nucleation and elongation of actin filaments. A non-

covalent FH2/FH2 homodimer nucleates and remains at the polymerizing barbed end to 

facilitate processive filament elongation while protecting the filament from capping (9). 

Tandem poly-proline stretches within the FH1 domains bind profilin-actin complexes and 
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accelerate elongation by as much as 10-fold (10-12). FH1 domains of all formins 

preferentially bound to the oligomers (Fig. 1D) contain 4-14 tandem poly-proline (PP) 

stretches, which may contribute to strong profilin-mediated interaction with the oligomers.

To elucidate the mechanism of formin inhibition, we employed constitutively active FH1-

FH2 fragments of mDia1 and mDia2 (mouse orthologues of human DIAPH1 and DIAPH3, 

respectively) to monitor actin polymerization at the individual filament level by total 

internal reflection fluorescence microscopy (TIRFM; Fig. 2, 3; fig. S4). In the presence of 

human profilin-1 (PFN1), the oligomers caused very prominent reversible blocks of 

elongation of formin-controlled, but not formin-free actin filaments (Fig. 2A-F; fig. S4B,C; 

Movies S1-5). Formin-controlled filaments were identified by faster growth with a dimmer 

appearance (Fig. 2A,E) (10), or via direct labeling of formin (Fig. 3A).

In the presence of PFN1, the fraction of blocked mDia1 formin-associated filaments as well 

as the inhibition of averaged growth rates depended on the concentration of the added 

oligomers with an IC50 of 1.2 ± 0.6 (SEM) nM (Fig. 2D), in good agreement with the 

apparent equilibrium inhibition constant determined kinetically (appKi = koff/kon = 2.5 nM; 

Fig. 3C,D). After stops (oligomer dissociation), the filaments continued to polymerize with 

the rates characteristic for formin-controlled filaments (Fig. 2B; fig. S4A). In the absence of 

PFN1, the inhibition appeared to occur via a similar mechanism, but the overall effect was 

weaker and the average duration of the blockage events was substantially shorter (Fig. 

2C,D). Although a profilin-mediated interaction of the oligomers with the PP stretches of 

FH1 was not absolutely required, it strongly amplified the efficiency of the inhibition at the 

elongation stage by contributing to multisite interaction with the oligomers. Thus, mDia1 

constructs (fig. S5A) with either removed FH1 domains (FH2 only) or shortened from 

fourteen (14PP) to two PP-stretches (2PP) showed progressively lower response to 

inhibition by the oligomers in the presence of PFN1 (Fig. 3B). Similarly, the appKi of 

oligomers for mDia2 (containing two PP-stretches) was 7.5 fold higher than that for mDia1 

and depended on PFN1 (Fig. 3B-D).

The inhibition of formin-mediated polymerization measured at the individual filament level 

correlated well with the inhibition observed in bulk pyrene assays (Fig. 4; fig. S5,S6). 

During spontaneous polymerization in the absence of PFN1, high concentrations (75-500 

nM) of the oligomers mildly accelerated the polymerization, while mild inhibition was 

observed in the presence of profilin (Fig. 4A,B). This is likely because of a low level 

incorporation of the oligomers into the filaments (6) in the absence, but not in the presence 

of PFN1 (fig. S5D), leading to filament severing similar to that observed for actin species 

with impaired inter-subunit surfaces (13).

In contrast, the oligomers potently inhibited actin polymerization directed by mDia1 in the 

presence and, to a lesser extent, absence of PFN1 (Fig. 4C-F; fig. S6). Fitting the inhibition 

of actin polymerization at 50% of maximum to a binding isotherm equation resulted in an 

IC50 for the mDia1(14PP) construct equal to 2.0 ± 0.2 (SEM) nM and 4.8 ± 0.6 (SEM) nM 

in the presence and absence of PFN1 (Fig. 4E,F). The ACD-crosslinked actin dimers 

purified to homogeneity (fig. S5B) inhibited the mDia1-controlled polymerization less 

efficiently than the mixture of higher order oligomers (fig. S5F-H), suggesting that the 
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inhibition is amplified via multivalent interactions of the oligomers with mDia1. 

Accordingly, shortening the FH1 domain progressively decreased the efficiency of 

inhibition with the IC50 values reaching ~30 and ~16 nM for the mDia1(FH2) constructs in 

the presence and absence of PFN1, (Fig. 4E,F; fig. S6).

Kinetic modeling (fig. S8) revealed that inhibition of both nucleation and elongation is 

required to accurately describe the effects of the oligomers on formincontrolled actin 

polymerization. Using experimentally determined parameter values for inhibition of 

elongation, good fits to the data (Fig. 4) could be found by assuming that oligomers also 

inhibit nucleation by binding to free mDia1(14PP) formin with dissociation constants of 0.8 

and 5 nM in the presence and absence of PFN1 (fig. S8D,E). Inhibition of nucleation by the 

oligomers in the absence of PFN1 was also observed experimentally in filament seeding 

assays (fig. S7) and TIRFM experiments (fig. S4D-G). Similar experiments in the presence 

of PFN1 were less conclusive owing to the overall lower nucleation ability of formins under 

these conditions (fig. S7G,H and fig. S4F,G). To improve accuracy, modeling had to 

account for filament severing owing to incorporation of the oligomers in the absence of 

PFN1 (Fig. 4A,C; fig. S8C,D).

Bacterial toxins are well known to disorganize the actin cytoskeleton acting via Rho family 

GTPase controlled signaling pathways (14). Here we found that toxins can not only exploit 

existing signaling pathways, but also initiate a new toxicity cascade with de novo produced 

crosslinked actin species as “second messengers”. Owing a unique combination of 

properties that is neither present in G-nor F-actin (fig. S9A), these new actin species bind 

with high affinity to formins and adversely affect both nucleation and elongation abilities of 

these proteins causing their potent inhibition in profilin-dependent and independent manners 

(fig. S9B). Thus, ACD creates toxic derivatives of actin with a disruptive “gain of function” 

mode of operation. We propose that the seemingly straightforward original assumption that 

ACD acts via the accumulation of bulk amounts of non-functional actin is inaccurate, or at 

least incomplete. The toxin can be highly efficient at very low concentrations by acting on 

formins and potentially other actin regulatory proteins. This finding calls for the careful re-

evaluation of mechanisms employed by other actin-related toxins, both of protein and small-

molecule nature.
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Figure 1. Integrity of intestinal monolayers is compromised by low concentration of actin 
oligomers
(A-C) Transepithelial electrical resistance (TEER) of IEC-18 monolayers (A) was assessed 

upon cytoplasmic delivery of LFNACD or a catalytically inactive mutant as a control and 

correlated with the accumulation of ACD-crosslinked actin species by anti-actin 

immunoblotting (B) and cell morphology (C). Additional antiactin blots and quantitation of 

crosslinked actin are presented on fig. S1. (D) SHA-actin pull-down. Lanes A: SHA-actin 

transfected cells treated with inactive LFNACD (non-crosslinked actin). Lanes X: SHA-actin 

transfected cells treated with active LFNACD (crosslinked actin). Lanes C: non-transfected 

untreated cells used as a negative control. “NaCl” and “FA” – fractions eluted from Strep-

Tactin beads with 0.5 M NaCl and 50% formamide, respectively. Samples were subjected to 

immunoblotting and probed with anti-HA, anti-actin, various anti-formin, and anti-profilin 

antibodies.
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Figure 2. Effects of ACD-crosslinked actin oligomers on polymerization of individual filaments 
controlled by mDia1(14PP)
(A) mDia1(14PP)-mediated polymerization from profilin-actin complexes in the absence 

(top) and presence (bottom) of actin oligomers (A-Oligo) was monitored by TIRFM. 

Arrowheads denote actin barbed ends: green – mDia1-controlled (dim and fast); yellow – 

mDia1-free (bright and slow); red – mDia1-controlled stopped by the oligomers. (B, C) 

Quantitation of (A): filament elongation plots in the presence (B) or absence (C) of PFN1. 

Green and red curves describe filament elongation in the absence and presence of oligomers, 

respectively. Arrows denote the beginning and arrowheads indicate the end of elongation 

blocks caused by the oligomers on representative curves highlighted in black. (D) IC50 of 

oligomers determined by TIRFM as percent of stopped filaments (black) or growth rate 

inhibition (red curves). (E) TMR-labeled actin (red) was polymerized in the presence of 

mDia1(14PP) and PFN1 without oligomers followed by flow of Oregon Green (OG) actin, 

oligomers, and PFN1. Arrowheads are as for (A). (F) Quantitation of (E): growth of mDia1-

controlled filaments (green traces) and mDia1-free filaments (yellow traces). Better 

polymerization properties of OG-actin result in faster elongation at the formin-free ends.
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Figure 3. Effects of ACD-crosslinked actin oligomers on polymerization of individual filaments 
controlled by mDia2 and mDia1 with various FH1 lengths
(A) OG-actin (green) polymerization in the presence of SNAP-549-mDia2 (red) and PFN1 

before and after the addition of oligomers (black arrow) was monitored by TIRFM. Red 

arrowheads indicate SNAP-549-mDia2 at an actin filament; white arrowheads indicate 

formin-free filament. Kymograph shows a stalled SNAP-549-mDia2-controlled filament 

upon addition of oligomers. (B) Effects of oligomers on formin-free filament elongation and 

elongation controlled by mDia2 and mDia1 formins with various FH1 lengths: 14PP, 2PP, 

and FH2 (no PP-stretches). (C, D) Oligomer association (kon) (C) and dissociation (koff) (D) 

rates for mDia1(14PP) and mDia2.
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Figure 4. Actin oligomers inhibit mDia1-controlled actin polymerization in bulk pyrenyl-actin 
assays
(A-D) Effects of actin oligomers (A-Oligo) on actin polymerization in the absence (A, B) or 

presence of mDia1(14PP) (C, D); without (A, C) or with PFN1 (B, D). Normalized FL – 

pyrene fluorescence expressed in percent of maximum. (E, F) Inhibition of profilin-

dependent and independent actin polymerization controlled by various length FH1 mDia1 

constructs (14PP, 5PP, 2PP, or FH2 only; see fig. S5A,B and S6) assessed in the absence (E) 

and presence of PFN1 (F). (G) Apparent Ki for inhibition of mDia1(14PP) by the oligomers 

in the presence of PFN1 was calculated by measuring IC50 at two different concentrations of 

actin.
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