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Abstract

Method

Genome-wide expression profiling is a widely used approach for characterizing heteroge-

neous populations of cells, tissues, biopsies, or other biological specimen. The exploratory

analysis of such data typically relies on generic unsupervised methods, e.g. principal com-

ponent analysis (PCA) or hierarchical clustering. However, generic methods fail to exploit

prior knowledge about the molecular functions of genes. Here, I introduce GO-PCA, an

unsupervised method that combines PCA with nonparametric GO enrichment analysis, in

order to systematically search for sets of genes that are both strongly correlated and closely

functionally related. These gene sets are then used to automatically generate expression

signatures with functional labels, which collectively aim to provide a readily interpretable

representation of biologically relevant similarities and differences. The robustness of the

results obtained can be assessed by bootstrapping.

Results

I first applied GO-PCA to datasets containing diverse hematopoietic cell types from human

and mouse, respectively. In both cases, GO-PCA generated a small number of signatures

that represented the majority of lineages present, and whose labels reflected their respec-

tive biological characteristics. I then applied GO-PCA to human glioblastoma (GBM) data,

and recovered signatures associated with four out of five previously defined GBM subtypes.

My results demonstrate that GO-PCA is a powerful and versatile exploratory method that

reduces an expression matrix containing thousands of genes to a much smaller set of inter-

pretable signatures. In this way, GO-PCA aims to facilitate hypothesis generation, design of

further analyses, and functional comparisons across datasets.

Introduction
Genome-wide expression profiling, or transcriptomics, is a highly popular approach for obtain-
ing a systematic view of the molecular differences and similarities among cells, tissues, tumor
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biopsies or other biological specimen. The success of transcriptomics is based on advances in
microarray and high-throuhgput sequencing technologies, which have led to reductions in
costs and improved measurement accuracies. Currently, the development of single-cell meth-
ods is promising a dramatic increase in the spatial resolution of transcriptomic data [1] (see
e.g. [2–4], recent applications of single-cell transcriptomics in the fields of developmental biol-
ogy, cancer research, and stem cell biology, respectively).

Considering the rapid pace and low cost at which large-scale transcriptomic datasets can be
produced, data analysis often presents a significant bottleneck. The machine learning literature
offers a plethora of methods for unsupervised learning, which have been adopted to various
degrees for the exploratory analysis of gene expression data. Popular approaches include prin-
cipal component analysis (PCA) [5], hierarchical clustering [6], k-means clustering, consensus
clustering [7], non-negative matrix factorization (reviewed in [8]), mixture models (e.g., [9]),
and many others. These methods can be characterized as generic, in that they operate based on
general principles (e.g., prinicipal components are uncorrelated and capture maximum
amounts of variance), and do not take any specific biological aspects of the data into account.

While applications of the aforementioned methods have led to profound insights into bio-
logical processes (e.g., the identification of clinically relevant cancer subtypes [10, 11]), arriving
at such results typically requires significant human effort combined with expert knowledge,
and can be fraught with difficulties. In many cases, the data contain significant but unknown
biases which can obscure interesting signals and create spurious results (e.g., batch effects
[12]). Furthermore, the output of unsupervised methods often consists of clusters or factors
containing hundreds of genes, which are difficult to interpret and necessitate further analysis
before any biological intuition can be applied.

These challenges motivate the development of more specialized tools for the exploratory
analysis of transcriptomic data that 1) improve the detection of biologically relevant patterns,
2) confer robustness with respect to technical artifacts, and 3) yield readily interpretable results
that facilitate hypothesis generation. The incorporation of prior knowledge into unsupervised
algorithms provides a major opportunity for achieving these goals. In principle, prior knowl-
edge can bias the analysis in favor of biologically plausible results, thereby reducing the influ-
ence of extraneous biases such as batch effects, which do not exhibit biologically meaningful
patterns. It can also help provide meaningful labels for discovered patterns, which in turn facil-
itates the interpretation of results [13].

In light of the intuitive appeal of this idea, as well as its highly successful application in
supervised settings [14], there exist surprisingly few methods that exploit prior biological
knowledge in a general unsupervised setting. Several methods have been designed for the nar-
row task of identifying regulatory relationships ([15] and ref. 11–14 in [13]). For more general
purposes, it has been proposed to adjust the distance metric used in hierarchical clustering by a
term that quantifies similarity of GO or KEGG annotations between pairs of genes, with a tun-
ing parameter allowing for a flexible trade-off between knowledge-based and data-driven anal-
ysis [16, 17]. Annotation-based adjustments have also been proposed for use in k-means/k-
medioid clustering [18–20] and mixture models [21].

The method proposed here relies on PCA, one of the most versatile unsupervised methods,
and uses prior knowledge in the form of gene ontology (GO) annotations from the UniProt-
GOA database [22]. However, rather than using these annotations to adjust an internal metric,
the method adopts a two-step approach. PCA is performed first, and then each principal com-
ponent is tested for whether it is driven by functionally related genes. This leads to the defini-
tion of signatures, consisting of small sets of genes that are both strongly correlated in the input
data, as well as functionally related based on their GO annotations. These signatures are visual-
ized in a signature matrix, which can then serve a starting point for further data exploration.
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Results

GO-PCA combines principal component analysis (PCA) with
nonparametric GO enrichment analysis
In order to facilitate exploration of transcriptomic data using prior knowledge, I sought to
design a method that would systematically search all major axes of variation for small groups
of genes that are both strongly correlated and functionally related, and then present the results
in an easily interpretable fashion. To this end, I developed the GO-PCA algorithm, named after
its two building blocks, PCA [5], and GO enrichment analysis [23]. GO-PCA first performs
PCA on the expression matrix and determines the number of relevant principal components
(PCs) using a permutation test. It then tests each PC for enrichment of functionally related
genes. More formally, for each PC, genes are first ranked by their loadings (see Fig 1a). Given
the ranked list of genes obtained from a particular PC, GO-PCA then uses the XL-mHG test
[24] to detect GO terms (i.e., sets of functionally related genes) which are significantly enriched
at the top of that list (see Fig 1b). The XL-mHG is a simple extension of theminimum hyper-
geometric (mHG) test [23, 25], which is a powerful nonparametric test for enrichment in
ranked binary lists that produces an exact p-value. Since GO-PCA tests thousands of GO terms
in this way, it applies a stringent Bonferroni correction to the p-values obtained. For each sig-
nificantly enriched term, the genes underlying the enrichment are used to derive an expression
signature based on standardized expression values. The primary output of GO-PCA is a signa-
ture matrix that provides a readily interpretable view of biological heterogeneity in the data.
GO-PCA also prioritizes and filters the GO terms it finds to be enriched, in order to limit sig-
nature redundancy. The reader may refer to the Methods section for a detailed description of
the full algorithm.

Fig 1. GO-PCA schematic. The figure provides a simplified illustration of the key idea behind the method using PC 1 of the DMAP dataset and the GO term
“bicarbonate transport” (BT; GO:0015701) as an example. All genes annotated with the GO term are highlighted in purple. a After performing PCA on the
gene expression matrix, genes are ranked according to their PC loadings. b The ranked list of genes is tested for GO enrichment using the XL-mHG test. In
this example, the highest enrichment score (red arrow) is associated with the first five BT genes (HBA1, HBB, CA1, CA2, and RHAG; p = 8.3 × 10−8). These
five genes are then used to generate a signature labeled with “bicarbonate transport” (red star in Fig 2). See Methods for details.

doi:10.1371/journal.pone.0143196.g001
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Application of GO-PCA to a diverse panel of hematopoietic cell types
recovers known lineage characteristics
As a first test of my method, I aimed to apply GO-PCA to a highly heterogeneous dataset com-
posed of biologically well-defined subsets of samples. For such a dataset, GO-PCA should ide-
ally generate a compact set of signatures, each associated with a specific subset, and with a label
reflecting a biological characteristic specific to this subset. I therefore applied GO-PCA to a
dataset comprising 211 samples, representing 38 distinct cell populations from 15 hematopoi-
etic lineages [26] (this dataset will henceforth be referred to as DMAP). GO-PCA tested the first
15 PCs, and produced a signature matrix with 50 signatures containing between 5 and 43 genes
(see S2 Fig). As expected based on the composition of the dataset, many signatures were
derived from GO terms representing immune-related functions. Furthermore, the genes within
most signatures were strongly correlated with each other, as evidenced by median pairwise cor-
relation coefficients of 0.5 or greater (see S3 Fig). Each signature was expressed in only a subset
of samples, often with standardized expression levels of 2 or greater. At the same time, virtually
all samples exhibited high expression of at least one of the signatures.

In order to examine whether labels and expression patterns of the signatures generated by
GO-PCA agreed with hematopoietic lineages and their known biological characteristics, I
grouped the samples in the signature matrix by their lineage identities (see Fig 2). This immedi-
ately revealed several strikingly specific associations: For example, two signatures, derived from
the GO terms “bicarbonate transport” (BT) and “autophagy”, respectively, were strongly and
exclusively associated with the erythroid lineage (red blood cells). Both of these functional cate-
gories match unique biological characteristics of erythrocytes, namely their ability to transport
carbon dioxide [27], and the degradation of their mitochondria through a type of autophagy
termed “mitophagy” [28]. This autophagy signature was also almost perfectly correlated with
an 18-gene “cullin-RING ubiquitin ligase complex” (ULC) signature (see S4a and S4b Fig),
pointing towards a role of ubiquitin ligases in reticulocyte development (see S3 Text). It is
worth noting that the genes in the BT and autophagy signatures were associated with only
0.5% and 0.2% of the total variance in the data, respectively, highlighting GO-PCA’s ability to
identify small, specific, and functionally relevant signatures against a highly heterogeneous
background.

Specific associations of signatures with other cell types were also readily spotted: Most sam-
ples of megakaryocytes, which serve to produce platelets [29], were associated with
“platelet alpha granule membrane”, “platelet aggregation” and “regulation of wound healing”
signatures. Likewise, B cells were strongly associated with a “B cell proliferation” signature,
whereas the neutrophil / monocyte lineage was associated with multiple signatures (see yellow
box in Fig 2) which possibly reflected their related immunological roles in the innate immune
system [30, 31]. For example, the signatures labeled “endolysosome” and “phagosome matura-
tion”matched their phagocytotic capabilities, and the signatures “response to fungus” and
“response to bacterium” (the latter encompassing 35 genes) agreed with their importance in
defending the body against fungal and bacterial infections. A 17-gene “MyD88-dependent toll-
like receptor signal. pathway” (see S4c Fig) was also specifically expressed in this lineage, likely
reflecting the fact that toll-like receptors (TLRs) are important pattern recognition receptors
for phagocytes [31]. For example, the genes TLR2 and TLR4 were both part of this signature,
and are known to play important roles in monocytes ([32] p. 43) and neutrophils [33]. These
functional matches between signature labels and their associated lineages demonstrated that
many of the signatures generated by GO-PCA were both interpretable and specific.

On top of these highly specific associations, some signatures showed broader associations:
For example, two “positive regulation of T cell activation” and “T cell receptor complex”
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signatures were associated with all samples from the T cell lineage, regardless of whether they
were CD4+ or CD8+ (see purple box in Fig 2). Furthermore, NK cells and CD8+ T cells, but
not CD4+ T cells, shared a “positive regulation of cell killing” signature, in agreement with
their cytotoxic capabilities. Another group of signatures, related to cell cycle and metabolic pro-
cesses, was associated with the lineages representing stem cells or partially differentiated cell
types (i.e., hematopoietic stem cells, myeloid progenitor cells, early erythroid cells and CFU-
granulocytes; see gray boxes in Fig 2). Since these populations can be expected to exhibit ele-
vated proliferation rates, these associations could be interpreted to reflect an increased mitotic

Fig 2. Validation of GO-PCA using a dataset of 211 human transcriptomes representing diverse hematopoietic cell types (DMAP; [26]). Shown is a
heat map of the signature matrix generated by GO-PCA, with signatures (rows) ordered using hierarchical clustering with correlation distance and average
linkage, and samples (columns) ordered according to their known lineage identities. Arrows and boxes indicate specific associations between signatures and
lineages discussed in the text. Signature labels (left) indicate the name of the GO term the signature is derived from. “BP”, “MF”, and “CC” refer to “biological
process”, “molecular function”, and “cellular component”, the three main branches of the gene ontology. The three numbers in parentheses indicate,
respectively, 1) the principal component that the GO term was found to be enriched in (with a negative sign indicating enrichment among the genes with the
lowest loadings), 2) the number of genes in the signature, and 3) the total number of genes in the analysis that were annotated with the GO term. Signature
expression levels are calculated as the unweighted average over the standardized expression levels of each gene in the signature (see Methods for details).

doi:10.1371/journal.pone.0143196.g002
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activity of the respective cells. Curiously, an eight-gene “U1 snRNP” (U1 small nucleolar ribo-
nucleoprotein) signature exhibited a similar stem cell-specific expression pattern. Variant U1
small nucleolar RNAs (snoRNAs) have been shown to be specifically expressed in human
embryonic stem cells [34], and the observation of a stem cell-specific pattern of the corre-
sponding ribonucleoproteins here similarly suggests a role for U1 SNPs in stem cell mainte-
nance. These examples of signatures with broader associations demonstrate that the signatures
generated by GO-PCA enabled examination of the data at different levels of granularity.

In summary, the expression patterns of the signatures generated by GO-PCA without
knowledge of lineage identities were largely consistent with the observation of five “main” line-
ages by Novershtern et al., comprising hematopoietic stem and progenitor cells (HSPCs),
erythrocytes (ERY), granulocytes/monocytes, B cells, and T cells. The signature matrix greatly
facilitated functional annotation of expression patterns, and revealed complex relationships
among subsets of samples that are sometimes difficult to appreciate based on the output of
generic unsupervised methods (see e.g., Figure S1A in [26]).

Bootstrap analysis reveals robustness of GO-PCA signatures
Since GO-PCA applies a series of tests and filters in order to generate signatures, I decided to
test the robustness of GO-PCA signatures and their dependency on sample size using boot-
strapping (sampling with replacement, [35]). I first sampled 50 datasets with the same size as
the original dataset (n = 211). 21 of the 50 signatures generated in the original analysis had a
bootstrap detection rate of at least 50%, meaning that in at least 50% of the simulated datasets,
GO-PCA generated signatures based on the exact same GO term. I then relaxed this require-
ment, so that a signature was counted as detected if a signature that was based on a “related”
GO term was present, defined as any ancestral or descendant term in the Gene Ontology.
(Note that this definition was not as broad as it might appear, as only GO terms with 200 or
fewer genes were included in the analysis to begin with; see Methods.) Using this relaxed crite-
rion, the number of signatures with a detection rate of at least 50% rose to 33, and most of the
remaining signatures were detected in at least 25% of datasets (see Fig 3a). I next used boot-
strapping to sample datasets with sizes corresponding to 5–50% of the original dataset. Appli-
cation of GO-PCA to these smaller datasets resulted in the selection of fewer PCs for testing,
and led to the generation of fewer signatures (see Fig 3b). This behavior made intuitive sense,
as I expected smaller datasets to exhibit fewer meaningful principal components. As an exam-
ple, for n = 10, GO-PCA tested only the first three PCs in the majority of cases, and generated a
median number of 12 signatures. I also noted that for each sample size tested, the number of
signatures generated for the bootstrap samples was quite similar. These results showed that
both the number and the functional categories of signatures generated by GO-PCA were rela-
tively robust, and that GO-PCA was able to automatically adjust the number of PCs to test
based on the sample size.

I next aimed to examine the results of performing GO-PCA on bootstrap samples in more
detail. To test how much the generation of individual signatures depended on specific PCs, I
used the bootstrap samples with full sample size (n = 211) to calculate how signature detection
rates changed when only signatures generated using the first n principal components were
included in the analysis. Many signatures showed a clear association with specific PCs, indi-
cated by a sharp increase in the detection rate as soon as the signatures from a particular PC
were included. For example, the “autophagy” signature appeared robustly associated with PC 3
Fig 3c, left heat map). The results also showed that some signatures, such as “condensed chro-
mosome kinetochore” were exclusively generated based on higher PCs. I next used the boot-
strap samples with smaller sample sizes to examine how the detection rate of individual
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Fig 3. Analysis of the robustness of DMAPGO-PCA signatures using bootstrapping. a Detection rates of the 50 DMAP signatures generated by GO-PCA
(see Fig 2). GO-PCA was applied to 50 bootstrap samples with the same size as the original dataset (n = 211). In each analysis, a signature from the original
analysis was counted as detected if there existed a signature based on the exact same GO term (yellow bars), or based on either the same GO term or any
“related”GO term (blue bars). Related GO terms were defined as all ancestor and descendent terms in the Gene Ontology. This figure panel was generated
using the GO-PCA script gopca_plot_bootstrap_signature_recovery.py. b Number of principal components tested and signatures generated for bootstrap
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signatures depended on the sample size. This revealed that while the “T cell receptor complex”
(TCR) and “MHC class II protein complex” (MHC) had a very high detection rate even in
datasets with only 10 samples, other signatures, including the “autophagy” signature discussed
earlier, required a sample size of at least 50% of the original for robust detection. These differ-
ences are obviously related to the fact that the TCR and MHC signatures showed broad expres-
sion (see Fig 2), so that even bootstrap samples with n = 10 or n = 20 will include a few samples
expressing both high and low levels of those genes. Interestingly however, there were also cases
in which signatures with similar expression patterns had very different sample size dependen-
cies. For example, while both signatures were most highly expressed in erythrocytes, the “bicar-
bonate transport” signature could be detected with a sample size of 10%, whereas the “cullin-
RING ubiquitin ligase” signature required the original sample size for robust detection. In sum-
mary, this analysis provided a quantitative view of the robustness of individual signatures,
including their association with specific PCs, as well as their dependencies on sample size.

Application of GO-PCA to a large panel of mouse immune cell types
recovers known lineage characteristics
To test the performance of GO-PCA on non-human expression data, I next applied the method
to a panel of 650 transcriptomes representing 214 cell populations from mouse [36]. I obtained
one transcriptome for each population by processing the raw microarray data and averaging
expression levels across replicates (see Methods for details). I further grouped cell populations
into 15 lineages or sub-lineages (e.g., neutrophils, dendritic cells, and CD4+T cells), according
to the sample annotations [36]. (This dataset is henceforth referred to as IGP1.) In comparison
to DMAP, IGP1 comprises more than five times as many cell populations, each represented by
a robust average expression profile obtained from between three to seven replicates. Further-
more, IGP1 includes an outgroup of ten non-hematological stromal cell types.

The application of GO-PCA to IGP1 resulting in the testing of the first 21 PCs, and led to
the generation of 89 signatures, which contained between 5 and 66 genes (see S5 Fig). The
genes within most signatures again had high internal correlations (see S6a Fig; median
value = 0.55), and bootstrap analysis showed their robustness with respect to GO terms and
their overall number (see S6b and S6c Fig). The significantly larger number of signatures, as
compared to the DMAP analysis, likely reflected the greater diversity and resolution of the data-
set (see above). Some signatures were highly correlated, but overall the signatures had diverse
expression patterns covering all samples.

To assess whether signatures agreed with known lineage characteristics, I again re-grouped
samples according to their lineage identities (see Fig 4). As expected, the stromal cells formed
an outgroup that was associated with multiple highly correlated signatures, mostly related to
extracellular matrix (ECM) components, blood/lymph vessel development, and neural devel-
opment (see red box in Fig 4). In addition to identifying and characterizing these “outgroup”
samples, GO-PCA again produced many signatures that precisely matched individual immune
cell lineages: For example, two “B cell receptor signaling pathway” and “B cell activation” signa-
tures were specifically expressed in B cells. Similarly, two signatures labeled “regulation of leu-
kocyte mediated cytotoxicity” and “regulation of natural killer cell chemotaxis” were associated

samples with different sample sizes. For each size, GO-PCA was applied to 50 bootstrap samples of that size. Shown are the median values for each
measure, and error bars indicate the inter-quartile range. This figure panel was generated using the GO-PCA script gopca_plot_bootstrap_numbers.py. c
Bootstrap detection rates of all DMAPGO-PCA signatures, as a function of the number of PCs included in the analysis (left), and as a function of the size of the
bootstrap samples (right). This figure panel was generated using the GO-PCA scripts gopca_plot_bootstrap_pc_matrix.py and
gopca_plot_bootstrap_sample_size_matrix.py.

doi:10.1371/journal.pone.0143196.g003
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with NK cells. As in the analysis of DMAP, all types of T cells were associated with T cell recep-
tor-related signatures (see purple box in Fig 4), and several signatures related to cell division
(see gray boxes in Fig 4 and S7d Fig) were strongly associated with the three lineages corre-
sponding to developmental precursor stages: 1) stem and progenitor cells, 2) pro-B cells, 3)

Fig 4. Application of GO-PCA to 214mouse transcriptomes representing diverse immune and stromal cell types (IGP1). [36] Signatures are labeled
and ordered as in Fig 2. Arrows and boxes indicate associations discussed in the main text. Samples are ordered according to their known lineage identities.

doi:10.1371/journal.pone.0143196.g004
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pre-T cells. Neutrophils and monocytes/macrophages again shared expression of several signa-
tures such as “regulation of phagocytosis”, matching their shared status as phagocytes. How-
ever, another “phagocytosis” signature had markedly lower expression in neutrophils. Two
signatures were uniquely associated with neutrophils: “neutrophil chemotaxis” (see S7a Fig)
and “specific granule”. Specific granules are a prominent feature of neutrophils, ([37] p. 128).
At the same time, neutrophils exhibited extremely low expression of a “cytosolic ribosome” sig-
nature (see S7b Fig), which agreed with the observation that mature neutrophils have few ribo-
somes ([38] p. 66). In summary, GO-PCA generated specific and appropriately labeled
signatures for multiple hematopoietic lineages in mouse, and it was able to do so even in the
presence of an outgroup of samples with no relationship to the rest of the data. A case where a
signature expression profile defied lineage boundaries was that of “V(D)J recombination” (see
S7c Fig), which appeared most strongly expressed in Pro-B cells and Pre-T cells, corresponding
to the cell types in which V(D)J recombination and assembly of B and T cell receptors is
known to occur [39]. The ability of GO-PCA to generate a signature which recovered a specific
biological process shared between a small set of samples from two different lineages provided
additional evidence for its effectiveness in exploring heterogeneous expression data.

In comparing the GO-PCA results from the human (DMAP) and mouse (IGP1) datasets,
the similarities between some signatures in terms of their labels and behaviors across cell types
were striking. For example, for the two datasets, GO-PCA identified 12 and 14 signatures,
respectively, associated with stem cells or partially differentiated cells (gray boxes in Figs 2 and
4). Among those, signatures with labels pertaining to chromosome/chromatid segregation,
kinetochore, cell division and DNA replication were present in both human and mouse. Both
analyses furthermore identified a “T cell receptor complex” signature associated with T cells, as
well as similar B cell-specific signatures (“B cell proliferation” vs. “B cell activation”). Likewise,
signatures related to phagocytosis with specific expression in the monocyte and neutrophil lin-
eages were identified in both analyses. In all these cases, GO-PCA therefore found identical or
highly similar GO terms to be enriched in both datasets. Even if the lineage identities had not
been known in advance, these signatures would have suggested a functional correspondence
between the associated samples from the two species.

Application of GO-PCA to glioblastoma data results in subtype-specific
signatures
After validating the ability of GO-PCA to generate meaningful signatures for different hemato-
poietic lineages in both human and mouse, I aimed to test whether GO-PCA could also facili-
tate exploration of human tumor expression data. To this end, I applied GO-PCA to 479
transcriptomes of glioblastomas from patients diagnosed with primary glioblastoma (GBM;
this dataset is henceforth referred to as GBM). GBMs are highly aggressive brain tumors, and
patients have a median survival time of under 14 months [40]. Application of GO-PCA to the
GBM dataset resulted in the testing of 30 PCs and the generation of 55 signatures. Most signa-
tures again showed strong internal correlations of 0.5 or greater (see S8 Fig; median
value = 0.52), and were robust by bootstrap analysis, with 35 signatures exhibiting a detection
rate of above 50% (when counting related GO terms, see S9a Fig). The large number of PCs
tested seemed to be largely a result of the large sample size (n = 479), as bootstrapping with
50% of the sample size (n = 239) resulted in the testing of an average of only 25 components
(see S9b Fig), which was comparable to the results obtained for the IGP1dataset (see above).
The signature matrix (see Fig 5) indicated the presence of four groups of functionally related
and correlated signatures. The functional categories represented by those groups of signatures
could be broadly described as neuronal, proliferative, immunological, and extracellular matrix
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(ECM)-associated, respectively. Interestingly, all four groups contained signatures that were
generated based on either the first or the second PC, suggesting that their expression patterns
were each related to one of the major axes of variation in the data. To better understand how
these signatures were related to each other, I examined their pair-wise correlations (see S10
Fig). This revealed strong correlations between signatures in the immunological and ECM-
associated groups. In contrast, these two groups were both strongly anti-correlated with the
neuronal group. The proliferative group was not strongly correlated with the other groups,
except for its anti-correlation with the immunological group. In summary, the four main
groups of signatures were neither perfectly correlated with each other, nor completely mutually
exclusive, and the behavior of the other signatures (e.g., “response to type I interferon”) added
additional complexity to this picture.

Surprisingly, three of the four signature groups resembled groups obtained in the previous
analyses of the DMAP and IGP1 datasets, based on a comparison of the GO term names: First,
terms in the proliferation group (e.g., “DNA replication”), were partly identical to the ones
found for stem cells and partially differentiated cells in those analyses. Secondly, terms in the
immunological group (e.g., “inflammatory response”, “regulation of phagocytosis”, and “MHC
Class II protein complex”) were identical to some of those previously generated for neutrophils,
macrophages, and antigen-presenting cells. Lastly, the GO terms from the ECM group were
either identical (“collagen binding”, “angiogenesis”) or very similar (e.g., involving references

Fig 5. Application of GO-PCA to 479 primary glioblastomas (GBM). Shown is the signature matrix generated by GO-PCA as a heat map. Signatures are
labeled and ordered as in S2 Fig, and samples are ordered using hierarchical clustering with correlation distance and average linkage. Colored bars at the
side indicate the four main groups of signatures discussed in the text (blue = neuronal; gray = proliferative; yellow = immunological; red = extracellular matrix
(ECM)-related). This figure (without colored bars) was generated using the GO-PCA script gopca_plot_signature_matrix.py.

doi:10.1371/journal.pone.0143196.g005
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to the extracellular matrix). Therefore, signatures in the immune group could represent differ-
ent types of immune cells infiltrating the tumor in the affected samples, and the (strongly cor-
related) expression of the ECM signatures could represent the presence of stromal tissue.
However, more careful analyses of individual signature genes, as well as validation with exter-
nal methods such as immunohistochemistry staining of tissue sections would be required to
conclusively connect signature expression with admixture of non-malignant cells. Based on the
anti-correlation of proliferative and immunological signatures, it was also unclear if variable
proliferation signature expression was associated with differences in the mitotic activities of
tumors, or whether it was an artifact resulting from the variable presence of infiltrating
immune cells. Since it seems reasonable to assume that these cells exhibit significantly lower
proliferation rates than the tumor cells, a larger proportion of immune cells could “dilute” the
tumor-specific expression of genes in these signatures.

To assess whether the signatures generated by GO-PCA were associated with previously
defined GBM subtypes, I used the classifications of the samples into five subtypes, as provided
by Brennan et al. Four of these subtypes (Classical, Mesenchymal, Proneural, and Neural) were
originally defined based on consensus clustering of gene expression data, and shown to corre-
late with different chromosomal aberrations and mutations [41]. The fifth subtype, which is
rare among patients with primary GBM, was originally defined based on the analysis of DNA
methylation patterns, and shown to exhibit a “GBM CpG island methylator phenotype”
(G-CIMP) that was associated with significantly better disease outcomes [42]. I calculated
median signature expression levels for each subtype, and found four of them to be significantly
associated with at least one signature (see Fig 6). Conversely, most signatures were associated
with one subtype. Specifically, signatures in the immune system and ECM groups were strongly
and significantly associated with the Mesenchymal subtype, and signatures in the proliferation
group were similarly strongly associated with the Proneural subtype. In contrast, the neuronal
group of signatures was strongly expressed in both the Proneural and the G-CIMP subtype.
Furthermore, I found two mitochondrial signatures that were significantly associated with the
Neural subtype, as well as two signatures that were most strongly associated with the G-CIMP
subtype. In combination, the neuronal and proliferation signatures appeared to capture simi-
larities and differences between the Proneural and G-CIMP subtypes: While both exhibited
expression of neuronal genes, they had very different expression profiles for the proliferation
signatures. This appeared to agree with the fact that samples with the G-CIMP subtype were
originally classified as the Proneural subtype, suggesting a certain degree of relatedness [42]. In
summary, these results demonstrated that GO-PCA was able to recover signatures associated
with previously described functional GBM subtypes.

Discussion

GO-PCA as a new method for the exploratory analysis of gene
expression data
The high-dimensional and heterogeneous nature of transcriptomic data often makes it difficult
to interpret the output of generic unsupervised algorithms, and technical artifacts can lead to
the identification of biologically irrelevant clusters or factors [12] that further complicate the
analysis. Methods incorporating prior knowledge address these challenges by focusing on pat-
terns that are more likely to be biologically meaningful, leading to results that are more relevant
and interpretable [13]. Here, I introduced an exploratory method that first performs PCA to
identify all major axes of variation, and then uses GO enrichment analysis as a way to test for
enrichment of functionally related genes driving each PC. While the mHG algorithm has previ-
ously been used for GO enrichment analysis [23], GO-PCA is the first method to perform
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Fig 6. Associations between signatures generated by GO-PCA analysis of the GBM dataset, and five previously defined GBM subtypes [40].
Signatures are shown in the same order as in Fig 5. Left panel: Heat map showing median signature expression levels for each signature in each GBM
subtype. Right panel: Heat map showing significance of association, as determined by two-sided Mann-Whitney U tests (see Methods). Only associations
with p-values significant at the α = 0.05 significance level after Bonferroni correction are shown.

doi:10.1371/journal.pone.0143196.g006
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nonparametric GO enrichment analysis on genes ranked by PC loadings (to the best of my
knowledge).

GO-PCA relies on the notion that GO terms enriched among genes driving particular PCs
represent the biological processes with respect to which samples in the dataset differ from one
another. GO-PCA takes this idea one step further, by using significantly enriched GO terms to
define signatures, consisting of functionally related and strongly correlated genes. I believe that
these signatures exhibit several properties that are desirable in an exploratory setting: First, the
association of signatures with individual PCs provides information about whether they repre-
sent a major source of variation (if they are associated with one of the first PCs), or a more sub-
tle signal (if they are associated with a “higher” PC). Secondly, the number of samples affected
and the relative magnitude of the differences can be judged directly from the signature matrix.
Third, while GO-PCA’s filtering rules prioritize the GO terms with the strongest enrichment,
they sometimes allow for the inclusion of overlapping terms (see Methods). These then offer
“alternative explanations”, which help to reduce the likelihood of drawing wrong conclusions
based on the enrichment of a single term that might not accurately reflect the underlying bio-
logical process. Fourth, the number of genes that contribute to a given signature is relatively
small (typically 5–25, and rarely more than 50). Since the expression value of a signature is fur-
thermore calculated as the unweighted average expression of its genes (after standardization),
this provides transparency in terms of how signature expression values are related to the under-
lying raw data. Fifth, averaging the standardized expression values of several genes imparts the
signature with a certain level of robustness with respect to measurement errors and the exact
set of genes included. Finally, by assessing the correlation between signatures, researchers can
explore how different sources of heterogeneity are related in the data.

The trade-off between bias and interpretability in knowledge-based
methodologies
Prior knowledge can be understood as a bias that is introduced to the unsupervised analysis.
Some methods that incorporate prior knowledge enable control over the strength of this bias
using an explicit tradeoff parameter [13]. GO-PCA is not designed as a “flexible-tradeoff”
method. Its first step, PCA, does not incorporate any prior knowledge, while its second step,
GO enrichment analysis, completely ignores signals that do not follow any known functional
relationships. As a result, GO-PCA usually excludes the measurements of the majority of genes
from its final output. This certainly incurs a risk of overlooking important biological heteroge-
neity in the data due to incomplete GO annotations, and can obscure problems such as batch
effects that researchers might want to known about. It is therefore advisable to not exclusively
rely on annotation-dependent methods such as GO-PCA to analyze data. However, the bene-
fits of GO-PCA’s reliance on prior knowledge are equally clear: Compared to most generic
methods, GO-PCA’s output is much more easily interpretable. Indeed, the raw GO-PCA out-
put for the GBM dataset not only enabled the definition of functional groups of signatures asso-
ciated with previously defined GBM subtypes, but also facilitated an intuitive comparison with
unrelated human (DMAP) and mouse expression data (IGP1).

Application of GO-PCA for the exploratory analysis of tumor expression
data
The analysis of the GBM dataset presented here can only be considered as a starting point for
further applications of GO-PCA to tumor expression data in general, and GBM expression
profiles in particular. As for other cancers, the exploratory analysis of GBM expression data
has relied heavily on generic clustering algorithms (e.g., [41, 43]). GO-PCA could serve to
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address three limitations of those approaches: First, GO-PCA represents a systematic way of
generating functional annotations for gene expression patterns, making a manual annotation
of clusters largely unnecessary. While the main goal of GO-PCA signatures is to facilitate fur-
ther analyses, the output of the method can also serve as a point of reference, since it does not
depend on a multitude of more or less subjective decisions regarding the appropriate number
of clusters, the importance of individual genes in each cluster, their functional interpretation,
etc. Second, the use of GO terms facilitates comparisons across datasets, e.g., with immune cell
data, as presented here. This could be especially relevant in trying to understand the expression
contributions of the tumor microenvironment, e.g. from immune cells [44]. Third, GO-PCA is
not a clustering algorithm, and provides a means for visualizing and interpreting the data with-
out requiring samples to be assigned into discrete groups. In the analysis presented here, signa-
tures from both the proliferation and the extracellular matrix (ECM) group of signatures were
associated with the first principal components, yet they showed little to no correlation. It
would therefore be difficult to decide whether to group samples primarily based on their ECM
or their proliferation expression signature. In the GO-PCA signature matrix, “independent”
signatures (i.e., signatures that exhibit no strong correlation or anti-correlation) are displayed
side-by-side, which enables a multidimensional characterization of individual samples. Clus-
tering can still be performed as a follow-up analysis, but it is not a precondition for obtaining
an interpretable view of the data.

Limitations and future work
In this work, all data analyzed were generated using microarrays. However, I have good reason
to believe that in principle, GO-PCA will also perform well for data generated using different
platforms (e.g., RNA-Seq). GO-PCA relies on two nonparametric methodologies (PCA and
GO enrichment using the XL-mHG test) and therefore avoids strong assumptions about distri-
butional properties of the data. Thus, generally speaking, GO-PCA will be applicable whenever
PCA can be expected to recover meaningful axes of variation. It is important to note though
that microarray and RNA-Seq data exhibit distinct technical biases [45], and might therefore
benefit from different preprocessing procedures before PCA is applied. While GO-PCA was
designed to require as little parameter tuning as possible, a “parameter” that currently requires
adjustment on a case-by-case basis is the number and identity of genes included in the analysis.
In order to avoid biasing the discovery of enriched GO term towards terms generally overrep-
resented among expressed genes, it is advisable to exclude genes thought not to be expressed
from the analysis. In the current work, this was achieved by conservative application of a vari-
ance filter, a functionality which was directly built into GO-PCA. See S1 Text for a more in-
depth discussion of this point and other GO-PCA parameters.

GO-PCA’s performance obviously depends on the quality of the gene annotations available.
While this is true of any annotation-driven approach, it is currently unclear how well currently
available GO annotations perform in capturing biological differences that are different or more
subtle than the ones discovered for the datasets analyzed in this work. This issue has inspired a
natural generalization of GO-PCA, where instead of relying on GO annotations, researchers can
specify an arbitrary list of gene sets, which can represent functional units deemed more relevant
for the dataset analyzed. GO-PCA was designed to accommodate this idea, by reading GO anno-
tations (which can simply be represented by gene sets) from a plain-text file that can easily be
modified to include different gene sets. In this way, “Gene Set-PCA” (GS-PCA), i.e., GO-PCA
with arbitrary gene sets instead of GO annotations, can be applied even more generally.

Currently, the number of PCs tested by PCA is determined using a permutation-based strat-
egy. Future research could be directed at also incorporating an algorithm that determines the
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number of genes significantly associated with each PC. It has been suggested to assess the asso-
ciation between individual variables (genes) and principal components using a “jackstraw”
approach [46]. In combination with an FDR criterion [47], a jackstraw-like approach could
allow GO-PCA to adjust the XL-mHG L parameter in a “smart” way for each PC. This could
further improve GO-PCA’s statistical power in generating signatures for subtle signals of
heterogeneity.

On an Intel Xeon E5620 CPU, it took GO-PCA between 57 and 126 seconds, and roughly 1
GB of memory, to generate the signatures for the three datasets analyzed here. This relatively
short analysis time allowed bootstrap analysis to be performed without any parallelization.
However, since the GO enrichment analysis for each PC is performed independently, paralleli-
zation could provide significant runtime improvements (at the expense of a larger memory
footprint). In conclusion, GO-PCA represents a powerful and versatile method for the explora-
tion of gene expression data, and demonstrates the potential of unsupervised algorithms that
incorporate prior knowledge.

Methods

Obtaining a list of all protein-coding genes for human and mouse
Human and mouse Ensembl 79 genome annotations (.gtf files) were downloaded from ftp://
ftp.ensembl.org and filtered for entries with feature name “gene”, and gene_biotype attribute
“protein_coding” or “polymorphic_pseudogene”. The set of all associated “gene_name” attri-
bute values was taken as the list of all protein-coding genes, yielding 20,114 genes. This resulted
in a list of 19,742 genes for human, and a list of 22,007 genes for mouse.

Obtaining the GO ontology and GO term-gene associations for human
and mouse
The Gene Ontology structure (go-basic.obo) was downloaded from http://geneontology.org,
with version “releases/2015-05-25” (http://viewvc.geneontology.org/viewvc/GO-SVN/
ontology-releases/2015-05-25/go-basic.obo?revision=26059). UniProt Gene Ontology Annota-
tion gene association files for human and mouse were downloaded from ftp://ftp.ebi.ac.uk/
pub/databases/GO/goa/, both with versions generated on 2015-05-26. All annotations were
propagated up the GO graph based on the “is_a” relationships (i.e., a gene that is annotated
with a particular term was also considered annotated with all parent terms, since those repre-
sent more general categories). For GO terms in the “cellular component” domain, “part_of”
relationships were treated the same as “is_a” relationships. Only annotations with evidence
codes IDA, IGI, IMP, ISO, ISS, IC, NAS, or TAS were considered, on account of them represent-
ing manually curated annotations. This resulted in the exclusion of 55.4% and 32.5% of all GO
annotations for human and mouse, respectively. I further removed GO terms that were either
too broad (defined as having more than 200 genes annotated with them), or too specific
(defined as having less than 5 genes annotated with them). Finally, I identified all instances
where two or more GO terms had identical sets of genes annotated with them. For example,
the term “organellar large ribosomal subunit” (GO:0000315) had the same 15 genes annotated
with it as its child term, “mitochondrial large ribosomal subunit” (GO:0005762). In cases like
this, where a parent term had identical sets of annotated genes as the child term, I removed the
parent term, resulting in the exclusion of 582 and 555 terms for human and mouse, respec-
tively. This resulted in a final set of 6,675 and 7,503 terms for human and mouse, respectively,
which were neither too broad nor too specific, and not redundant with any related term.
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Principal component analysis (PCA)
PCA was performed using the decomposition.PCA module from the scikit-learn Python pack-
age [48], version 0.16.1 (http://scikit-learn.org).

Determining the number of principal components to test
Since GO-PCA performs GO enrichment analysis on individual principal components (PCs),
it is important to determine the appropriate number of PCs to test in this way. Intuitively, data-
sets with smaller sample sizes can be expected to exhibit fewer non-trivial PCs, i.e., PCs that do
not mostly represent noise. Since PCs are sorted by the amount of variance explained (in
decreasing order), we will generally retain the first D PCs. GO-PCA relies on a permutation
test to determine D: First, the expression values for each gene in the original expression matrix
are permuted (independently for each gene). Then, PCA is applied to this randomized matrix,
and the fraction of variance explained by the first PC is calculated (i.e., the normalized value of
the largest eigenvalue of the covariance matrix). This procedure is repeated 15 times. Then, the
mean and sample standard deviation of the 15 values obtained can be used to compute z-scores
for the fraction of variance explained for each PC of the actual (non-permuted) expression
matrix. In the analyses presented here, GO-PCA was configured to test any PC with a z-score
of 2.0 or larger. This approach was motivated by a recent single-cell expression study that
showed that the distribution of eigenvalues from permuted expression matrices was similar to
the known asymptotic Marchenko–Pastur distribution for eigenvalues of random matrices (see
Fig 5E in [4]). It also represents a slightly more conservative version of a test that has been
shown to produce relatively accurate estimates of the dimensionality of various simulated data-
sets (see “Avg-Rnd” in [49]).

Nonparametric GO enrichment analysis using the minimum
hypergeometric (mHG) test
Given a ranked list of protein-coding genes (where the ranking was defined by the loadings
associated with a particular principal component), I tested for GO enrichment using a Cython
[50] (http://cython.org) implementation of the minimum hypergeometric (mHG) statistic [23,
25]. The mHG statistic calculates a hypergeometric enrichment p-value (equivalent to Fisher’s
exact test) for all N possible cutoffs in a ranked list of N binary variables, and then selects the
cutoff associated with the best (lowest) p-value. Due to the many tests performed, this p-value
cannot be taken at face value and is treated instead as an enrichment statistic (note that smaller
values indicate stronger enrichment). I refer to this value as smHG. The mHG test then employs
a dynamic programming algorithm [25] to calculate the probability pmHG of obtaining a statis-
tic as small as or smaller than smHG, when given a random permutation of the ranked list. This
algorithm has a time complexity ofOðNKÞ (where K is the number of variables with value
TRUE, or “1”), as opposed to the computationally infeasibleOðN!Þ time complexity that would
be required for explicitly enumerating all possible permutations. By definition, pmHG is the
exact p-value associated with smHG.

I furthermore extended the mHG test by introducing two parameters, X, and L, and modi-
fied the dynamic programming algorithm used to calculate the mHG p-value pmHG to take
these new parameters into account [24]. These parameters enable some control over which cut-
offs are tested for enrichment, based on application-specific intuitions and requirements. The
first parameter, X, ignores all cutoffs at which less than X positive (i.e., 1-valued) variables have
been encountered. This criterion is designed to avoid situations where enrichment of only a
very small subsets of all positive variables at the top of the ranked list is reported as significant.
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In GO-PCA, I adjust this parameter for each GO term, so that cutoffs which have a fraction of
less than Xfrac (or less than Xmin, whichever number is larger) of the genes annotated with that
term above them are not tested for enrichment. This ensures that enrichment is based on a sig-
nificant fraction of all genes annotated with the GO term, and serves to increase the likelihood
of the signature labels representing the true underlying biological processes. In the analyses
presented here, I used Xfrac = 0.25 and Xmin = 5. As an example of the effect of these parame-
ters, suppose that 30 genes in the dataset are annotated with the GO term “regulation of cell
cycle”. Then the first cutoff to be tested for enrichment needs to have at least d0.25�30e = 8
genes annotated with with this GO term located above it. The second parameter, L, limits the
cutoffs tested to the first L ranks (L< N). This is designed to avoid cases where very weak
enrichment (e.g. 1.5-fold) is reported as highly significant, solely because it is observed at a
very low cutoff. For example, in a list of 10,000 genes, testing cutoffs of 5,000 and lower often
makes no sense, as any biologically meaningful enrichment is expected to result from gene
ranked much higher in the list. In my experience, any enrichment that can only be detected at
such a low cutoff is likely the result of extrinsic biases and does not constitute a biologically
meaningful signal. (This effect was also recognized as an important problem in the develop-
ment of GSEA [14]). In GO-PCA, I use L� N/8, due to the “two-sided” nature of the test (for a
“one-sided” test, I suggest using L� N/4).

Like the mHG test statistic, the XL-mHG statistic is calculated as the minimum hypergeo-
metric p-value over a set of cutoffs (however, this set is restricted by X and L). Therefore, each
individual XL-mHG test is associated with a cutoff k� at which this minimal p-value is
achieved. For each GO term found to be significantly enriched, I define the set of genes “driv-
ing” the enrichment as those annotated with the GO term and located above the cutoff k� in
the ranked list of genes.

GO-PCA Part I: Finding and filtering of GO terms significantly enriched
among genes ranked by their principal component loadings
The “backbone” of GO-PCA consists of a simple algorithm: Step 1) Determine the number of
principal components to test D using the permutation test described above. Step 2) Perform
PCA on the gene expression matrix (treating the genes as variables and the samples as observa-
tions), and extract the gene loadings associated with the first D principal components (PCs).
Step 3) For each PC, rank genes by their loadings, in both descending and ascending order—
this produces two gene rankings. Genes positioned at or near the top of either ranking contrib-
ute strongly to this PC, but in opposite directions: For a particular sample, strong expression of
genes with very positive loadings result in a large PC score, while high expression of genes with
very negative loadings result in a small PC score. Step 4) For each ranking, determine enriched
GO terms using the XL-mHG test (see above), and apply a Bonferroni-corrected p-value
threshold. For both human and mouse, I obtainedm� 10,000 GO terms (conservatively
rounded up; see above). Therefore, for each PC, GO-PCA performs 2�m� 20,000 tests. For a
significance threshold of α = 0.05, the Bonferroni-corrected threshold would therefore be αB =
α/20,000 = 2.5�10−6. GO-PCA uses an even more conservative threshold of αB = 1�10−6. How-
ever, GO-PCA does not perform any adjustment for the number of PCs tested. I have found
that, maybe due to the conservative nature of αB, this does not appear to result in a large num-
ber of obviously meaningless signatures being generated, at least for the number of PCs tested
here. Not adjusting αB by the number of PCs also has the advantage that the same signatures
are generated by the first principal components when GO-PCA is re-run with D0 6¼ D. Step 5)
Generate a signature based on each enriched GO term (see below).
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Along with this “backbone”, GO-PCA also filters the enriched GO terms to mitigate redun-
dancies that result in part from the nested structure of the gene ontology: The set of genes
annotated with a “child” GO term (representing a more specific functional category) often
overlaps substantially with the set of genes annotated with its parent term, since the parent
term “inherits” the annotations of all of its children. Therefore, a “local” filter is applied inde-
pendently for each PC and each gene ranking (i.e., it is applied separately to the GO terms
found to be enriched in each ranking). The key intuition that I used to devise the local filter is
that among all the GO terms found to be significantly enriched for a specific PC and ranking,
some GO terms are more strongly enriched than others, and those GO terms likely provide a
more accurate description of the biological process underlying the observed expression pattern.
To quantify the strength of enrichment for each GO term found to be significantly enriched
(i.e., the effect size associated with the enrichment, as opposed to its significance), I developed
an enrichment score for the XL-mHG test [24]. GO terms are ranked by this enrichment score
(in descending order), and GO terms with lower scores are tested for whether their enrichment
is still significant enriched (as judged by the XL-mHG p-value) when the genes driving the
enrichment of the more enriched GO terms are removed from the analysis. Each signature that
failed this test was considered redundant and removed from the list of enriched GO terms.
More precisely, I applied the following filtering procedure: Step 1) Rank enriched GO terms by
their fold enrichment (in descending order), and initialize a set of “seen” genes with the genes
in the signature derived from the first GO term. Step 2) Remove all “seen” genes from the data
and re-test the enrichment of the second GO term using the XL-mHG algorithm. If the test is
still significant (using the same p-value threshold αB as before), keep the signature derived
from the second GO term and add its genes to the set of “seen” genes. If the test is not signifi-
cant anymore, discard the signature associated with the second GO term. Step 3) Repeat step 2
for the third GO term, then the fourth, and so on, until all enriched GO terms have been tested
for redundancy. In summary, the local filter removes redundant GO terms resulting from the
nested GO structure and the frequent association of genes with multiple terms. However, when
presented with “sufficient evidence”, it allows GO terms from the same PC to share a signifi-
cant number of genes.

While the previously described filter helps avoid redundancies within each principal com-
ponent, I also found that strong biological effects (e.g., differences in the expression of cell
cycle genes) are sometimes associated with multiple PCs. To mitigate these cross-PC redun-
dancies, I also applied a second “global” filter that removes a signature generated by a PC if its
associated GO term (or one of its parents or children) was previously used to generate a signa-
ture for another PC. (Note that this implies that enrichments associated with earlier PCs are
prioritized over enrichments associated with later PCs, motivated by the fact that earlier PCs
capture larger fraction of the total variance).

GO-PCA Part II: Using significantly enriched and filtered GO terms to
generate signatures
For each significantly enriched GO term that passes both the local and the global filter,
GO-PCA generates a single signature using the following two-step procedure: First, all genes
driving the enrichment (as defined above) are identified, and their average standardized
expression is computed. Then the X genes whose expression is most strongly correlated with
this average expression profile are identified (where X is adjusted for each GO term, see above),
and their average standardized expression profile is used as a signature “seed”. Then, any of the
remaining genes is added if their correlation with the seed is at least R (by default, R = 0.5).
Compared to no filtering (i.e., R = −1.0), this results in signatures with more strongly correlated
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genes (see S11 Fig). The signature expression profile is then calculated as the average standard-
ized expression of all genes in the signature.

Analysis of human hematopoietic expression data (DMAP)
I downloaded the hematopoietic dataset generated by Novershtern et al. [26], including sample
annotations, from http://www.broadinstitute.org/dmap/home. This data is fully processed, and
contains expression levels for 8,968 genes that were expressed in the majority of samples from
at least one cell type (see [26] for details). Each row in the data contains two gene identifiers:
One Entrez ID and one gene symbol. Since a relatively large number of gene symbols (1,486, or
approx. 17%) did not match the name of any protein-coding gene in my list (see above), I
instead mapped the Entrez ID to gene symbols myself, using data from NCBI’s gene2accession
file (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2accession.gz, downloaded on 5/26/2015);
Column 2 of that file contains Entrez IDs, and column 16 the corresponding gene symbols.
This resulted in the exclusion of only 440 rows (4.9%), either because the Entrez ID was not
found in the gene2accession file, or because the gene symbol the Entrez ID mapped to was not
contained in my list of protein-coding genes. This resulted in an expression matrix containing
8,528 genes. For visualization and analysis, I used the annotations provided in the file DMap
sample info.022011.xls to sort samples based on lineage (column 6). For the XL-mHG algo-
rithm (see above), I set L = 1,000 and used default values otherwise. Signatures were sorted
using the leaf ordering of a dendrogram generated by hierarchical clustering with Pearson cor-
relation as the distance metric and using average linkage, as implemented in scipy’s clustering.
hierarchy.linkage function.

Analysis of mouse immunological expression data (IGP1)
Raw data for 681 samples comprising the Phase 1 dataset from the Immunological Genome
Project (IGP) Consortium [36] were downloaded from NCBI GEO, acession number
GSE15907 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15907; all data were gen-
erated using Affymetrix GeneChip Mouse Gene 1.0 ST microarrays.) I filtered for samples that
were contained in Supplementary Table 1 of [36] (henceforth referred to as “IGP Annotation
Table”), which resulted in a list of 650 samples. Raw data (CEL files) for these samples were
processed using the rma function from the oligo R package [51], with the normalization
parameter set to TRUE, resulting in the output being quantile-normalized. Probset IDs were
mapped to gene symbols using mappings provided in the mogene10sttranscriptcluster.db R
package, which relied on Entrez data from 3/17/2015, according to the package documentation.
Following the methodology described in [36], in cases where multiple probesets mapped to the
same gene symbol, the probset with highest average expression was used. (However, this
affected less than 5% of genes for which data was available). The final number of mouse pro-
tein-coding genes which had at least one probeset mapped to them was 18,889 (85.8%). Repli-
cates were grouped together according to their value in the “Sample class” column from the
IGP Annotation Table, resulting in 214 groups containing between 2 and 7 replicates. For each
group, the median expression values of all genes were calculated, resulting in an expression
matrix with 214 columns, with each column corresponding to one “sample class”, referred to
as “cell type” in this paper. Importantly, the panel also contained data for 10 stromal cell types,
which represent an outgroup of non-hematopoietic cells unrelated to the other cell types in the
data. Note that Jojic et al. sometimes obtained the same cell type from multiples tissues, e.g.,
CD+ dendritic cells from spleen and lymph nodes. In the analysis presented here, these were
treated as separate “cell types”. Therefore, the number of “unique” cell types in the data is
lower than 214.
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As a validation of my processing pipeline, I reproduced Fig 2 from [36] (see S12 Fig). I then
filtered the expression matrix to retain only the 8,000 most variable genes, in order to avoid
biases resulting from the fact that only a subset of genes in the human genome are likely
expressed in immune cells (see S1 Text) for further discussion of this point). GO-PCA was
then run with the default parameter settings. Signatures were sorted using hierarchical cluster-
ing, as in the analysis of DMAP. For visualization purposes, samples were grouped according to
their value in the “Sample group 2” column from the IGP Annotation Table. These values
define what is referred to as “lineages” in this paper.

Bootstrap analysis for assessing signature robustness
A bootstrap version of GO-PCA was implemented as part of the GO-PCA software (in the script
bootstrap-go-pca.py). Using this script, 50 datasets were sampled with replacement from the orig-
inal data, and GO-PCA was applied independently to each dataset (using the same parameters as
in the analysis of the original dataset). The result was then used to visualize signature robustness,
either as a summary statistic (see e.g., Fig 3a) or for each signature separately (see e.g., Fig 3b).

Analysis of human glioblastoma expression data (GBM)
I curated a set of 479 glioblastoma transcriptomes from TCGA based on clinical annotation
data from Supplementary Table 7 (“Clinical and Molecular Subclass Data Table”) in [40]. I
first excluded patients that did not present with primary GBM (i.e., I excluded patients if they
did not have “NO” in Column 2, “Secondary or Recurrant”), retaining 516 patients. I then
downloaded annotation data for all GBM datasets in the TCGA data freeze from Oct 10, 2012
(data.freeze.txt from https://tcga-data.nci.nih.gov/docs/publications/gbm_2013/), and filtered
for rows with column 5/“DATATYPE” equal to “Expression-Gene” and column 8/“DATA_-
LEVEL” equal to “3”). I then used these additional annotations to exclude samples that were
annotated with any of the following terms (column 13, “ANNOTATION_CATEGORIES”):
“item in special subset”, “normal class but appears diseased”, “qualified in error”. This resulted
in the exclusion of 37 samples, and a final dataset of 479 samples. The expression data for these
patients was extracted from the “Level 3” expression dataset (GBM.Gene Expression.Level 3.tar
from https://tcga-data.nci.nih.gov/docs/publications/gbm_2013/). Of the 12,042 genes con-
tained in these data, 1,257 (10.4%) were not contained in my list of human protein-coding
genes (see above), and therefore excluded. The resulting matrix containing expression for
10,785 genes was quantile-normalized [52]. To obtain a set of expressed genes, I only retrained
the top 6,000 most variable genes, removing 11.3% of the total variance in the data (see S1 Text
for further discussion). I then ran GO-PCA with default parameters.

Testing for association between GBMGO-PCA signatures and known
GBM subtypes
To test whether signatures were associated with individual GBM subtypes (see Fig 6), I used
the sample classifications provided in Supplementary Table 7 from [40]. For each signature, I
compared signature expression in the two subtypes with the highest and second-highest
median signature expression using a two-sided Mann-Whitney U test.

Software
GO-PCA is free and open-source software and can be found at https://github.com/flo-
compbio/gopca. Documentation is available at http://gopca.readthedocs.org. At the time of
writing, this includes installation instructions for both Ubuntu Linux and Windows, and a
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demonstration of how to apply GO-PCA to the publicly available DMAP dataset analyzed in
this paper.

The main analysis script is go-pca.py, and the overall workflow is outlined in S1 Fig. A dis-
cussion of important GO-PCA parameters is provided in S1 Text. GO-PCA provides various
visualization and data processing options that were used in the generation of most of the fig-
ures in this manuscript (as indicated in figure legends; see also S2 Text for two additional visu-
alization types available). Interested researchers are welcome to request features or directly
contribute code through GitHub.

Supporting Information
S1 Fig. Overview of the GO-PCA workflow. a In a pre-processing step, a GO annotation file,
containing a list of selected GO terms and genes annotated with them, is generated. b GO-PCA
is run and the result is stored in Python’s binary “pickle” format. c Analysis scripts take the
result file as input, and serve to process and visualize the results in various ways.
(TIF)

S2 Fig. Application of GO-PCA to 211 human transcriptomes representing diverse
hematopoietic lineages (DMAP). Shown is a heat map of the signature matrix generated by
GO-PCA. Signatures are ordered using hierarchical clustering with correlation distance and
average linkage. Samples are ordered using hierarchical clustering with Euclidean distance and
average linkage. This figure was generated using the GO-PCA script gopca_plot_signature_-
matrix.py.
(TIF)

S3 Fig. Homogeneity of GO-PCA signatures generated for DMAP. Shown is a box plot of all
pair-wise correlation coefficients among the genes within each signature. This figure was gen-
erated using the GO-PCA script gopca_plot_within_signature_correlations.py.
(TIF)

S4 Fig. Detailed view of selected GO-PCA signatures generated for DMAP. a—c For each sig-
nature, the signature expression profile is shown at the top, and the expression profiles of the
individual genes in the signature are shown below. Genes are sorted using hierarchical cluster-
ing with correlation distance and average linkage. These figures were generated using the
GO-PCA script gopca_plot_signature.py.
(TIF)

S5 Fig. Application of GO-PCA to 214 mouse transcriptomes representing diverse hemato-
poietic lineages (IGP1). Shown is a heat map of the signature matrix generated by GO-PCA,
as in S2 Fig.
(TIF)

S6 Fig. Diagnostics for the application of GO-PCA to the IGP1 dataset. Signature homoge-
neity, as in S3 Fig. b Signature robustness, as in Fig 3a. c Simulation of smaller sample sizes, as
in Fig 3b.
(TIF)

S7 Fig. Detailed view of selected GO-PCA signatures generated for IGP1. Plots as in S4 Fig.
(TIF)

S8 Fig. Homogeneity of GO-PCA signatures generated for DMAP. Shown is a box plot of all
pair-wise correlation coefficients among the genes within each signature, as in S3 Fig.
(TIF)
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S9 Fig. Analysis of the robustness of GBM GO-PCA signatures using bootstrapping. a-c
Overall detection rates, dependency on sample size, and signature-specific robustness analysis,
as in Fig 3.
(TIF)

S10 Fig. Correlation structure of GO-PCA signatures generated for the GBM dataset. Shown
is a heat map of pairwise signature correlation coefficients, with signatures ordered as in Fig 5.
Colored boxes indicate the groups of signatures indicated by bars of the same color in Fig 5
(blue = neuronal, gray = proliferative, yellow = immunological, red = extracellular matrix
(ECM)-related).
(TIF)

S11 Fig. The effect of filtering signature genes by their correlation with a signature “seed”.
a Shown is a scatterplot comparing the median within-signature correlation values of each
DMAP signature with (R = 0.5) and without (R = −1.0) filtering. The point marked in red corre-
sponds to the “autophagy” signature. b,c Signature plots of the “autophagy” signature with (c)
and without (b) filtering.
(TIF)

S12 Fig. Correlation between cell types from the IGP11 dataset. Shown is a heat map of
pairwise sample correlation coefficients (calculated after centering each gene by substracting its
median expression value), with cell types ordered by their lineage identities, as in Fig 2 from
[36]. Black boxes indicate lineage groupings.
(TIF)

S1 Text. A discussion of key GO-PCA parameters.
(PDF)

S2 Text. Additional ways of visualizing GO-PCA results.
(PDF)

S3 Text. The potential importance of ubiquitin ligases in reticulocyte development.
(PDF)

S1 File. GO-PCA signatures generated for the DMAP dataset.
(XLSX)

S2 File. GO-PCA signatures generated for the IGP1 dataset.
(XLSX)

S3 File. GO-PCA signatures generated for the GBM dataset.
(XLSX)

Acknowledgments
I would like to thank Dr. Sandeep Dave for his support. I would further like to thank Dr. Anu-
pama Reddy and Dr. Jyotishka Datta for helpful discussions, as well as Dr. Anupama Reddy
and Dr. Alexander Hartemink for their feedback on early drafts of the manuscript. I would like
to thank Dr. Allon Klein for discussing different approaches for determining the number of
non-trivial principal components with me, which led me to incorporate this feature into GO-
PCA. I would also like to thank Dr. Meromit Singer for her idea of visualizing the relationships
between GO terms and principal components (see S2 Text). I would further like to thank the
anonymous reviewer of this work for carefully scrutinizing the manuscript, and for providing
many helpful comments and suggestions. In particular, the reviewer pointed out the potential

GO-PCA: Exploring Gene Expression Data Using Prior Knowledge

PLOS ONE | DOI:10.1371/journal.pone.0143196 November 17, 2015 23 / 26

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143196.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143196.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143196.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143196.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143196.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143196.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143196.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143196.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143196.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143196.s018


interpretation of the variable expression of the proliferative signatures in the GBM dataset as a
dilution effect, suggested visualizing the pairwise correlations of genes within signatures as a
boxplot, and proposed the filtering of signature genes to reduce within-signature heterogeneity.
Last, but not least, I would like to thank Dr. Zohar Yakhini for introducing me to the mHG
algorithm.

Author Contributions
Conceived and designed the experiments: FW. Performed the experiments: FW. Analyzed the
data: FW. Contributed reagents/materials/analysis tools: FW. Wrote the paper: FW.

References
1. Junker JP, van Oudenaarden A. Every cell is special: genome-wide studies add a new dimension to

single-cell biology. Cell. 2014 Mar; 157(1):8–11. doi: 10.1016/j.cell.2014.02.010 PMID: 24679522

2. Hashimshony T, Feder M, Levin M, Hall BK, Yanai I. Spatiotemporal transcriptomics reveals the evolu-
tionary history of the endoderm germ layer. Nature. 2015 Mar; 519(7542):219–222. doi: 10.1038/
nature13996 PMID: 25487147

3. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq
highlights intratumoral heterogeneity in primary glioblastoma. Science (New York, NY). 2014 Jun; 344
(6190):1396–1401. doi: 10.1126/science.1254257

4. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell
transcriptomics applied to embryonic stem cells; 161(5):1187–1201.

5. Alter O, Brown PO, Botstein D. Singular value decomposition for genome-wide expression data pro-
cessing and modeling. Proceedings of the National Academy of Sciences of the United States of Amer-
ica. 2000 Aug; 97(18):10101–10106. doi: 10.1073/pnas.97.18.10101 PMID: 10963673

6. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expres-
sion patterns. Proceedings of the National Academy of Sciences of the United States of America. 1998
Dec; 95(25):14863–14868. doi: 10.1073/pnas.95.25.14863 PMID: 9843981

7. Monti S, Tamayo P, Mesirov J, Golub T. Consensus Clustering: A Resampling-Based Method for Class
Discovery and Visualization of Gene Expression Microarray Data. Machine Learning. 2003; 52(1–
2):91–118. doi: 10.1023/A:1023949509487

8. Devarajan K. Nonnegative matrix factorization: an analytical and interpretive tool in computational biol-
ogy. PLoS computational biology. 2008; 4(7):e1000029. doi: 10.1371/journal.pcbi.1000029 PMID:
18654623

9. McLachlan GJ, Bean RW, Peel D. A mixture model-based approach to the clustering of microarray
expression data. Bioinformatics (Oxford, England). 2002 Mar; 18(3):413–422. doi: 10.1093/
bioinformatics/18.3.413

10. Perou CM, SÃ¸rlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human
breast tumours. Nature. 2000 Aug; 406(6797):747–752. doi: 10.1038/35021093 PMID: 10963602

11. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large
B-cell lymphoma identified by gene expression profiling. Nature. 2000 Feb; 403(6769):503–511. doi:
10.1038/35000501 PMID: 10676951

12. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, JohnsonWE, et al. Tackling the widespread
and critical impact of batch effects in high-throughput data. Nature Reviews Genetics. 2010 Oct; 11
(10):733–739. doi: 10.1038/nrg2825 PMID: 20838408

13. Reshetova P, Smilde AK, van Kampen AHC, Westerhuis JA. Use of prior knowledge for the analysis of
high-throughput transcriptomics and metabolomics data. BMC systems biology. 2014; 8 Suppl 2:S2.
doi: 10.1186/1752-0509-8-S2-S2 PMID: 25033193

14. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings
of the National Academy of Sciences of the United States of America. 2005 Oct; 102(43):15545–
15550. doi: 10.1073/pnas.0506580102 PMID: 16199517

15. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, et al. Module networks: identifying regula-
tory modules and their condition-specific regulators from gene expression data. Nature Genetics. 2003
Jun; 34(2):166–176. doi: 10.1038/ng1165 PMID: 12740579

GO-PCA: Exploring Gene Expression Data Using Prior Knowledge

PLOS ONE | DOI:10.1371/journal.pone.0143196 November 17, 2015 24 / 26

http://dx.doi.org/10.1016/j.cell.2014.02.010
http://www.ncbi.nlm.nih.gov/pubmed/24679522
http://dx.doi.org/10.1038/nature13996
http://dx.doi.org/10.1038/nature13996
http://www.ncbi.nlm.nih.gov/pubmed/25487147
http://dx.doi.org/10.1126/science.1254257
http://dx.doi.org/10.1073/pnas.97.18.10101
http://www.ncbi.nlm.nih.gov/pubmed/10963673
http://dx.doi.org/10.1073/pnas.95.25.14863
http://www.ncbi.nlm.nih.gov/pubmed/9843981
http://dx.doi.org/10.1023/A:1023949509487
http://dx.doi.org/10.1371/journal.pcbi.1000029
http://www.ncbi.nlm.nih.gov/pubmed/18654623
http://dx.doi.org/10.1093/bioinformatics/18.3.413
http://dx.doi.org/10.1093/bioinformatics/18.3.413
http://dx.doi.org/10.1038/35021093
http://www.ncbi.nlm.nih.gov/pubmed/10963602
http://dx.doi.org/10.1038/35000501
http://www.ncbi.nlm.nih.gov/pubmed/10676951
http://dx.doi.org/10.1038/nrg2825
http://www.ncbi.nlm.nih.gov/pubmed/20838408
http://dx.doi.org/10.1186/1752-0509-8-S2-S2
http://www.ncbi.nlm.nih.gov/pubmed/25033193
http://dx.doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pubmed/16199517
http://dx.doi.org/10.1038/ng1165
http://www.ncbi.nlm.nih.gov/pubmed/12740579


16. Cheng J, Cline M, Martin J, Finkelstein D, Awad T, Kulp D, et al. A knowledge-based clustering algo-
rithm driven by Gene Ontology. Journal of Biopharmaceutical Statistics. 2004 Aug; 14(3):687–700. doi:
10.1081/BIP-200025659 PMID: 15468759

17. Kustra R, Zagdanski A. Incorporating Gene Ontology in Clustering Gene Expression Data. In: Proceed-
ings of the 19th IEEE Symposium on Computer-Based Medical Systems. CBMS’06. Washington, DC,
USA: IEEE Computer Society; 2006. p. 555–563. Available from: http://dx.doi.org/10.1109/CBMS.
2006.100.

18. Huang D, PanW. Incorporating biological knowledge into distance-based clustering analysis of micro-
array gene expression data. Bioinformatics (Oxford, England). 2006 May; 22(10):1259–1268. doi: 10.
1093/bioinformatics/btl065

19. Tseng GC. Penalized and weighted K-means for clustering with scattered objects and prior information
in high-throughput biological data. Bioinformatics (Oxford, England). 2007 Sep; 23(17):2247–2255. doi:
10.1093/bioinformatics/btm320

20. Shen Y, SunW, Li KC. Dynamically weighted clustering with noise set. Bioinformatics (Oxford,
England). 2010 Feb; 26(3):341–347. doi: 10.1093/bioinformatics/btp671

21. PanW. Incorporating gene functions as priors in model-based clustering of microarray gene expression
data. Bioinformatics (Oxford, England). 2006 Apr; 22(7):795–801. doi: 10.1093/bioinformatics/btl011

22. Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin MJ, et al. The GOA data-
base: Gene Ontology annotation updates for 2015. Nucleic Acids Research. 2015 Jan; 43(Database
issue):D1057–1063. doi: 10.1093/nar/gku1113 PMID: 25378336

23. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of
enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009; 10:48. Available from: http://www.
ncbi.nlm.nih.gov/pubmed/19192299. doi: 10.1186/1471-2105-10-48 PMID: 19192299

24. Wagner F. The XL-mHG Test For Enrichment: A Technical Report;Available from: http://arxiv.org/abs/
1507.07905.

25. Eden E, Lipson D, Yogev S, Yakhini Z. Discovering motifs in ranked lists of DNA sequences. PLoS
computational biology. 2007 Mar; 3(3):e39. doi: 10.1371/journal.pcbi.0030039 PMID: 17381235

26. Novershtern N, Subramanian A, Lawton LN, Mak RH, HainingWN, McConkey ME, et al. Densely inter-
connected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011 Jan; 144
(2):296–309. doi: 10.1016/j.cell.2011.01.004 PMID: 21241896

27. Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiological
Reviews. 2000 Apr; 80(2):681–715. PMID: 10747205

28. Goldman SJ, Taylor R, Zhang Y, Jin S. Autophagy and the degradation of mitochondria. Mitochondrion.
2010 Jun; 10(4):309–315. doi: 10.1016/j.mito.2010.01.005 PMID: 20083234

29. Machlus KR, Italiano JE. The incredible journey: Frommegakaryocyte development to platelet forma-
tion. The Journal of Cell Biology. 2013 Jun; 201(6):785–796. doi: 10.1083/jcb.201304054 PMID:
23751492

30. Silva MT, Correia-Neves M. Neutrophils and macrophages: the main partners of phagocyte cell sys-
tems. Frontiers in Immunology. 2012; 3:174. doi: 10.3389/fimmu.2012.00174 PMID: 22783254

31. Dale DC, Boxer L, Liles WC. The phagocytes: neutrophils and monocytes. Blood. 2008 Aug; 112
(4):935–945. doi: 10.1182/blood-2007-12-077917 PMID: 18684880

32. Doan T, Melvold R, Viselli S, Valtenbaugh C. Immunology. Lippincott Williams &Wilkins; 2012.

33. Sabroe I, Dower SK, Whyte MKB. The role of Toll-like receptors in the regulation of neutrophil migra-
tion, activation, and apoptosis. Clinical Infectious Diseases: An Official Publication of the Infectious Dis-
eases Society of America. 2005 Nov; 41 Suppl 7:S421–426. doi: 10.1086/431992

34. O’Reilly D, Dienstbier M, Cowley SA, Vazquez P, Drozdz M, Taylor S, et al. Differentially expressed,
variant U1 snRNAs regulate gene expression in human cells; 23(2):281–291.

35. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. CRC Press; 1994.

36. Jojic V, Shay T, Sylvia K, Zuk O, Sun X, Kang J, et al. Identification of transcriptional regulators in the
mouse immune system. Nature Immunology. 2013 Jun; 14(6):633–643. doi: 10.1038/ni.2587 PMID:
23624555

37. Greer JP, Arber DA, Glader B, List AF, Means RT, Paraskevas F, et al. Wintrobe’s Clinical Hematology.
Lippincott Williams &Wilkins;.

38. Lommel ATLV. From Cells to Organs: A Histology Textbook and Atlas. Springer Science & Business
Media;.

39. Rothenberg EV. Transcriptional control of early T and B cell developmental choices; 32:283–321.

GO-PCA: Exploring Gene Expression Data Using Prior Knowledge

PLOS ONE | DOI:10.1371/journal.pone.0143196 November 17, 2015 25 / 26

http://dx.doi.org/10.1081/BIP-200025659
http://www.ncbi.nlm.nih.gov/pubmed/15468759
http://dx.doi.org/10.1109/CBMS.2006.100
http://dx.doi.org/10.1109/CBMS.2006.100
http://dx.doi.org/10.1093/bioinformatics/btl065
http://dx.doi.org/10.1093/bioinformatics/btl065
http://dx.doi.org/10.1093/bioinformatics/btm320
http://dx.doi.org/10.1093/bioinformatics/btp671
http://dx.doi.org/10.1093/bioinformatics/btl011
http://dx.doi.org/10.1093/nar/gku1113
http://www.ncbi.nlm.nih.gov/pubmed/25378336
http://www.ncbi.nlm.nih.gov/pubmed/19192299
http://www.ncbi.nlm.nih.gov/pubmed/19192299
http://dx.doi.org/10.1186/1471-2105-10-48
http://www.ncbi.nlm.nih.gov/pubmed/19192299
http://arxiv.org/abs/1507.07905
http://arxiv.org/abs/1507.07905
http://dx.doi.org/10.1371/journal.pcbi.0030039
http://www.ncbi.nlm.nih.gov/pubmed/17381235
http://dx.doi.org/10.1016/j.cell.2011.01.004
http://www.ncbi.nlm.nih.gov/pubmed/21241896
http://www.ncbi.nlm.nih.gov/pubmed/10747205
http://dx.doi.org/10.1016/j.mito.2010.01.005
http://www.ncbi.nlm.nih.gov/pubmed/20083234
http://dx.doi.org/10.1083/jcb.201304054
http://www.ncbi.nlm.nih.gov/pubmed/23751492
http://dx.doi.org/10.3389/fimmu.2012.00174
http://www.ncbi.nlm.nih.gov/pubmed/22783254
http://dx.doi.org/10.1182/blood-2007-12-077917
http://www.ncbi.nlm.nih.gov/pubmed/18684880
http://dx.doi.org/10.1086/431992
http://dx.doi.org/10.1038/ni.2587
http://www.ncbi.nlm.nih.gov/pubmed/23624555


40. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic
genomic landscape of glioblastoma. Cell. 2013 Oct; 155(2):462–477. doi: 10.1016/j.cell.2013.09.034
PMID: 24120142

41. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analy-
sis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,
IDH1, EGFR, and NF1. Cancer Cell. 2010 Jan; 17(1):98–110. doi: 10.1016/j.ccr.2009.12.020 PMID:
20129251

42. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a
CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010 May; 17
(5):510–522. doi: 10.1016/j.ccr.2010.03.017 PMID: 20399149

43. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of
high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages
in neurogenesis; 9(3):157–173.

44. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment; 14
(10):1014–1022.

45. Robinson DG,Wang JY, Storey JD. A nested parallel experiment demonstrates differences in intensity-
dependence between RNA-seq and microarrays. Nucleic Acids Research. 2015 Jun;. doi: 10.1093/nar/
gkv636

46. Chung NC, Storey JD. Statistical significance of variables driving systematic variation in high-dimen-
sional data. Bioinformatics (Oxford, England). 2015 Feb; 31(4):545–554. doi: 10.1093/bioinformatics/
btu674

47. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to
Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995; 57(1):289–
300. Available from: http://dx.doi.org/10.2307/2346101.

48. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine
Learning in Python. J Mach Learn Res. 2011 Nov; 12:2825–2830. Available from: http://dl.acm.org/
citation.cfm?id=1953048.2078195.

49. Peres-Neto PR, Jackson DA, Somers KM. HowMany Principal Components? Stopping Rules for
Determining the Number of Non-trivial Axes Revisited. Comput Stat Data Anal. 2005 Jun; 49(4):974–
997. doi: 10.1016/j.csda.2004.06.015

50. Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython: The Best of Both Worlds.
Computing in Science and Engg. 2011 Mar; 13(2):31–39. doi: 10.1109/MCSE.2010.118

51. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics
(Oxford, England). 2010 Oct; 26(19):2363–2367. doi: 10.1093/bioinformatics/btq431

52. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density
oligonucleotide array data based on variance and bias. Bioinformatics (Oxford, England). 2003 Jan; 19
(2):185–193. doi: 10.1093/bioinformatics/19.2.185

GO-PCA: Exploring Gene Expression Data Using Prior Knowledge

PLOS ONE | DOI:10.1371/journal.pone.0143196 November 17, 2015 26 / 26

http://dx.doi.org/10.1016/j.cell.2013.09.034
http://www.ncbi.nlm.nih.gov/pubmed/24120142
http://dx.doi.org/10.1016/j.ccr.2009.12.020
http://www.ncbi.nlm.nih.gov/pubmed/20129251
http://dx.doi.org/10.1016/j.ccr.2010.03.017
http://www.ncbi.nlm.nih.gov/pubmed/20399149
http://dx.doi.org/10.1093/nar/gkv636
http://dx.doi.org/10.1093/nar/gkv636
http://dx.doi.org/10.1093/bioinformatics/btu674
http://dx.doi.org/10.1093/bioinformatics/btu674
http://dx.doi.org/10.2307/2346101
http://dl.acm.org/citation.cfm?id=1953048.2078195
http://dl.acm.org/citation.cfm?id=1953048.2078195
http://dx.doi.org/10.1016/j.csda.2004.06.015
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1093/bioinformatics/btq431
http://dx.doi.org/10.1093/bioinformatics/19.2.185

