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Abstract

Vaccines based on nonspreading Rift Valley fever virus (NSR) induce strong humoral and
robust cellular immune responses with pronounced Th1 polarisation. The present work was
aimed to gain insight into the molecular basis of NSR-mediated immunity. Recent studies
have demonstrated that wild-type Rift Valley fever virus efficiently targets and replicates in
dendritic cells (DCs). We found that NSR infection of cultured human DCs results in matura-
tion of DCs, characterized by surface upregulation of CD40, CD80, CD86, MHC-I and
MHC-II and secretion of the proinflammatory cytokines IFN-3, IL-6 and TNF. Interestingly,
expression of the most prominent marker of DC maturation, CD83, was consistently down-
regulated at 24 hours post infection. Remarkably, NSR infection also completely abrogated
CD883 upregulation by LPS. Downregulation of CD83 was not associated with reduced
mRNA levels or impaired CD83 mRNA transport from the nucleus and could not be pre-
vented by inhibition of the proteasome or endocytic degradation pathways, suggesting that
suppression occurs at the translational level. In contrast to infected cells, bystander DCs
displayed full maturation as evidenced by upregulation of CD83. Our results indicate that
bystander DCs play an important role in NSR-mediated immunity.

Introduction

Rift Valley fever virus (RVFV) replicon particles, also known as nonspreading RVFV (NSR),
resemble authentic RVFV by structure and infectivity [1]. They retain the genes encoding pro-
teins necessary for viral RNA amplification, but are deprived of the gene encoding the struc-
tural glycoproteins, required for the generation of progeny virions. In addition, NSR particles
lack the gene encoding the nonstructural NSs protein, which counteracts innate immune
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responses [2-5]. The absence of the NSs gene adds to the safety profile of NSR and provides an
expression slot for a protein of interest. These combined features render NSR an intrinsically
safe and powerful platform for the development of vaccines.

NSR proved to be highly efficacious when used as a RVF vaccine both in mice and in sheep,
the latter being the main natural target species of the virus [1, 6]. A single vaccination with sim-
ilar replicon particles, developed by Dodd and co-workers, resulted in systemic induction of
interferon-stimulated genes as early as 12 h post vaccination and initiation of an antiviral state
that protected mice from lethal RVFV challenge already 24 hours post vaccination [7]. The effi-
cacy of the NSR vaccine was further improved by introducing in the NSR genome the gene
encoding the glycoprotein Gn, which is the dominant target of neutralizing antibodies. A single
vaccination with the resulting NSR-Gn vaccine provided sterile protection against RVFV chal-
lenge in lambs [8, 9]. More recently, we developed NSR particles encoding the hemagglutinin
(HA) of the influenza virus. These particles protected mice from a lethal dose of influenza virus
after a single intranasal or intramuscular administration [10]. Vaccination with NSR was con-
sistently associated with neutralizing antibody responses and robust T-cell responses with
strong Th1 polarization [1, 6, 8-10]. The ability of NSR to induce strong cellular immune
responses was recently confirmed by controlling outgrowth of tumor cells in mice by vaccina-
tion with NSR particles that expressed a single tumor-associated CD8-restricted epitope [11].
The remarkable efficacy of the NSR vaccine prompted further studies on the molecular basis of
NSR-mediated immunity.

Recent findings by Lozach et al demonstrated that wild-type RVFV can efficiently infect
human DCs, using dendritic cell-specific intercellular adhesion molecule-3-grabbing non-
integrin (DC-SIGN) as a receptor [12]. Infection of DCs resulted in generation of high titers of
progeny virions. In another study, RVFV was shown to specifically target cells of the mono-
cyte/macrophage/dendritic cell lineages in mice [13]. These data suggest that the interaction of
RVEFV with DCs plays an important role in the pathogenesis of RVF. Innate immune responses
resulting from RVFV infection of bone marrow-derived macrophages are efficiently counter-
acted by the NSs protein [14], and it is plausible that NSs has a similar function in DCs. How-
ever, infection of DCs with NSR particles lacking NSs should result in full-blown antiviral
responses, which likely contribute to vaccine efficacy.

DCs are key players in the initiation and regulation of immune responses. Immature DCs
are equipped with a broad range of pattern recognition receptors and are very effective in rec-
ognizing various pathogen-associated molecular patterns (PAMPs). When contact with a
PAMP occurs, DCs start to mature. During this process, the cells undergo changes in their
morphology, migratory capability, expression of surface molecules and function [15]. The cells
migrate from areas of antigen uptake to T-cell areas of secondary lymphoid organs, where they
present antigen-derived peptides and instruct epitope-specific naive T-cells to develop their
effector function [16]. The maturation of DCs is associated with increased expression of surface
molecules, such as MHC-I and MHC-II, which are involved in antigen presentation, as well as
CD86, CD80, CD40 and CD54, which act as co-stimulators in T-cell activation [17, 18]. The
most characteristic marker of fully matured human DCs is CD83 [19, 20]. Although the exact
mechanism of action and the specific ligand of CD83 remain to be elucidated, surface expres-
sion of this molecule on DCs is critical for priming naive T cells [21, 22].

In the present study, we investigated the interaction between NSR and human DCs. We
found that DCs are efficiently infected and tolerate viral genome replication and protein
expression. The cells exhibited evidence of maturation, manifested by morphological changes,
secretion of the proinflammatory cytokines IFN-, IL-6 and TNF and upregulation of the sur-
face molecules CD40, CD80, CD86, MHC-I and MHC-II. Surprisingly, while bystander DCs
displayed upregulation of CD83, suggestive of full maturation, infected DCs exhibited a gradual
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downregulation of CD83. This effect was not associated with corresponding downregulation of
CD83 mRNA or defects in mRNA transport from the nucleus. Neither the proteasomal nor the
endocytic degradation pathways seemed to be involved in the decrease in CD83 levels, suggest-
ing that NSR-mediated downregulation of CD83 expression occurs at the translational level.
The incomplete maturation of NSR-infected DCs and full maturation of bystander DCs suggest
that only the latter play an active role in NSR-mediated immunity.

Materials and Methods
Ethics Statement

Blood samples were collected from healthy donors at the Laboratory of Clinical Chemistry and
Haematology of the University Medical Center (UMC, Utrecht, The Netherlands). Donors
provided written consent for use of the material for scientific research. The use of the material
was approved by the Medical Ethics Committee of the UMC under protocol number 07-125/C.

Cells

Peripheral blood mononuclear cells (PBMCs) were isolated from the blood of healthy donors by
ficoll isopaque density gradient centrifugation (GE Healthcare Bio-Sciences AB) and frozen until
use. PBMCs were used as a source of monocyte-derived dendritic cells (MoDCs). Immature DCs
were cultured as previously described [23]. Briefly, PBMCs were seeded in standard 48- or
96-well culture plates in X-VIVO-15 medium with gentamycin (Lonza), supplemented with 2%
heat-inactivated and 0.2 pm-filtered FCS (Bodinco). Cells were allowed to adhere for 1 h. Non-
adherent cells were subsequently removed by washing with PBS and adherent cells were cultured
in serum-free X-VIVO-15, supplemented with 450 U/mL GM-CSF and 300 U/mL IL-4 (Mil-
teny). Medium was refreshed on the second day of incubation. On day 5, cells were stimulated
with LPS, NSR or NSRmock diluted in RPMI 1640 with HEPES and glutamine (Gibco), supple-
mented with 10% FCS. Medium was used for negative controls. The stimulation conditions were
selected for optimal infectivity of NSR. DCs were harvested at different time points after stimula-
tion as indicated in the results section, by replacing the growth medium with cold PBS, followed
by shaking (450 rpm) of the culture plates for 1 h at 4°C to detach cells.

Generation of nonspreading RVFV (NSR) and control inoculum
(NSRmock)

NSR particles were generated as previously described [8]. Briefly, NSR replicon cell lines were
transfected with a plasmid encoding the RVFV surface glycoproteins Gn and Gc. NSR contain-
ing supernatants were harvested the next day and cleared from cell debris by centrifugation at
4,500 x g for 15 min. Subsequently NSR particles were purified and concentrated by ultracentri-
fugation at 64,000 x g for 2.5 h on a 2 ml 25% sucrose cushion, followed by resuspension in
Opti-MEM (Invitrogen), supplemented with 0.2% heat-inactivated FCS. Particles were stored
at -80°C until use. For generation of NSRmock, a similar procedure was used, but the replicon
cells were transfected with a plasmid that encodes only the Gc protein. Supernatants harvested
after this transfection contain the same media, transfection reagents and cellular metabolism
products, but lack infectious NSR particles. The absence of infectious particles in NSRmock
control preparation was confirmed by titration on BHK21 cells.

Flow cytometry

The cell-surface phenotypes of unstimulated and stimulated DCs were analysed by flow cytom-
etry using human-specific mAbs: anti-CD40 (clone 5C3) and anti-CD83 (clone HB15e)
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(eBioscience); anti-CD80 (clone L307.4), anti-CD86 (clone IT2.2) and anti-CD11c¢ (clone B-
ly6) (BD); anti-HLA-A,B,C (clone W6/32) and anti-HLA-DR (clone L243) (BioLegend),
together with the respective isotype controls. Optimal concentrations of the antibodies were
determined prior to flow cytometry assays. The DC population was selected by gating on cells
that were double positive for CD11c and MHC-II. Median fluorescence intensity (MFI) was
used as measure for expression of the analysed molecules. Data was acquired using Canto II
flow cytometer (BD) and analysed using Flow]Jo software.

Cytokine assay

PBMCs were seeded in 48-well culture plates and after an initial adherence step for 1 h as
described above, were washed vigorously with PBS so that only adhering cells were retained.
After 5 days of differentiation, DCs were stimulated with LPS, NSR, NSRmock or medium and
after 24h supernatants were harvested, pre-cleared by slow-speed centrifugation and stored at
-80°C until use. Concentrations of IFN-f, TNF, IL-6 and IL-10 were determined using a multi-
plex assay (eBioscience), according to the manufacturers’ instructions using the Luminex 200
system.

Polyacrylamide gel electrophoresis (PAGE) and Western blotting

DCs were harvested 24 h post stimulation, counted and brought to equal concentrations in
Pierce IP lysis buffer (Thermo Scientific), supplemented with protease inhibitors (Roche). Sam-
ples containing 50,000 cells were either directly denatured in standard Laemmli sample buffer
or first pre-treated with peptide-N-Glycosidase F (PNGase F, BioLabs®™ Inc.) according to the
manufacturers’ instructions. Proteins present in cell lysates were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by Western blotting as previ-
ously described [10]. Rat monoclonal anti-human CD83 antibody (clone 1G11, Enzo Life Sci-
ences) and corresponding secondary horseradish peroxidase (HRP)-conjugated antibody were
used to detect CD83. The blot with samples without PNGase F treatment was subsequently
stripped and re-stained with mouse monoclonal anti-human glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (clone 0411) and anti-GFP (clone B-2) antibodies (Santa Cruz) and
corresponding secondary HRP-conjugated antibodies.

ELISA to detect soluble CD83

Supernatants from DCs cultures, stimulated with LPS or NSR were harvested and centrifuged
at 3,000 x g for 10 min to remove cell debris. Concentrations of soluble CD83 were determined
with a commercial ELISA kit (Sino Biological Inc.) according to the manufacturers’ instruc-
tions. Each sample was tested at two different concentrations in triplicate. A standard curve
was generated using serial dilutions of recombinant CD83, provided with the kit.

Proteasome inhibition assay

DCs were stimulated with different stimuli for 8 h after which clasto Lactacystin B-lactone
(CLBL) was added at a final concentration of 5 or 10 uM. The solvent of CLBL, dimethylsulfox-
ide (DMSO), was used as a control. Sixteen h after these treatments, cells were harvested and
analysed by flow cytometry. Alternatively, cells were lysed and used for detection of total
amounts of CD83 by SDS-PAGE and Western blotting. Control staining for GAPDH and GFP
was performed after stripping the blot. Procedures and antibodies are described above.
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Endocytosis inhibition assay

DCs were stimulated with LPS+NSRmock, LPS+NSR or medium, for 6 h or 12 h. Cytochalasin
D (Sigma) was subsequently added to a final concentration of 10 ug/ml. The solvent of Cyto-
chalasin D, dimethylsulfoxide (DMSO), was used as a control. Cells were harvested 6, 12 or

18 h after Cytochalasin D/DMSO treatment and analysed by flow cytometry.

RNA isolation and real-time PCR

After stimulation of DCs for 24 h, culture medium was discarded and cells were immediately
lysed with Trizol. Total RNA was isolated with the Direct-zol™ RNA MiniPrep kit (Zymo
research) according to the instructions of the manufacturer. 100 ng RNA of each sample was
subsequently reverse-transcribed using random primers and Superscript III reverse transcrip-
tase (Promega). Quantitative real-time PCR was performed as previously described [24]. The
primer sequences are provided in Table in S1 Table.

Single-molecule RNA fluorescence in situ hybridization (FISH)

DCs were cultured on a CultureWell™ 16 Chambered Coverglass (C-37000, Grace Bio-labs)
and were stimulated with LPS, NSR or were left unstimulated. In a control FISH assay, cells
were stimulated with LPS or simultaneously treated with LPS and 0.1 pg/ml Actinomycin D or
10 nM Leptomycin B (Enzo Life Sciences). 24 h post stimulation, cells were fixed with 4% para-
formaldehyde (10 min) and permeabilized with 70% ethanol (>1 h at 4°C). Individual intracel-
lular GAPDH, CD80 and CD83 mRNAs were subsequently visualized using human specific
CD80, CD83 and GAPDH cDNA probes labelled with quasar 570 (Table in S2 Table) accord-
ing to the Stellaris® FISH method (protocol for adherent cells, Biosearch Technologies) [25].
The oligonucleotides for GAPDH were predesigned by Biosearch Technologies, whereas the
oligonucleotides for CD80 and CD83 were designed using the online Stellaris probe design
software. Images were generated using an Axioskop 40 (Zeiss) fluorescent microscope with a
1.28 NA 100x oil objective and an AxioCam MRm camera. Raw images were deconvolved and
analysed using Huygens software (Scientific Volume Imaging, Hilversum, The Netherlands).
Individual spots were counted with dedicated online software (StarSearch, http://rajlab.seas.
upenn.edu/StarSearch/launch.html).

Statistical analyses

Differences in expression levels of surface markers CD40, CD80, CD83, CD86, MHC-I and
MHC-II were evaluated with repeated measures one-way analysis of variance (ANOVA) with
Dunnett’s post hoc test. Differences in spot numbers corresponding to CD80, GAPDH and
CD83 mRNAs in the FISH assay were analysed with one-way ANOVA with Dunnett’s post-
hoc test. Differences in quantities of soluble CD83 were analysed with Welch ANOV A with
Games-Howell post hoc test. Differences in secreted cytokines, as well as PCR-determined
mRNA levels of CD80, CD83, GAPDH and peptidylprolyl isomerase A (PPIA) were analysed
using a Student’s T test. Student’s T test with Bonferonni correction for multiple comparisons
was used also to evaluate differences in CD83 expression in the endocytosis inhibition assay
using the CytD inhibitor. Values of p<0.05 were considered significant. Analyses were per-
formed with GraphPad Prism®) 5 or IBM SPSS stastistics 20 software.
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Results
NSR infection of human DCs triggers phenotypic maturation

Immature DCs were generated as described in materials and methods and were infected with
NSR particles expressing GFP (Fig 1A). Initial experiments revealed that GFP expression in
DC cultures was detectable already at 6 h post infection (hpi, data not shown). Infection effi-
ciencies varied between different experiments and donors, but exceeded 90% under optimal
conditions (Fig 1B).

Monitoring of NSR infection in time revealed that the number of GFP-positive (GFP+) DCs
increased gradually until 24 hpi (Fig 1C). After that time point, a rapid decrease was noticed
and at 48 hpi a 5-fold reduction was observed, compared to GFP+ cell counts at 24 hpi. The
decrease in GFP+ cells coincided with a decrease in the total numbers of viable cells, while via-
bility of NSRmock-infected control cells remained stable over time.

Infection of DCs with NSR resulted in distinct morphological changes in the cells. Infected
DCs acquired flat and stretched shapes, discriminating them from unstimulated cells, which
remained predominantly round-shaped (Fig 1D). The phenotype of the infected cells resem-
bled closely that of cells stimulated with LPS or a combination of LPS and poly(I:C), which are
known to trigger DCs maturation [26]. This finding suggests that NSR infection of DCs results
in maturation.

B C

E GFP+
w0 1201 _._ Viability after
1004 NSR infection
£ ® 8o Viability after
@ w0 93.7 3 NSRmock infection
> il
w © 60
=
20 7
0
10 10 10° ST 8h 16h 24h 40h 48h
GFP hpi

Fig 1. Infection of DCs by NSR. (A) DCs were infected with NSR for 24 h and evaluated for expression of GFP, using an EVOS fluorescence microscope.
(B) Infection efficiency under optimal conditions as determined by flow cytometry. (C) Viability and percentage of infected cells at different time points after
infection. Cells were infected with NSR or mock-infected with NSRmock, harvested at the indicated time points, stained with 7AAD and analysed by flow
cytometry. The percentage of GFP expressing cells (bars) and the viability after NSR or NSRmock infections (lines) is depicted. Viability of the cells was
calculated relative to the viability at 8 hpi, which was set at 100%. The data depict average values from two experiments with cells from two different donors
+SD. (D) Morphology of DCs stimulated with the indicated stimuli at 24 h post treatment.

doi:10.1371/journal.pone.0142670.g001
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Infected DCs secrete proinflammatory cytokines

To evaluate whether NSR infection results in the induction of a proinflammatory cytokine
response, supernatants of infected DCs were analysed for the presence of IFN-f, TNF, IL-6 and
IL-10. Infection was performed such that more than 90% of the cells were positive for GFP. As
expected, control LPS stimulation resulted in the induction of IFN-f, TNF and IL-6, while
NSRmock-infected cells did not show any induction of cytokines (Fig 2). NSR-infected DCs
showed relatively strong induction of IFN-B, TNFo and IL-6. In contrast, concentrations of IL-
10, which is known for its immunosuppressive functions [27, 28] remained low. These results
show that NSR is capable of inducing proinflammatory cytokine responses in DCs.

NSR-infected DCs upregulate maturation markers, but only bystander
DCs upregulate CD83

Maturation of DCs is associated with upregulation of the surface expression of MHC class I
and II molecules and co-stimulatory molecules such as CD80, CD86 and CD40 [17, 18]. The
hallmark of fully matured human DCs is cell surface presentation of CD83. To test the matura-
tion status of NSR infected DCs, we analysed surface expression of MHC-I, MHC-II, CD40,
CD80, CD83 and CD86 molecules upon infection.

Flow cytometry analysis of infected GFP+ DCs at 24 hpi revealed a significant induction of
the surface expression of CD40, CD80, MHC-I and MHC-II as compared to cells incubated
with NSRmock (Fig 3, left and middle panels). The increase in surface expression of CD86 was
not significant. Strikingly, although expression of CD83 was upregulated 4- to 10-fold at 24 h
after LPS stimulation, no upregulation of CD83 was observed in GFP+ cells at this time point.

To evaluate whether NSR infection can counteract LPS-induced CD83 expression, a co-
stimulation with LPS and NSR was performed. Comparable surface expression levels of CD40,
CD80, CD86 and MHC-I were found in DCs co-stimulated with NSR+LPS or control-stimu-
lated with NSRmock+LPS. However, co-stimulation of DCs with LPS and NSR did not result
in upregulation of CD83 (Fig 3, right panels). From these results it can be concluded that NSR
actively downregulates CD83 surface expression. Upon addition of LPS, GFP- cells displayed
comparable amounts of surface expressed CD40, CD80, CD83 and MHC-II markers and
increased amounts of CD86 and MHC-1.

Analysis of DCs that were GFP-negative (GFP-) at 24 hpi, revealed that the levels of all sur-
face molecules except CD80 were significantly elevated as compared to NSRmock stimulated
cells, presumably representing a bystander effect resulting from cytokines released by GFP+
cells (Fig 3). Addition of LPS resulted in further upregulation of CD86 and MHC-1.

Kinetics of CD83 expression in NSR-infected DCs

To investigate the dynamics of CD83 surface expression in more detail, DCs were harvested
after 4, 8, 12, 16, 24 and 48 hpi and analysed with flow cytometry. As a reference marker for
upregulation, CD80 was used. NSRmock stimulated cells did not display changes in CD83 sur-
face expression during the whole observation period, while LPS-stimulated cells displayed
upregulation of CD83 already after 4 h and expression levels remained high until the end of the
observation period (Fig 4, upper panel). Similar expression levels were observed after combined
LPS+NSRmock treatment. In NSR-infected cells, the GFP signal was detectable at 8 hpi. In
GFP+ cells, an initial upregulation of CD83 was observed which peaked at 12 hpi. After that
time point, CD83 levels decreased gradually and at 24 hpi reached the levels of the NSRmock
control. Contrastingly, in GFP- cells, CD83 expression levels were initially comparable to

those of control cells and at 12 hpi levels increased and remained high, revealing that CD83
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Fig 2. Cytokine secretion by NSR-infected DCs. Supernatants of infected or control-treated DCs were
harvested at 24 hpi and analysed with a luminex-based cytokine assay. Bars represent the mean cytokine
concentrations + SD of triplicates with cells from one donor. Statistical significance between infected (NSR)

and mock-infected (NSRmock) conditions is indicated.

doi:10.1371/journal.pone.0142670.g002
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Fig 3. Surface expression of CD40, CD80, CD83, CD86, MHC-l and MHC-Il on DCs at 24 h after NSR
infection as measured by flow cytometry. Immature DCs were infected with NSR, mock-infected with
NSRmock, or stimulated with LPS (left and middle panels). Alternatively, cells were infected with NSR or
mock-infected with NSRmock in the presence of LPS (right panels). The left panel shows representative
histograms of surface marker measurements on cells stimulated with LPS, mock infected cells (NSRmock),
cells infected with NSR (GFP+) and uninfected bystander DCs (GFP-). Expression of markers in untreated
cells and an irrelevant isotype control are depicted. The middle and right panels represent average data from
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4 independent experiments performed with cells from 3 donors. The box plots depict MFI of the different
markers relative to untreated cells. A black asterisk indicates upregulation compared to the control and a red
asterisk indicates downregulation.

doi:10.1371/journal.pone.0142670.g003

upregulation in bystander DCs depended on the presence of GFP+ cells. When a combination
of LPS and NSR was used to stimulate DCs, maximal upregulation of CD83 in GFP+ cells was
reached already at 8 hpi, consistent with the presence of LPS. However, as time progressed,
CD83 expression decreased, reaching the lowest levels at 24 hpi. In GFP- cells, CD83 levels
resembled those in cells stimulated with LPS and LPS combined with NSRmock. These data
indicate that infection with NSR results in initial upregulation of CD83, which is augmented by
the presence of LPS. Later, as viral genome replication progresses, CD83 is gradually depleted
from the cell surface, counteracting the effect of LPS. Notably, CD83 was dramatically upregu-
lated at 48 hpi in all stimulated cells, including those positive for GFP.

In contrast to CD83, CD80 displayed a gradual upregulation in cells infected with NSR and
in cells stimulated with a combination of LPS and NSR, regardless of the expression of GFP.
The dynamics of CD80 expression in GFP+ cells resembled closely that in cells stimulated with
LPS or LPS+NSRmock (Fig 4, lower panel). A strong increase in the surface expression of
CD80 was observed at 48 hpi similar to CD83.

CD83 mRNA levels and subcellular distribution are unaffected by NSR-
infection

To evaluate whether the reduced CD83 surface expression observed after NSR infection corre-
lated with reduced mRNA levels, we analysed with QRT-PCR the quantities of CD83 mRNA in
DC lysates prepared 24 h post NSR or LPS+NSR stimulation, resulting in more than 90% GFP-
positive cells. Levels of two house-keeping gene mRNAs, glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) and peptidylprolyl isomerase A (PPIA), and the level of CD80 mRNA were
determined as well and served as controls. The results show that neither NSR infection, nor a
combination of LPS stimulation and NSR infection significantly affected the total levels of
CD83 mRNA, as compared to control stimulations (Fig 5). In contrast, levels of CD80 mRNA
were upregulated by both NSR and LPS+NSR stimulations, as well as by LPS stimulation alone,
respective to the relevant controls. Remarkably, incubation of the DCs with NSR or LPS+NSR
resulted in significant decreases in mRNA levels of GAPDH and PPIA.

To be able to discriminate between GFP+ and GFP- in the DC population and to exclude
possible arrest of host mRNA nuclear transport, which is a common mechanism used by
viruses to counteract cellular antiviral mechanisms [29], we also evaluated subcellular location
of GAPDH, CD80 and CD83 mRNAs using a fluorescence in situ hybridisation (FISH) tech-
nique. With this technique, individual mRNA molecules are visualized, revealing their total
amount and cellular location. The overall FISH results corresponded very well with the
qRT-PCR data (Fig 6). The decrease in the quantity of GAPDH mRNA, detected with
qRT-PCR in NSR-infected cells, correlated with significantly reduced numbers of spots,
detected with FISH in GFP+ cells. Interestingly, no reduction in GAPDH mRNA was observed
in GFP- cells. CD80 mRNAs levels were induced by LPS stimulation, as well as by NSR infec-
tion, both in GFP+ and GFP- cells. Analysis of CD83 mRNA revealed similar total number of
spots in all treatment conditions and no differences in mRNA distribution. To confirm the
specificity of the FISH assay, we incubated DCs with LPS or a combination of LPS and Actino-
mycin D or Leptomycin B. The former drug suppresses cellular transcription, while the latter
specifically blocks nuclear export via CRM1, an export route known to be utilized by CD83
mRNA [30-33]. As expected, treatment with Actinomycin D resulted in almost complete
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Fig 4. Analysis of CD83 and CD80 surface expression in time. DCs were treated with NSRmock, NSR, LPS, LPS+NSRmock or LPS+NSR and were
harvested at 0, 4, 8,12, 16, 24 and 48 h post treatment. Surface expression of CD83 (upper panels) and CD80 (lower panels) were measured by flow
cytometry. Left panels show histograms from one representative experiment. Time points are depicted with different colors and the color code is shown at the
right. IC—isotype control. Right panels illustrate average data from three independent experiments with cells from three different donors. Bars represent
means +SD of the fold change of MFI relative to untreated cells.

doi:10.1371/journal.pone.0142670.9004
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abrogation of CD83 mRNA production and treatment with Leptomycin B resulted in increased
nuclear localization of this mRNA (see S1 Fig). Collectively, the FISH and qRT-PCR data reveal
that the downregulation of the CD83 protein observed after NSR infection was not associated
with downregulation of CD83 mRNA levels or arrest of CD83 mRNA transport from the
nucleus.

Downregulation of CD83 at the cell surface does not result from
intracellular protein redistribution or increased release to the medium

Sénéchal and co-workers reported downregulation of CD83 in monocyte-derived mature DCs
infected with human cytomegalovirus [34]. The downregulation was attributed to release of
the protein into the culture medium. This finding was confirmed by Kummer et al [35].
Regarding those reports, we investigated whether the downregulation of CD83 in NSR-infected
cells resulted from increased shedding of the protein from the cell surface. To this end, super-
natants of NSR-infected cells, NSRmock-infected cells and of cells stimulated with LPS were
harvested at 24 hpi and analysed for the presence of soluble CD83 by ELISA. Quantities of
CD383 in the supernatant of LPS stimulated cells were comparable to those previously reported
(Fig 7A) [35]. Levels of soluble CD83 in culture media from NSR-infected cells did not statisti-
cally differ from those in culture media of NSRmock-infected cells or LPS-stimulated cells,
demonstrating that shedding of CD83 into the growth medium does not explain the observed
surface downregulation in NSR-infected DCs.

Since we did not detect increased levels of CD83 in culture media of NSR infected cells, we
proceeded with analyses of intracellular CD83 protein levels. As CD83 expression was first
induced and subsequently downregulated in NSR-infected cells, we hypothesized that these alter-
ations may result from trapping of the molecule inside the cells. To test this hypothesis, we ana-
lysed with SDS-PAGE and Western blotting the quantities of CD83 in cell lysates of NSR-
infected cells and lysates of LPS+NSR co-stimulated cells and compared these with CD83 quanti-
ties in unstimulated cells, cells stimulated with NSRmock, LPS or LPS+ NSRmock at 24 hpi.
More than 90% of the DCs inoculated with NSR were positive for GFP. In unstimulated and
NSRmock-stimulated cells, a single band of around 42 kDa was visible, corresponding to the
known molecular weight of CD83 when present in intracellular protein pools [36] (Fig 7B).
Upon induction with either LPS or LPS+NSRmock, CD83 expression was upregulated as evi-
denced by the appearance of a lower molecular weight band that corresponds to de novo synthe-
sized CD83, as well as higher molecular weight bands that correspond to high-glycosylated,
surface-exposed protein [36]. In both NSR and LPS+NSR stimulated cells, the detected CD83
protein levels closely resembled those in the unstimulated and NSRmock stimulated cells and
only the band that corresponds to the preformed protein was visible, while the bands correspond-
ing to the de novo form and the high-glycosylated form were not detected. Digestion of cell
lysates with peptide-N-glycosidase F to remove the N-linked carbohydrates revealed a discrete
band of deglycosylated protein. Amounts were comparable in unstimulated, NSRmock, NSR and
LPS+NSR stimulated cells and much higher in cells stimulated with LPS or LPS+NSRmock. The
total CD83 protein quantities in cell lysates correlated well with those measured by flow cytome-
try. This finding suggests that the observed downregulation of CD83 from the cell surface of
NSR-infected cells at 24 hpi does not result from trapping of the protein inside the cells.

Inhibition of the proteasomal or endocytic degradation pathways does
not prevent NSR-mediated downregulation of CD83

Mature human DCs, infected with herpes simplex virus type 1 (HSV-1), were reported to
downregulate CD83 by proteasomal degradation [35]. This process is mediated by the
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after stimulation with LPS, infection with NSR, or from cells mock infected with NSRmock were determined by ELISA. Bars represent average CD83
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control and control to confirm NSR infection, respectively. Results from one of two independent experiments with cells from two donors are shown.

doi:10.1371/journal.pone.0142670.g007

28 = GFP

immediate-early protein ICPO of HSV-1 and is prevented by inhibition of the cellular protea-
some machinery. To investigate whether proteasomal degradation of CD83 explains the
decreased surface exposure of this molecule after NSR infection, we used the inhibitor clasto
Lactacystin B-lactone (CLBL) to supress cellular proteasomal activity. This drug acts selectively
and irreversibly on the 20S and 26S subunits of the proteasome without affecting serine and
cysteine proteases. We preferred CLBL because earlier experiments demonstrated that this
drug did not exert negative effect on RVFV replication, as opposed to another often used alter-
native drug, MG-132 [2]. As we already showed that CD83 levels increase in the first 8-12h
after infection and then gradually decrease, we first stimulated DCs with NSRmock, LPS+NSR
or LPS+NSRmock for 8 h and then added CLBL in two different concentrations. DMSO, the
solvent of CLBL, was used as a control. Flow cytometry analysis was performed at 24 hpi. Addi-
tion of CLBL to NSRmock-infected cells resulted in a dose dependent increase of CD83 surface
expression with a 70% increase for the lower CLBL concentration and with a 150% increase for
the higher concentration, as compared to DMSO treatment (Fig 8A). In both LPS+NSRmock
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stimulated as described under point “A” and treatments are indicated above the image. (C) Inhibition of endocytosis. DCs were stimulated with LPS
+NSRmock, LPS+NSR or left unstimulated. Cytochalasin D (Cyt D) or the solvent DMSO were subsequently added at different time points. The moments of
adding Cyt D/DMSO and harvesting of cells are indicated above each graph. Bars represent average fold change of the MFI relative to unstimulated cells
treated with DMSO £SD. Average values of three experiments with cells from one donor are depicted. Relevant statistical significances are shown.

doi:10.1371/journal.pone.0142670.9008

and LPS+NSR stimulated cells, a 50% increase in the surface expression of CD83 was measured
that was not dependent on the CLBL dose, but the ratio of CD83 between the two treatment
conditions remained unchanged. Total amounts of CD83 detected in cell lysates of LPS+NSR,
LPS or NSRmock-stimulated cells after treatment with CLBL correlated well with the amounts
of the surface expressed protein (Fig 8B). Together, these data suggest that NSR-infection does
not result in increased proteasomal degradation of CD83.

In both immature and mature DCs, stable levels of CD83 at the DC surface are maintained
by continuous production and recycling of the exposed protein [36]. Inhibition of endocytosis
with cytochalasin D (Cyt D) was shown to promote surface exposure of CD83 in both DCs
types. CytD is a drug that depolymerizes F-actin filaments and thereby blocks endocytosis,
without affecting the exocytic pathway [37-39]. Cyt D treatment of infected cells was therefore
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employed to investigate possible involvement of endocytic degradation pathways in NSR-
mediated downregulation of CD83. LPS+NSR co-stimulated cells, control LPS+NSRmock
stimulated cells and unstimulated cells were incubated with Cyt D. Treatment with Cyt D for
6 h, added 6 h after stimulation resulted in an increase in surface-exposed CD83 in all stimula-
tion conditions. However, in infected cells, this increase was the lowest (Fig 8C, left panel).
Longer incubation with Cyt D (18 h) resulted in a further increase of CD83, but CD83 levels in
cells co-stimulated with LPS+NSR were significantly lower than those in LPS+NSRmock stim-
ulated cells (Fig 8C, middle panel). Importantly, when Cyt D was added at 12 h post treatment,
it had no effect on CD83 expression levels in infected cells, while in control cells an increase in
expression was observed (Fig 8C, right panel). Altogether, these data suggest that CD83 down-
regulation in NSR-infected cells does not involve increased degradation via the proteasomal or
endocytic degradation pathways.

Discussion

DCs express various pathogen recognition receptors that are able to sense viral RNA, including
Toll-like receptors 3, 7 and 8, and cytoplasmic helicases RIG-I, MDA5 and LGP2 [40]. Of these
receptors, RIG-I was shown to play a primary role in cytoplasmic detection of RVFV [41].
Upon recognition of its ligand, RIG-I triggers a signalling cascade resulting in activation of
transcription factors NF-kB, IRF3 and 7 [42, 43], which induce cell maturation [44] and pro-
duction of type-I interferons [45]. This whole cascade of events is purposed to control virus
replication in the infected DC and to prepare the cell for efficient antigen presentation. A well-
established mechanism to control virus dissemination from infected cells is apoptosis, which
can be initiated by RIG-I activation [46]. Based on the aforementioned, we propose NSR-
infected DCs succumb to apoptosis between 24 at 48 hpi resulting from RIG-I activation. In
support of this hypothesis, infected cells displayed a significant decrease of GAPDH mRNA
levels, which is known to be associated with early apoptotic events [47, 48].

Induction of apoptosis was previously reported to occur upon infection of DCs with repli-
con particles of the alphavirus Venezuelan equine encephalitis virus [49, 50], which have
proven to be highly immunogenic [51]. Moreover, apoptosis of DCs was found to be essential
for optimal efficacy of alphavirus replicon-based DNA vaccines in a tumor challenge mouse
model. It is well documented that apoptotic cells can be taken up by DCs and serve as a source
of antigen for cross-presentation [52], a mechanism that plays an important role in efficient
priming of specific CD8+ responses [53, 54].

We observed that NSR-infected DCs did not fully mature, while bystander DCs did, as evi-
denced by CD83 upregulation. Maturation of bystander DCs is triggered by the presence of
apoptotic infected DCs and cytokines and chemokines released as a result of the infection [55-
57]. In supernatants of infected cells we detected IFN-B, TNF and IL-6, which are important
for activation of antigen-presenting cells [58, 59] and are likely involved in the observed matu-
ration of bystander cells. Additionally, type-I interferons were shown to augment the efficiency
of cross-presentation [60]. Full maturation of bystander cells therefore suggests that these cells
play a critical role in the priming of T-cell responses via cross-presentation of antigens,
acquired from apoptotic infected cells. In accordance to this assumption, we hypothesize that
GFP+ cells with restored levels of CD83 at 48 hpi represent mature bystander DCs that
acquired GFP by phagocytosis of apoptotic NSR-infected DCs.

A surprising finding was the gradual downregulation of CD83 in NSR-infected DCs. Inter-
estingly, NSR infection also prevented CD83 upregulation by LPS. Downregulation of CD83 is,
however, not an unusual consequence of virus infection of DCs. In HIV-1 infected DCs, a
reduced surface exposure of CD80, CD86 and CD83 was observed, which was shown to result
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from downregulation of the respective mRNAs, mediated by the Vpr protein [61]. Human
cytomegalovirus infection of mature DCs was shown to cause a decrease in surface expression
of CD83 which coincided with detection of a soluble form of this molecule in the cell culture
medium [34]. Herpes simplex virus 1 infection of mature DCs resulted in rapid proteasomal
degradation of CD83, mediated by the viral immediate-early protein ICPO [35, 62]. In all cases,
CD83 downregulation correlated with a reduced capacity to stimulate naive T cells, revealing
that targeting of CD83 is employed by these viruses as a specific means of immune evasion.

In NSR-infected cells, CD83 downregulation was not correlated with decreases in mRNA
levels. The similar amounts of CD83 mRNA in DCs regardless of the maturation state are con-
sistent with the mRNA pools previously described by Kruse et al [30]. Notably, the mRNA lev-
els of two house-keeping genes were significantly downregulated in infected DCs, suggestive of
a general suppression of cellular mRNAs, which can be attributed to early apoptotic events
associated with degradation of cellular mRNA [47, 48]. Additionally, viral cap-snatching could
be involved, resulting in destabilization of cellular mRNA and accelerated degradation. The
unaffected CD83 mRNA levels and the induced levels of CD80 mRNA in infected DCs could
be explained by increased stability of mRNAs that encode proteins dedicated to DC maturation
and antigen presentation.

The lack of correlation between the stable mRNA levels and the reduction of CD83 in
infected cells led us investigate whether CD83 downregulation occurs at the protein level. NSR
infection did not result in increased amounts of CD83 in the cell culture medium. Analysis of
cell lysates revealed that CD83 levels in NSR-infected cells were low and comparable to the lev-
els in unstimulated cells. This finding suggested that in infected cells the protein was either not
produced or very efficiently degraded. Involvement of enhanced degradation was investigated
by using inhibitors of the major cellular protein degradation routes. Inhibition of the proteaso-
mal protein degradation route did not restore levels of CD83 in NSR-infected DCs. Inhibition
of endocytosis at early time points after infection (6 hpi) only partially restored CD83 levels,
while inhibition at later time points (12 hpi) did not result in restoration of CD83 levels. These
data demonstrate that downregulation of CD83 does not result from proteasomal degradation
or lysosomal degradation following endocytosis. Considering all our findings, we propose that
CD83 in NSR-infected cells is downregulated at the translational level. This notion is further
supported by the kinetics of CD83 downregulation. CD83 downregulation occurs relatively
slowly, after an initial upregulation that peaks between 8 and 12 hpi. In contrast, HSV-1-medi-
ated downregulation that was shown to depend on proteasomal degradation was already signif-
icant within 10 hpi. The initial upregulation after NSR infection can be explained by the
presence of protein and mRNA pools of CD83 in immature DCs that are ready to be mobilized
upon stimulation [30, 36, 63]. Thus, we propose a model where infection with NSR is sensed
by DCs, resulting in surface exposure of CD83 originating from intracellular pools. As viral
replication and protein synthesis progresses, an unknown viral and/or cellular factor inhibits
translation of CD83. CD83 originating from the protein pools is recycled normally but not
replenished, resulting in relatively slow downregulation.

In summary, we demonstrate that NSR infection of monocyte-derived immature DCs
results in incomplete maturation, associated with gradual downregulation of CD83. The
observed downregulation is attributed to inhibition at the translational level. Bystander cells
reached a fully matured phenotype, which suggests that these cells play a central role in NSR-
mediated immunity. Considering our findings, it is interesting to speculate about the impor-
tance of DC targeting and cross presentation in NSR-mediated immunity, which we plan to
address in future studies.
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Supporting Information

S1 Fig. Evaluation of the specificity of CD83 FISH assay. DCs were stimulated with LPS or
co-incubated with LPS and Actinomycin D or LPS and Leptomycin B for 24 h and then probed
for CD83 mRNA. Shown are representative cells from the respective treatments. Cells from
one donor were used.

(TIF)

S1 Table. Sequences of the primers used for quantification of CD83, CD80, GAPDH and
PPIA mRNAs by real-time PCR.
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