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Abstract
The architecture of iso-orientation domains in the primary visual cortex (V1) of placental car-

nivores and primates apparently follows species invariant quantitative laws. Dynamical opti-

mization models assuming that neurons coordinate their stimulus preferences throughout

cortical circuits linking millions of cells specifically predict these invariants. This might indi-

cate that V1’s intrinsic connectome and its functional architecture adhere to a single optimi-

zation principle with high precision and robustness. To validate this hypothesis, it is critical

to closely examine the quantitative predictions of alternative candidate theories. Random

feedforward wiring within the retino-cortical pathway represents a conceptually appealing

alternative to dynamical circuit optimization because random dimension-expanding projec-

tions are believed to generically exhibit computationally favorable properties for stimulus

representations. Here, we ask whether the quantitative invariants of V1 architecture can be

explained as a generic emergent property of random wiring. We generalize and examine

the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation

domains in the visual cortex arise through random feedforward connections between semi-

regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive

closed-form expressions for cortical receptive fields and domain layouts predicted by the

model for perfectly hexagonal RGCmosaics. Including spatial disorder in the RGC positions

considerably changes the domain layout properties as a function of disorder parameters

such as position scatter and its correlations across the retina. However, independent of

parameter choice, we find that the model predictions substantially deviate from the layout

laws of iso-orientation domains observed experimentally. Considering random wiring with

the currently most realistic model of RGC mosaic layouts, a pairwise interacting point pro-

cess, the predicted layouts remain distinct from experimental observations and resemble
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Gaussian random fields. We conclude that V1 layout invariants are specific quantitative sig-

natures of visual cortical optimization, which cannot be explained by generic random feed-

forward-wiring models.

Author Summary

In the primary visual cortex of primates and carnivores, local visual stimulus features such
as edge orientation are processed by neurons arranged in arrays of iso-orientation
domains. Large-scale comparative studies have uncovered that the spatial layout of these
domains and their topological defects follows species-invariant quantitative laws, pre-
dicted by models of large-scale circuit self-organization. Here, we ask whether the experi-
mentally observed layout invariants might alternatively emerge as a consequence of
random connectivity rules for feedforward projections from a small number of retinal cells
to a much larger number of cortical target neurons. In this random wiring framework, the
semi-regular and spatially granular arrangement of retinal ganglion cells determines the
spatial layout of visual cortical iso-orientation domains—a hypothesis diametrically
opposed to cortical large-scale circuit self-organization. Generalizing a prominent model
of the early visual pathway, we find that the random wiring framework does not reproduce
the experimentally determined layout invariants. Our results demonstrate how compari-
son between theory and quantitative phenomenological laws obtained from large-scale
experimental data can successfully discriminate between competing hypotheses about the
design principles of cortical circuits.

Introduction
Processing high-dimensional external stimuli and efficiently communicating their essential
features to higher brain areas is a fundamental function of any sensory system. For many sen-
sory modalities, this task is implemented via convergent and divergent neural pathways in
which information from a large number of sensors is compressed into a smaller layer of neu-
rons, transmitted, and then re-expanded into a larger neuronal layer. When sensory inputs are
sparse, compression of the inputs through random convergent feedforward projections has
been shown to retain much of the information present in the stimuli [1–3]. On the other hand,
random expanding projections can lead to computationally powerful high-dimensional repre-
sentations of such compressed signals, which combine separability of the inputs with high sig-
nal-to-noise ratio to facilitate downstream readouts [4]. Given these computational benefits,
one might expect randomness to be a fundamental wiring principle employed by different sen-
sory systems. The most striking example of a random expansion so far has been observed in
the olfactory system of Drosophila melanogaster. Kenyon cells in the fly brain’s mushroom
body were shown to integrate input from various olfactory glomeruli in combinations that are
consistent with purely random choices from the overall distribution of glomerular projections
to the mushroom body [5].

What is the role of random projections between neural layers in mammalian sensory systems?
Sompolinsky and others have argued that the human visual system, for instance, implements a
compression-transmission-expansion strategy [3, 4]. In fact, visual stimulus information is trans-
mitted from about 5 million cone photoreceptors [6, 7] to 1 million retinal ganglion cells (RGCs)
[7] and then via the optic nerve to about 1 million lateral geniculate relay cells [8] to on the order
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of 100 million neurons in the primary visual cortex (V1) [9, 10]. We note that, while the overall
connectivity indeed suggests compression for peripheral retinal regions [11], close to the fovea
RGC density is higher than the density of photoreceptors [12, 13].

How much does randomness contribute to shaping the functional architecture of early
visual cortical areas? Projections between individual layers of the early mammalian visual path-
way are clearly not entirely random. Visual information is mapped visuotopically from the ret-
ina to V1 such that neighboring groups of V1 neurons process information from neighboring
regions in visual space. Yet, it has long been realized that many features of the spatial progres-
sion of receptive fields across V1 layer IV naturally emerge if random feedforward connections
from groups of RGC cells to layer IV neurons (via the lateral geniculate nucleus (LGN)) are
assumed (see [14] for an early example). The most important of such features is orientation
selectivity, i.e. the selective response to edge-like stimuli of a particular orientation. In carni-
vores, primates and their close relatives, orientation selectivity is arranged in patterns of iso-
orientation domains. Iso-orientation domains (orientation domains for short) in V1 exhibit a
continuous, roughly repetitive arrangement. A distance in the millimeter range, called the col-
umn spacing, separates close-by domains preferring the same orientation. The continuous pro-
gression of preferred orientations is interrupted by a system of topological defects, called
pinwheel centers, at which neurons selective to the whole complement of stimulus orientations
are located in close vicinity [15–20]. These topological defects exhibit two distinct topological
charges, indicating that preferred orientations change clockwise or counterclockwise around
the defect center [15, 18, 21–23].

More than 25 years ago, Soodak [24, 25] (see also [26]) proposed random wiring between
irregularly positioned retinal ganglion cells (RGCs) and layer IV neurons in V1 via the thala-
mus as a candidate mechanism defining the pattern of iso-orientation domains. According to
this statistical wiring hypothesis, a V1 neuron randomly samples feedforward inputs from
geniculate projections in the immediate vicinity of its receptive field center (see e.g. [27]). The
neuron then is likely to receive the strongest inputs from a central pair of ON/OFF RGCs,
forming a so-called RGC dipole [28–30]. In this scheme, one ON and one OFF subregion dom-
inate the receptive field (RF) of the V1 neuron and its response is tuned to the orientation per-
pendicular to the dipole axis. Thus, the preferred orientation of the neuron in this case is
determined by the orientation of the RGC dipole. Consequently, the key prediction of the sta-
tistical wiring hypothesis is that the spatial arrangement of ON/OFF RGC cells in the retina
essentially determines the spatial layout of orientation preference domains in V1.

Recently, Paik & Ringach showed that the statistical wiring hypothesis—when constructed
with a hexagonal grid of RGCs—predicts a periodic orientation domain layout with a hexago-
nal autocorrelation function [28]. Moreover, it predicts that orientation preference is differ-
ently linked to the visuotopic map around pinwheels of positive or negative topological charge
[29]. Qualitative signatures of both predictions were reported to be present in experimentally
measured patterns [28, 29]. Thus the statistical wiring model has conceptual appeal and is a
mechanistically particularly transparent candidate explanation for V1 functional architecture
(see however [31, 32]). Does the predictive power of the random wiring hypothesis for the
early visual pathway reach beyond this qualitative agreement?

The recent discovery of species-invariant quantitative layout laws for the arrangement of
pinwheel centers in tree shrews, galagos and ferrets [23] provides a unique opportunity to
address this question. Kaschube et al. demonstrated that in these species, the statistics of pin-
wheel defect layouts is quantitatively invariant, with potential deviations in geometrical layout
parameters of at most a few percent [23]. Specifically, the overall pinwheel density, defined as
the average number of defects within the area of one square column spacing Λ2 was found to
be virtually identical. Subsequently, orientation domain layouts from cat V1 were shown to
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exhibit pinwheel densities very close to those of the three species previously studied [33]. Addi-
tionally, Kaschube et al. found an entire set of local and non-local quantitative pinwheel layout
features to be species-invariant (see below). Following [23], we refer to this overall layout of
orientation domains as the common design.

During mammalian evolution, the common design most likely arose independently in car-
nivores and euarchontans and potentially even in scandentia [23, 34]. This is suggested by two
lines of evidence: (i) The four species in which the common design has been observed so far are
widely separated in terms of evolutionary descent, belonging to distinct supra-ordinal clades
that split already during basal radiation of placentals [35–42] (Fig 1A, see also [23, 33]). Their
last common ancestor was a small shrew-like mammal [40–42] that is unlikely to have pos-
sessed a columnar V1 architecture [23, 34]. (ii) Distinct neuronal circuits underlie the genera-
tion of orientation selectivity in galago, ferret, tree shrew, and cat (Fig 1B). Tree shrews, for
instance, lack orientation selectivity in the input layer IV of V1 [43, 44] and use intracortical
circuits to compute contour orientation. In contrast, cats exhibit both, orientation selectivity
and organization of selectivity into orientation domains already in layer IV and thus first gen-
erate orientation selectivity by thalamo-cortical circuits [45, 46] (see Fig 1B for further
differences).

Kaschube et al. used a dynamical self-organization model with long-range suppressive inter-
actions, the long-range interaction model, to explain all features of the common design [23].
The hypothesis that randomness of feedforward connections between the retina/LGN and V1
could explain the common design is conceptually diametrically opposed to large-scale self-
organization. In the long-range interaction model, the orientation preference of a neuron is
chosen from an, in principle, unlimited afferent repertoire of potential receptive fields. Single
neurons dynamically select a particular preferred orientation as a result of large-scale circuit
interactions involving millions of other cortical neurons. In the statistical connectivity model,
to the contrary, the preferred orientation of a cortical neuron is essentially imposed by the
alignment of only one pair of neighboring ON-OFF RGCs, a local process involving in princi-
ple not more than 5 cells. Can the invariant layout laws of iso-orientation domains and pin-
wheels be explained as the generic outcome of a locally stochastic feedforward wiring of the
early visual pathway? More generally, do iso-orientation domains and pinwheels in different
species adhere to identical layout laws because any mechanism that generates a retinotopic ran-
dom feedforward circuit will automatically set up a layout that adheres to the common design?

Here, we systemically investigate the arrangements of iso-orientation domains generated by
the statistical connectivity model and assess their consistency with the experimentally observed
common design invariants. First, we consider the statistical wiring model with perfectly hexag-
onal mosaics of RGCs, its most tractable form. We derive closed-form expressions for cortical
neuron receptive fields and orientation domain layouts resulting from the Moiré interference
effect of hexagonal ON and OFF ganglion cell mosaics [28, 29]. The pinwheel density of these

pinwheel layouts is r ¼ 2
ffiffiffi
3

p � 3:46, substantially larger than experimentally observed. We
then characterize the orientation domain layouts resulting from spatially disordered hexagonal
mosaics. We find that parameters of RGC position disorder can not be tuned such that the sta-
tistical wiring model’s layouts match the quantitative invariants of the common design. Next,
we examine a generalized class of noisy hexagonal mosaics that allows for spatially correlated
disorder of RGC positions. This correlated retinal disorder induces local variations in column
spacing, mimicking column spacing heterogeneity in the visual cortex [47, 48]. With these
mosaics, Moiré interference persists to larger disorder strength. Pinwheel densities, however,
are unaffected by low and intermediate levels of disorder and increase from a lower bound of
3.5 for stronger disorder. Finally, we characterize the statistical connectivity model with RGC

RandomWiring and the Functional Architecture of the Visual Cortex

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004602 November 17, 2015 4 / 40



mosaics generated by Eglen’s pairwise interaction point process (PIPP), the most realistic
model for RGC mosaics currently available [31, 32, 49]. The resulting arrangements of iso-ori-
entation domains and pinwheels are identical to those predicted by Gaussian random field
models [22, 50, 51]. Their pinwheel densities can be tuned by applying band pass filters of

Fig 1. Common laws for the layout of iso-orientation domains in different mammalian species. A Phylogenetic relationships and macroevolution of
laurasiatheria, euarchonta and glires [33–36, 52, 53]. B Key features of the thalamo-cortical pathway for cat [27, 45, 46, 54–65], macaque [66–73], treeshrew
[19, 43, 44, 74–76] and mouse [77–81] at the level of retina/LGN and layer IV and II/III of V1. All species show orientation selective neurons in layer II/III, but
only cat, ferret, and mouse exhibit orientation selectivity in input layer IV. Ocular dominance domain layouts differs greatly between all four species, macaque
is the only species listed possessing trichromatic color vision. Only cat and macaque V1 display cytochrome oxidase blobs. Non-classical receptive fields are
mediated by different circuits in cat, tree shrew and macaque. C Pinwheel density ρ in ferret (N = 82), dark-reared ferret (N = 21), cat (N = 13), tree shrew
(N = 26), and galago (N = 9). Light green shading indicates one–species consistency range, dark green shading indicates common design consistency range
(see text). D Illustration of the common design layout features, nearest neighbor (NN) distances, and pinwheel density in subregions of varying size. E, F
Standard deviations (SD) of pinwheel densities as a function of the area A of randomly selected subregions. SD(A) is well described by a power law with
variability exponent γ (F, top) and variability coefficient c (F, bottom). (G-J) Nearest neighbor distance distributions for pinwheels of arbitrary (G), opposite (H)
and equal (J) topological charge in units of the column spacing. Insets indicate species means. All error bars represent 95% confidence intervals of the
bootstrap distributions.

doi:10.1371/journal.pcbi.1004602.g001
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different bandwidths. However, for all plausible filter shapes, pinwheel densities are substan-
tially larger than experimentally observed.

Our findings demonstrate that the mechanism for seeding patterns of iso-orientation
domains described by the stochastic wiring model predicts column arrangements substantially
different from the long-range interaction model and distinct from the experimentally observed
invariant common design.

Results

A benchmark for models of orientation domains in V1
Our overall goal was to assess whether the layout of orientation domains predicted by the sta-
tistical wiring model are consistent with the observed common design invariants. To achieve
this, we first sought to establish a benchmark for models of orientation domain layouts in gen-
eral, to which predicted layouts can then be compared. To this end, we re-analyzed the data set
used in [23] using the fully automated method described in the same study. The data set con-
tains optical imaging of intrinsic signal experiments from tree shrew (N = 26), ferrets (N = 82),
dark-reared ferrets (N = 21) and galagos (N = 9). Because many previous studies used the sta-
tistical wiring model with parameters optimized to mimic the early visual pathway of the cat,
e.g. [82], we additionally analyzed data from 13 cat V1 hemispheres.

Following [23], we first computed the average pinwheel densities (Fig 1C). Pinwheel densities
of all four species, including cat were statistically indistinguishable from each other and statisti-
cally indistinguishable from π (dark-reared ferrets excluded)—the value predicted for the aver-
age pinwheel density by the long-range interaction model [23]. As a measure of pinwheel
position variability, spanning all scales from single hypercolumn to the entire imaged region, we
calculated the standard deviation, SD, of pinwheel density estimates in circular subregions of
area A (see Fig 1D for an illustration). For all species, the function SD(A) was well described by

SDðAÞ ¼ c
r
A

� �g

ð1Þ

(Fig 1E) with ρ denoting the average pinwheel density. The variability exponents γ and variabil-
ity coefficients c were similar in all four species (Fig 1F). As a measure of relative pinwheel posi-
tioning on the hypercolumn scale, we computed the nearest neighbor (NN) distance statistics
for pinwheels of same or opposite topological charge as well as independent of their topological
charge (see Fig 1D for an illustration). Distance distributions were unimodal and very similar
(Fig 1G–1J). Importantly, the distributions obtained from cat V1 were indistinguishable from
the other three species. Mean NN distances, when measured in units of hypercolumns, were sta-
tistically indistinguishable (Fig 1G–1J, insets). These findings confirm the results of [23, 33] and
show that cat primary visual cortex follows the same quantitative layout laws as in tree shrew,
galago and ferret.

From the above results, we extracted two types of consistency ranges that can be used as a
benchmark for models of orientation domains in V1. To be consistent with an observed layout
of orientation domains, a model’s predictions should not be significantly different from experi-
mental observations in at least one species. We thus defined one species consistency ranges
spanned by the minimal lower and maximal upper margin of the single species confidence
intervals for each parameter. If a model’s predicted layout parameters are located outside one
or more of the one species consistency ranges, data from every species rejects this model at 5%
significance level. This criterion is thus conservative in nature and does not assume that there
is in fact one species invariant common design. If such a truly universal common design for
orientation domains in fact exists, it would be appropriate to pool data from different species
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and to consider the more precisely defined confidence intervals of the grand average statistics
as the relevant benchmark. To perform this more demanding test of model viability, we also
defined common design consistency ranges as the 95% bootstrap confidence intervals obtained
from the whole data set. If the layout parameters predicted by a model are within all of the
common design consistency ranges, the model offers a quantitative account of the bona fide
universal common design. If one or more layout parameters have predicted values outside the
common design consistency ranges the model is inconsistent with the common design. With
the current data set, if a model is common design consistent, it is also one species consistent.
One species (common design) consistency ranges are shaded in light (dark) green in Fig 1C,
1E–1J and summarized in Table 1. The tests of model viability defined above are most simply
performed if the parameter values predicted by a model are determined exactly or with a
numerical error that is much smaller than the empirical uncertainties. For models that can be
solved accurately numerically, this can in principle always be achieved by a sufficiently large
sample size of simulations. In the following, through analytical and numerical calculations, we
will perform a comprehensive search through the statistical wiring model’s parameter space to
identify regimes in which the model is one species consistent or common design consistent.

The statistical wiring model
The statistical wiring model formalizes the hypothesis that the spatial progression of orienta-
tion preference domains arises from the spatial distribution of RGC receptive fields on the ret-
ina via feedforward wiring. Fig 2A shows a simplified schematics of the early visual pathway in
the cat [27, 45, 46, 54–65], from the retina to layer IV of V1. A stimulus is focussed onto the
retina through the cornea and lens, is sampled by RGC RFs and transmitted to the LGN. LGN
neurons project to stellate cells in layer IV of V1, whose responses are orientation tuned. Orien-
tation tuning varies smoothly across the cortical surface.

In the model, RGCs are assumed to be mono-synaptically connected one-to-one to relay
cells in the LGN. Thus, the receptive fields of LGN neurons are similar to those of RGCs and
the spatial arrangement of ON/OFF receptive fields of relay cells in the LGNmirrors the RGC
receptive field mosaic. Neurons in the model visual cortex linearly sum inputs of LGN neurons

Table 1. The six orientation domain layout parameters characterizing the common design. Values were calculated with the code provided in the sup-
plemental material and intervals indicate 95% bootstrap confidence intervals. Also shown is the grand average and the associated one species and common
design consistency ranges (CR).

Pinwheel density
ρ

NN distance ind.
charge

NN distance same
charge

NN distance opp.
charge

Variab. exp. γ Variab. coeff.
c

Ferret 3.14 [3.06, 3.23] 0.355 [0.347, 0.363] 0.523 [0.521, 0.539] 0.393 [0.383, 0.403] 0.40 [0.37,
0.44]

1.07 [0.97,
1.15]

Dark-reared Ferret 3.30 [3.16, 3.42] 0.346 [0.334, 0.361] 0.511 [0.499, 0.528] 0.381 [0.366, 0.401] 0.39 [0.35,
0.46]

1.02 [0.90,
1.12]

Cat 3.24 [3.06, 3.42] 0.366 [0.352, 0.381] 0.534 [0.519, 0.551] 0.407 [0.388, 0.428] 0.48 [0.41,
0.58]

0.83 [0.68,
0.95]

Treeshrews 3.08 [2.99 3.16] 0.364 [0.359 0.370] 0.521 [0.514 0.528] 0.404 [0.396 0.411] 0.36 [0.34
0.39]

1.13 [1.05
1.19]

Galago 3.12 [2.93, 3.27] 0.363 [0.345, 0.381] 0.536 [0.522, 0.556] 0.396 [0.375, 0.417] 0.45 [0.42,
0.52]

0.85 [0.71,
0.99]

Ensemble Average 3.14 0.359 0.525 0.396 0.40 1.05

Common Design–
CR

[3.09 3.19] [0.344 0.357] [0.506 0.522] [0.387 0.399] [0.37 0.42] [0.99 1.11]

One Species–CR [2.93, 3.42] [0.334, 0.381] [0.499, 0.556] [0.366, 0.428] [0.34, 0.58] [0.68, 1.19]

doi:10.1371/journal.pcbi.1004602.t001
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(Fig 2B). Their spatial receptive fields and orientation preferences are assumed to solely depend
on the spatial arrangement of their afferent inputs. V1 neurons are assumed to receive domi-
nant inputs from a small number of geniculo-cortical axons. Most of them sample from a single
pair of ON/OFF RGCs, a so-called RGC dipole (Fig 2B). The neuron’s receptive field then con-
sists of one ON and one OFF subregion and its response to edge-like stimuli is tuned to an
edge orientation orthogonal to the RGC-dipole vector (Fig 2B). Within a mosaic of ON and
OFF center RGCs, many such dipoles are present and the spatial arrangement of dipoles on the

Fig 2. Early visual pathway, RGC dipoles, and Moiré interference of RGCmosaics. A Schematic illustration of the early visual pathway following the
organization in the cat (see text for details).BOrientation selective receptive fields can arise through summation of two adjacent rotationally symmetric
retinal/LGN receptive fields (RGC dipole). Shown are ON and OFF center mosaics from cat retina [26]. Colors indicate ON (red) and OFF (blue) regions of a
receptive field in the LGN (left and middle) and V1 (right). For illustration, the RGCmosaic is overlaid and the two RGCs whose RFs are summed are shown
as black and white dots. C Left: Moiré interference between a hexagonal ON (white dots) and OFF (black dots) RGC lattice with relative orientation Δα and
lattice constants r and r0 (black bars) creates a Moiré pattern with lattice constant S � r. Middle: sampling from this RGCmosaic as described in B (and text)
yields a periodic orientation preference pattern through Moiré interference. Right: Model layout predicted by the statistical wiring model, obtained by
thresholding and smoothing the pattern in the middle (see text).

doi:10.1371/journal.pcbi.1004602.g002
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retina determines how tuning properties, e.g. the preferred orientation, change along a two-
dimensional sheet parallel to the layers of the visual cortex. If ON and OFF RGCs are posi-
tioned on hexagonal lattices, the model predicts that a hexagonal pattern of orientation prefer-
ence can arise through Moiré interference (MI) between the two lattices (Fig 2C).

Following [28, 83], we model RGC receptive fields using a Gaussian function GRFj(x) of
width σr localized at the center position xj:

GRFjðxÞ ¼ � exp �ðxj � xÞ2
2s2

r

 !
; ð2Þ

where x indicates position in retinal space. All subsequent results remain qualitatively
unchanged if a biologically more realistic difference-of-Gaussians (see [84]) is used. A plus or
minus sign in Eq (2) indicates an ON or OFF center cell, respectively. The receptive field RFy of
a visual cortical neuron at position y in the two-dimensional cortical sheet is obtained by sum-
ming several ganglion cell receptive fields with positive synaptic weights wj:

RFyðxÞ ¼
X

j

wjðyÞGRFjðxÞ : ð3Þ

The synaptic weights are chosen as

wjðyÞ ¼ exp �ðxj � yÞ2
2s2

s

 !
: ð4Þ

The parameter σs sets the range from which a V1 neuron receives retino-thalamic inputs, xj
denotes the center of an RGC receptive field. According to Eq (3) the spatial distribution of
RGC locations determines how response properties change across cortex. For σs smaller than
the lattice spacing, each cortical cell receives substantial input only from a very small number
of ganglion cells. Inputs received by most cortical cells are dominated by one ON and one OFF
center RGCs (see inset in Fig 2A), forming an RGC dipole. The small σs regime is thus generally
referred to as the dipole approximation of the model. While the dipole approximation leads to
the robust emergence of simple-cell receptive fields with one (ON, OFF) or two (ON-OFF) sub-
fields in the model V1 layer, it is worth mentioning that simple cells in cat and macaque mon-
key sometimes have more than two aligned, regularly spaced subfields (e.g. ON-OFF-ON or
OFF-ON-OFF) (see [85, 86]). In the dipole approximation of the statistical wiring model, such
simple-cell RFs almost never occur. While the model as defined above implements a determin-
istic wiring scheme, it represents a simplification of a more detailed formulation of the statisti-
cal connectivity model proposed in [83]. In the more detailed formulation, the synaptic
weights between the cortical units and the retina/LGN are chosen at random from a Gaussian
distribution with the shape given in Eq (4). Ringach established in [83] that the spatial struc-
ture of the resulting domain layouts for the detailed and simplified model are nearly identical.
We therefore refer to the model as statistical connectivity model.

We used the linear response assumption [87, 88] to determine cortical stimulus responses.
A response R of a cortical neuron is modeled by the inner product between its receptive field
RFy(x) and the stimulus, in our case an illumination pattern L(x):

Ry ¼
Z

d2xRFyðxÞ LðxÞ : ð5Þ

Because Ry can become negative, a firing rate f of the cortical neuron is then defined through a
static nonlinearity, e.g. half-wave rectification [87]. For the purposes of the present study, this
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nonlinearity can be neglected assuming that it does not alter core properties of the receptive
field such as orientation preference and spatial frequency preference [82, 83].

We derived close-form expressions for the pattern of cortical receptive fields across V1 that
arises through Moiré interference in the case that ON and OFF center cells are localized on per-
fectly hexagonal lattices with different lattice constants r and r0 and relative angle α between
the lattices (see Fig 2C). Detailed derivations are provided in Methods, along with closed-form
expressions for receptive fields, the frequency response of orientation selective neurons, and
their spatial organization.

Fig 3A depicts the analytically calculated orientation preference pattern generated through
Moiré interference between two hexagonal ON/OFF RGC mosaics. Iso-orientation domains

Fig 3. Receptive fields and iso-orientation domains in the Moiré interference model. A Top: Moiré interference between two RGCmosaic (left) with ON
and OFF center RGCs illustrated as white and black dots. The corresponding orientation domain layout (Eq (52) in Methods) is shown on the right with the
mosaic overlaid. Bottom: low frequency contribution of the domain layout. Black arrows indicate the lattice constant S � r of the Moiré pattern, white hexagon
indicates the unit cell of the domain layout.B Inset of the layout shown in A with RFs of three closely spaced neurons. Scale bar indicates distance on the
retina.C Circular distance (see text) between the preferred angles of unfiltered and low-pass filtered domain layouts shown in A top and bottom. Bottom:
Histogram of differences in preferred angles. Model parameters: σr = 70 μm, σs = 20 μm, lattice constants r = r0 = 170 μm, and a relative angle Δα = 7° leading
to a scaling factor of S = 8.2 (Eq (10)), as proposed in [28, 29].

doi:10.1371/journal.pcbi.1004602.g003
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are organized in fine-grained parcellations on small scales and repeat in a hexagonal pattern on
a larger scale Λ. The larger scale is the predicted column spacing of the orientation domain lay-
out (see Methods), and model parameters are chosen such that Λ� 1mm as experimentally
measured (see Methods and [28, 29] for details). The scale of the small parcels therefore
is< 200μm. A magnified view of a small region of the domain layout is provided in Fig 3B
along with three analytically determined cortical receptive fields at closely spaced locations
roughly 100μm apart from each other. These receptive fields highlight that individual parcels
contain highly tuned units with vastly different preferred orientations. This means that orienta-
tion preference changes abruptly on scales< 200μm in the predicted patterns. Clearly, these
features distinguish the obtained pattern of orientation preferences from the experimentally
observed domain layouts. While orientation selectivity in V1 exhibits some small scale scatter
within orientation domains [89, 90], two-photon imaging suggests that orientation preferences
progresses rather smoothly across the cortical surface [65, 78].

Orientation preference maps from crystalline RGCmosaics
Paik & Ringach implicitly assumed that random feedforward wiring from the retina/LGN to
V1 effectively results in a smoothed version of the dipole layout (see Fig 2C). To extract this
smooth pattern of orientation preferences from the statistical connectivity model, they adopted
a two-step procedure to suppress the small-scale variation in the Moiré interference pattern:
First, locations with orientation selectivity index (OSI) larger than a threshold value are deter-
mined [28, 29, 82, 83]. Second, the orientation selectivity of all other location is set to zero. The
resulting layout is then filtered with a Gaussian lowpass filter resulting in continuous and
smooth array of iso-orientation domains [28, 29, 82].

We find that the thresholding/smoothing procedure effectively extracts the dominant lowest
spatial frequency Fourier components of the Moiré interference pattern. As derived in Meth-
ods, the lowest spatial frequency contribution to the Moiré interference pattern consists of six
Fourier modes with identical amplitude and wave number

kc ¼ 4pffiffiffi
3

p
rr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos ðDaÞ

p
; ð6Þ

Here, r, r0 denote to the lattice constants and Δα the angle between the hexagonal ON/OFF lat-
tices (Fig 2C). The smooth orientation domain layout resulting fromMoiré interference can
therefore be summarized in a complex-valued field z(y) composed of six planar waves with
wave numbers kj and fixed phase factors uj,

zðyÞ ¼
X6
j¼1

exp ðikjyÞ � uj : ð7Þ

The pattern of preferred orientations across the cortical coordinate y is given by the phase of
this complex-valued field as,

Wpref ðyÞ ¼
1

2
arg zðyÞð Þ : ð8Þ

Fig 3A (bottom) depicts ϑpref(y) as analytically determined. The pattern of pinwheels and iso-
orientation domains is organized into a smooth hexagonal crystalline array. Interestingly, an
identical layout of iso-orientation domains was constructed by Braitenberg et al. [91] based on
an the idea that orientation preference is generated by discrete centers of inhibition in V1. It
was also found by Reich et al. to solve a symmetry defined class of models for the self-organiza-
tion of iso-orientation domains [92, 93]. Fig 3C shows the differences in preferred angle
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between the unfiltered domain layout of the Moiré interference pattern and its low frequency
contribution, together with a histogram of the differences. With Δ(x) = ϑ1(x) − ϑpref(x), the dif-
ference d(x) between the two preferred angles is defined as dðxÞ ¼ 1

2
abs arg e2iDðxÞð Þð Þ. The

bimodal shape of the histogram indicates that the orientation preference of a large fraction of
cortical locations differs substantially between unfiltered and smoothed layout. Roughly one
fifth of all locations exhibit differences of orientation preferences of more than 45°.

To compare our mathematical expression for the column spacing of the orientation domain
layout to previous results, Eq (6) can be rewritten by introducing a parameter β representing
the detuning between the two lattice constants in units of the lattice constant r0 ! (1 + β)r. The
expression for the column spacing becomes

Lc �
2p
kc

¼
ffiffiffi
3

p

2
� S � r ; ð9Þ

where S is the distance between two vertices of the Moiré pattern in units of r, called the scaling
factor [94–96]

S ¼ 1þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2ð1� cos ðDaÞÞð1þ bÞ

q : ð10Þ

The difference between S � r and Λc is displayed in Fig 3A (bottom). Eqs (9) and (10) are identi-
cal to previous results for the spacing of hexagonal Moiré patterns derived via geometrical con-
siderations [95, 96].

Using these explicit expressions for the iso-orientation domain layout and its column spac-
ing Λc, we first evaluated the central quantity of the common design—the pinwheel density, i.e.

the number of pinwheels per unit area L2

c . Within each unit cell of area A ¼
ffiffi
3

p
2
ðS � rÞ2, there is

one “double pinwheel” of topological charge 1, around which each orientation is represented

twice, and two pinwheels of topological charge� 1
2
. With L2

c ¼ 3
4
ðS � rÞ2 and counting the pin-

wheel with charge 1 as two pinwheels (see below), the pinwheel density is

r ¼ 2þ 2 � 1ð Þ � L
2

c

A
¼ 2

ffiffiffi
3

p
� 3:46: ð11Þ

Notably, this value is outside of both, the common design consistency range and the single spe-
cies consistency range for the experimentally measured pinwheel densities (cf. Table 1). Since
the statistical connectivity model for perfectly hexagonal RGC mosaics results in a periodic
array of pinwheels, all three nearest neighbor distance distributions of pinwheels are sharply
peaked (see also Supplementary Material of [23]) and, thus, in disagreement with the distribu-
tions experimentally observed (cf. Fig 1).

We compared these analytical results to numerically evaluated Moiré interference patterns
(Fig 4). The fine-grained layouts of numerically and analytically obtained unfiltered layouts are
almost indistinguishable (cross-correlation coeff. 0.9, Fig 4A top). This confirms the analytical
treatment and indicates accuracy of the numerical implementation. A hierarchy of discrete spa-
tial frequency contributions is apparent in amplitude spectra of both domain layouts (Fig 4A

(bottom)). The peaks at larger spatial frequencies in Fig 4A and 4B are localized at
ffiffiffi
3

p
kc as ana-

lytically predicted (see Methods).
To numerically generate the smoothed array of orientation domains, the layout in Fig 4A

(top) was thresholded (OSI> 0.25, see Methods) and subsequently smoothed with a Gaussian
lowpass filter (Fig 4B top) [28, 82]. In general, strongly tuned locations are those exactly
between ON-OFF RGC pairs (Fig 4B, inset). Fig 4C depicts the crystalline pinwheel
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arrangement of the analytically calculated smoothed layout (Eq (8)) as well as the six dominant
low frequency Moiré modes in the amplitude spectrum. While the numerically obtained lay-
outs and its analytical approximation are similar (cross-correlation coeff. 0.6), one major dif-
ference can be observed: the pinwheel of topological charge 1 is replaced by two pinwheels of
topological charge 1

2
in the numerically obtained layouts, along with subtle deformations of

adjacent orientation domains (compare Fig 4B and 4C). To see why this is the case, we note
that the pinwheel with charge 1 in the analytically calculated pattern (Eq (8)) arises from a zero
of the field z(x) (Eq (7)) with multiplicity two. A phase singularity of a complex-valued field
arising from a zero with multiplicity N> 1 is structurally unstable and unfolds upon generic
infinitesimal perturbations into N closely spaced singularities of multiplicity one [97]. The
numerical procedure of discretizing V1 unit positions on a numerical grid, OSI thresholding,
and smoothing realizes such a perturbation and this explains why in the numerical solutions
the pinwheel of charge 1 unfolds into two adjacent pinwheels of charge 1

2
.

The impact of spatially uncorrelated disorder in RGC position
So far, we have studied the idealized situation of iso-orientation domains induced by perfectly
ordered hexagonal RGC mosaics. RGCmosaics in the eye, however, are not perfectly hexagonal

Fig 4. Comparison of analytically and numerically obtained solutions of the Moiré interferencemodel. A Top: unfiltered Moiré interference patterns.
Black line separates analytical (left, see Eq (52)) from numerical result (right). Bottom: amplitude spectrum of numerically obtained Moiré interference patterns.
Red circle marks kc (cf. Eq (6)), blue circle indicates

ffiffiffi
3

p
kc. Note the high frequency contributions, indicated by the small yellow circles.B Top: Numerically

obtainedMoiré interference pattern after thresholding for cells with OSI > 0.25 (left, see Methods for the OSI definition used) and subsequent smoothing (right,
see text). Inset shows a magnified region of the OSI-filtered domain layout together with the RGCmosaic from which the neurons sample. Bottom: amplitude
spectrum of the numerically obtained thresholded and smoothed layout. Red circle indicates kc (cf. Eq (6)).COrientation domain layout (top) and amplitude
spectrum (bottom) obtained by calculating the lowest spatial frequency contributions of the layout in A (Eq (8)). All model parameters as in Fig 3.

doi:10.1371/journal.pcbi.1004602.g004
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but exhibit substantial spatial irregularity [26, 98]. Therefore, we next turned to numerically
investigate the statistical connectivity model with hexagonal RGC mosaics subject to Gaussian
disorder in RGC position as previously described [28, 29]. The effect of ganglion cells displaced
by Gaussian distributed offsets with standard deviation σ = η � r is illustrated in Fig 5. The
parameter r is the lattice constant and η is the disorder strength. Fig 5 shows the unfiltered ori-
entation domain layout (far left), the layout thresholded for cells with an OSI> 0.25 (left), the
smoothed thresholded layout (right) as well as its amplitude spectrum (far right), numerically
obtained for η = 0.12. As in the perfectly ordered case, the unfiltered layout of the noisy Moiré
interference model exhibits a substantial scatter of orientation preferences across small scales.
For a disorder strength of η = 0.12 (Fig 5A), the domain layout is still dominated by the six low-
est spatial frequency Moiré modes also present in the perfectly ordered system. For a disorder
strength of η = 0.3 (Fig 5B), the amplitude spectrum (Fig 5B, far right) lacks any indication of
theses Moiré modes indicating that Moiré interference no longer takes place. As a consequence
the resulting layouts of iso-orientation domains lack a typical column spacing.

To characterize the model orientation domain arrangements, we first calculate amplitude
spectra for both, unfiltered and smoothed layouts (Fig 5A and 5B),

jRðkÞj ¼ jZ d2x zðxÞei kxj where zðxÞ ¼ e2i Wpref ðxÞ: ð12Þ

Normalizing and radially averaging yields the so-called marginal amplitude spectrum (Fig 5C
and 5D),

f ðkÞ ¼
R 2p

0
dW jRðk cos ðWÞ; k sin ðWÞÞj

maxk
R 2p

0
dW jRðk cos ðWÞ; k sin ðWÞÞj : ð13Þ

The sharp peak at kc corresponds to the dominant Moiré mode indicating that orientation
domain layouts exhibit a typical column spacing. For increasing disorder, the relative levels of
peak height to background decreases while the peak width remains small. As expected, mar-
ginal amplitude spectra of unfiltered and the smoothed layout mainly differ in the strength of
background components. The flat amplitude spectrum of the unfiltered iso-orientation domain
layouts for large disorder strength is transformed into a Gaussian amplitude spectrum by the
lowpass filtering. Based on this assessment, the disorder strength η has to be smaller than 0.3 to
ensure that layouts exhibit a typical spacing between adjacent iso-orientation domains.

We next systematically evaluated the core layout parameters of the common design—pin-
wheel density and pinwheel nearest neighbor distance distributions for the statistical wiring
model with disordered hexagonal RGC mosaics. To compare the model predictions with exper-
iments, we estimated the column spacing of the model orientation domain layouts as well as
pinwheel layout parameters using the exact same methods that we applied to the experimental
data (see Methods). For weak disorder, column spacing estimates closely match the theoretical
prediction Λc (Fig 6A), confirming the accuracy of the wavelet method. For disorder strengths
larger then 0.12, Moiré modes are no longer the dominant spatial frequency contribution in
the model layouts and the estimated column spacing increases with disorder strength.

Having estimated the column spacing, we analyzed model orientation domain layouts with
respect to the common design parameters (Fig 6B–6D). As expected, pinwheel densities

approach the analytical predicted value of 2
ffiffiffi
3

p
for weak disorder (Fig 6B) and increase with

increasing disorder strength. This increase is largely caused by the increase in the estimated
column spacing (Fig 6A) and does not involve a massive generation of additional pinwheels for
larger disorder strength. We next calculated the standard deviation of pinwheel densities as a
function of the area A of randomly selected subregions of the iso-orientation domain layouts.
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Generally, the standard deviation’s decay with subregion size followed a power law with
increasing area size, with larger exponents for weak disorder (Fig 6D).

Fig 6E and 6F show a complete characterization of pinwheel nearest neighbor (NN) distance
distributions of the noisy Moiré interference model. Histograms for NN distances for arbitrary
charge are bimodal for weak disorder (Fig 6E). The peak at smaller NN distances results from
the unfolding of pinwheels with topological charge 1 into two adjacent pinwheels of topological
charge 1/2 for finite disorder strength (see above and Figs 3 and 4). For the same reason, the
NN distance histogram for pinwheels of identical topological charge is also bimodal (Fig 6F).
With increasing disorder strength, both distributions become unimodal (Fig 6E and 6F left).
The NN distance distribution for pinwheels of opposite sign is unimodal for all parameter val-
ues, indicating that only very few additional piwheel pairs are added to the pinwheels of the

Fig 5. Spatially uncorrelated position disorder in hexagonal RGCmosaics induce broadband noise in iso-orientation domain layouts. A
Numerically calculated orientation domain layouts with disorder strength η = 0.12. From left to right: Moiré interference pattern, filtered Moiré interference
pattern (OSI > 0.25), smooth layout and the smoothed layout’s amplitude spectrum. Insets showmagnified regions. Circles in the amplitude spectrummark
kc (red) and

ffiffiffi
3

p
kc (blue) (cf. Eq (6)). B As A but for a higher disorder strength η = 0.30.C Radially averaged normalized amplitude spectra of the orientation

domain layouts for different disorder strengths. The fluctuation strength is color coded (legend). x-axis is given in units of kc (cf. Eq (6)). D As C but for the
smoothed layouts. All other model parameters as in Fig 3.

doi:10.1371/journal.pcbi.1004602.g005
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Fig 6. Pinwheel statistics in the Moiré interference model. A Column spacing Λ estimated by the wavelet method compared to the Moiré scale Λc for
different disorder strength. B The pinwheel density ρ as function of disorder strength. Dashed line shows theoretically predicted value r ¼ 2

ffiffiffi
3

p
. Dark green

line in inset shows experimentally observed mean value ρ = 3.14.C Pinwheel density in circular regions of increasing area for η = 0.12 (blue) and η = 0.02
(red). Lines show theoretically predicted and experimentally observed values as in B inset. D The standard deviation of pinwheel density estimates for
increasing subregion size. Red line shows a power law fit to the experimental data (γ = 0.5, [23]), purple line indicates a fit to the perfectly ordered hexagonal
pinwheel arrangement (γ = 0.75, [23, 92, 93]). E Nearest neighbor (NN) distances for pinwheels irrespective of topological charge. Left: distributions for two
disorder strengths (η = 0.11, blue; η = 0.02, purple) and the experimental data (red). Right: Distributions for different disorder strengths. Color encodes the
(normalized) fraction of pinwheels at this distance. Blue and purple lines indicate disorder strengths shown on the left. The white line marks the theoretically
predicted distance of NN pinwheels (2/3Λc) for vanishing disorder [92, 93]. F same as E for pinwheels of equal charge, data green curve.G same as E for
pinwheels of opposite charge, data blue curve. H squared deviation of NN distance distributions to the experimental estimates (shown in E-G, left) as function
of disorder strength. All other model parameters as in Fig 3.

doi:10.1371/journal.pcbi.1004602.g006
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Moiré layout for small and intermediate disorder strengths (Fig 6G). The overall decay in
mean NN distance for strong disorder in all three histograms mostly reflects the increase in
measured column spacing (see Fig 6A).

Based on these results, we attempted to identify a disorder strength for which all NN pin-
wheel distance distributions resembled the experimental data. To this end, we calculated the
squared error between the calculated histograms and the experimental data as a function of dis-
order strength (Fig 6H). Smallest deviations from experimental data were obtained around η�
0.11 for all three NN distance distributions.

Fig 7 summarizes all common design features determined for disordered Moiré interference
model layouts as a function of disorder parameter and compares them to the experimentally
observed values in tree shrew, galago, ferret, dark-reared ferrets, and cats. Light (dark) green
shaded areas indicate the single species (common design) consistency ranges (see Fig 1, cf.
Table 1). With increasing disorder, pinwheel density of model layouts steadily increases from

Fig 7. Pinwheel statistics of the disordered Moiré interference model fail to match V1 functional architecture. A Pinwheel density as a function of
disorder strength in the statistical connectivity model with noisy hexagonal mosaics. Error bars indicate standard deviation around the mean for 20 model
realizations, circles indicate the mean. Green shaded areas indicate the range consistent with the experiments (see Fig 1). B The variability exponent as
function of disorder strength in comparison to the common design. C As B for the variability constant. DMean nearest neighbor distance for pinwheels
independent of topological charge in comparison to common design. E As D but for pinwheels of equal charge. F As D for pinwheels of opposite charge.G
Summary of ranges of disorder parameters consistent with the common design. Disorder strengths larger than 0.3 can be excluded by the lack of typical
column spacing in the domain layouts (cf. Fig 5). Note that there is no disorder strengths for which all features of the common design are reproduced.

doi:10.1371/journal.pcbi.1004602.g007
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r ¼ 2
ffiffiffi
3

p � 3:46 (Fig 7A) and always lies above the single species consistency range. Thus, the
pinwheel density of model orientation domain layouts is inconsistent with pinwheel densities
observed in all species. Next, we fitted the empirically observed power law, Eq (1), to the stan-
dard deviation of the pinwheel density estimate in increasing subregions of area A (see Fig 6D)
[23]. The variability exponent γ is consistent with experiments for disorder levels exceeding η
= 0.15. The variability constant c is monotonically increasing up to η� 0.15 at which point the
model domain layouts lose their typical column spacing (cf. Fig 5) and the increasing pinwheel
density ρ causes a drop (Fig 7C). Fig 7D–7F displays the mean pinwheel NN distances as func-
tion of the disorder strength, all of which substantially decrease with increasing disorder
strength. This can be attributed to the increasing mean column spacing of the domain layouts
under increasing disorder (see Fig 6A). Mean NN distances for weak disorder strength are
close to the experimental data, but NN distance distributions for pinwheels of different topo-
logical charge and independent of topological charge are bimodal for weak disorder (Fig 6E
and 6F). The latter is clearly distinct from the experimental data (cf. Fig 1, [23]). Fig 7G shows
an overview of the consistency of model orientation domain layout parameters with the data
for various disorder strengths. As can be seen, no strength of disorder results in layouts that are
consistent with the common design for all layout parameters. Perhaps, even more surprising,
pinwheel density and NN distance for pinwheels of the same sign are inconsistent with the
individual values obtained for each species, no matter how the strength of disorder is chosen.

Iso-orientation domain layouts from hexagonal RGCmosaics with
spatially correlated disorder
The above results show that the statistical connectivity model with hexagonal mosaics is unable
to reproduce all features of the common design, even if spatially uncorrelated position disorder
is imposed on the RGC positions. Whatever the source of disorder that causes the irregularity
in the RGCs’ positions, it is plausible to assume that it is correlated on scales spanning several
RGCs. Such spatial correlations would preserve the Moiré effect locally, yet generate spatial
irregularity in orientation domain layouts.

To test whether correlated positional disorder can produce model arrangements of orienta-
tion domains that match experimental observations, we generalized the noisy hexagonal mosa-
ics proposed in [28, 83] to include spatial correlations. To obtain noisy hexagonal RGC
mosaics with spatial correlations, we started with a hexagonal array of RGC positions. The
position of each lattice point xi was then shifted depending on its position according to xi! xi
+ η y(xi). The shift η y(x) with amplitude η for y(x) = (y1(x), y2(x)) was chosen from a Gaussian
random field with vanishing mean hy1(x)i = hy2(x)i = 0, fixed standard deviation std(y1(x)) =

std(y2(x)) = 1 and correlation function hyðx1Þyðx2Þi ¼ 2 exp � jx1�x2 j2
2s2

� �
with correlation

length σ (see Methods) where y1 and y2 are statistically independent. The two parameters, cor-
relation length σ and amplitude η were expressed in units of the lattice constant r.

Fig 8A and 8B illustrates this procedure. RGCs are shifted in a coordinated manner across
the plane, correlated in both direction and magnitude of the shift. The determinant of the Jaco-
bian

det JðxÞ ¼ det

@y1ðxÞ
@x1

@y1ðxÞ
@x2

@y2ðxÞ
@x1

@y2ðxÞ
@x2

0
BBB@

1
CCCA ; ð14Þ

measures the local change of RGC lattice constant. In regions of negative det J, RGCs are closer
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Fig 8. Impact of spatially correlated positional disorder in hexagonal RGCmosaics on iso-orientation domain layouts. AGeneration of spatially
correlated disorder in hexagonal RGCmosaics (see text and Methods). White dots mark ON RGC cells, gray dots marks the perfectly hexagonal ON RGC
lattice before distortion. Colors of the arrows and underlay indicate direction of RGC displacements (right colorbar). Magnitude of displacement is indicated
by color saturation (bottom colorbar). Note that nearby RGCs move into similar directions and with similar magnitude. Scale bar indicates retinal distances,
assuming ON/OFF lattice constant of 170μm. B Larger region of the mosaic shown in A (black square). Colors as in A. Contour lines mark lines of constant
det(J(x)) (see text). Scale bar indicates retinal distances. C-E Unfiltered model domain layout (left), thresholded and smoothed layout (middle) its amplitude
spectrum (right) for noise correlation length ξ = 5 and different noise amplitudes (η = 0.1 (C), η = 0.2 (D), η = 0.4 (E)). White squares in middle panels indicate
wavelength of pattern as measured by wavelet analysis (see Methods). Scale bars indicate cortical distance with parameter choices as in Fig 2 and cortical
magnification factor� 1 (see [32]). FMarginal amplitude spectra of smoothed domain layouts for ξ = 5 and different disorder strengths.G Pinwheel density of
model layouts as a function of disorder amplitude and correlation length. Red surface indicates experimentally determined value (ρ = 3.14), green surface
indicates pinwheel density in the disorder-free case (r ¼ 2

ffiffiffi
3

p
). Values for ρ� 5 are drawn as a plane at ρ = 5. H As G, but pinwheels per square millimeter r̂.

Note that the absolute number of pinwheels is largely constant. All other model parameters as in Fig 2.

doi:10.1371/journal.pcbi.1004602.g008
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together than average, in regions of positive det J, RGCs are further apart (contour lines in Fig
8B). In primates, regions of higher density are predicted to have higher cortical magnification
and vice versa [12]. The RGC mosaics with correlated positional noise therefore imply local
fluctuations in the cortical magnification factor on the scale of the noise correlation length.

Fig 8C-8E display unfiltered and smoothed model layouts obtained with spatially correlated
noisy hexagonal mosaics as well as their amplitude spectra. As expected, orientation domain
layouts exhibit a typical column spacing up to higher disorder strengths, when the position dis-
order was correlated (compare Fig 8F with Fig 5D). Locally, Moiré interference leads to a
roughly hexagonal layout of columns that is distorted on larger scales. Both, the orientation of
the hexagons as well as column spacings change continuously across the layout. For weak dis-
order, the amplitude spectrum still exhibits six peaks, indicating a globally hexagonal layout
(Fig 8C, right). For intermediate disorder local column spacing and direction of the hexagons
varies to the extend that peaks can hardly be identified in the amplitude spectrum of the result-
ing domain layout. In particular, the spatially varying local column spacing leads to a broader
peak in the radially averaged amplitude spectrum with increasing disorder strength (Fig 8F).
This is in contrast to the case of uncorrelated disorder (cf. Fig 5D). Note that experimental iso-
orientation domain layouts exhibit a similarly broad peak in their marginal amplitude spectra
[99]. We quantified the pinwheel density of orientation domain layouts obtained with corre-
lated noisy hexagonal RGCs (Fig 8G) as a function of disorder correlation length and disorder
strengths. Independent of the disorder correlation length, pinwheel densities plateau around

2
ffiffiffi
3

p
for weak disorder and monotonically increase above a critical disorder strength. This criti-

cal disorder strength is higher, the larger the correlation length. Thus, model pinwheel densities
are inconsistent with the individual values obtained for each species, no matter what the
strength of disorder or correlation length is. Fig 8H illustrates that the pinwheel density
increases with increasing disorder strength largely because the overall measured column spac-
ing increases, not because additional pinwheels appear in the layouts. In fact, the number of
pinwheels per mm2 is almost independent of either correlation length or disorder strength.

Pinwheel densities of iso-orientation domain layouts derived from PIPP
mosaics
Finally, we examined whether the statistical connectivity model could reproduce the common
design invariants with RGCs distributed in space according to a pairwise interacting point pro-
cess (PIPP). The PIPP developed by Eglen et al. [49] is currently the experimentally best sup-
ported model for RGCs mosaics and was shown by several studies to generate RGC positions
which accurately reproduce a variety of spatial statistics of RGC mosaics [31, 32, 49, 82]. The
PIPP model generates samples from a statistical ensemble of RGC mosaics by iteratively updat-
ing RGC positions to maximize a target joint probability density, specified by pairwise interac-
tions between neighboring RGCs (for details see Materials & Methods). Each PIPP mosaic
represents a random realization of a regularly-spaced RGC mosaic with radially isotropic auto-
correlograms [31] and lacks long-range positional order. Fig 9A depicts a realization of a PIPP
with parameters choosen to reproduce cat RGC mosaics (for details see Materials & Methods).
We generated thresholded and smoothed iso-orientation domain layouts from PIPP RGC
mosaics as from the ordered mosaics (Fig 9A and 9B left). The lack of long-range positional
order in ON and OFF mosaics prevents any Moiré interference between them. Thus, no typical
spacing between adjacent columns preferring the same orientation is set in the model layouts
(Fig 9B, right, see also [31, 32]). Spectral power in these layouts is broadly distributed and
monotonically decays with increasing spatial frequency. As a consequence, one needs to apply
bandpass filtering to obtain orientation domain layouts that are at least qualitatively

RandomWiring and the Functional Architecture of the Visual Cortex

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004602 November 17, 2015 20 / 40



Fig 9. Iso-orientation domain layouts obtained from PIPP RGCs with the statistical connectivity model. AGenerating orientation domain layouts from
PIPP RGCs in the statistical connectivity model [83]. Top: Inset of a PIPP RGCmosaic (see Methods). Black (white) dots represent OFF (ON) cells. Middle
top: unfiltered layout with RGCmosaics overlaid. Middle bottom: thresholded layout with RGCmosaics overlaid. Bottom: thresholded and smoothed layout (β
= 0) with RGCmosaics overlaid. Scale bar indicates retinal distances, assuming PIPP parameters as in [49]. B Left: larger region of the unfiltered layout
shown in A (black square). Scale bar indicates retinal distances. Right: normalized amplitude spectrum of unfiltered layout shown on the left. C Thresholded
and smoothed layout (top) and corresponding amplitude spectrum (bottom) for filter function parameters (see Eq (15)) β = 0 (left), β = 2 (middle), and β = 10
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resembling the experimental data. We used a flexible band-pass filtering function f(k) of the
following form to the amplitude spectrum:

f ðkÞ ¼ ajkjb exp ð�jkj2bÞ ; ð15Þ

with a, b, β> 0. The filter function was normalized such thatZ
d2k f ðkÞ ¼ 2p : ð16Þ

With this normalization, one can define the mean column spacing of the resulting layout via

L ¼ 2p=�k with

�k ¼
Z 1

0

dk 2pkf ðkÞ ¼ 1 : ð17Þ

By increasing the parameter β, the shape of the filter can be changed from Gaussian lowpass (β
= 0, Fig 9C, left) to wide bandpass (β = 2, Fig 9C, middle) and to narrow bandpass (β = 10, Fig
9C, right). There is an additional degree of freedom in this filter definition, namely how the fil-
ter is scaled relative to the absolute physical units mm−1 of the amplitude spectrum. To scan a
wide range of filter shapes and column spacings, we varied β between 0 and 10 and choose the
scaling such that Λ varied between 0.6 mm and 1.2 mm, i.e. covering the entire range of experi-
mentally observed mean column spacings in tree shrew, galago, cat, and ferret [23, 33]. We
then measured the pinwheel densities of the resulting statistical connectivity model layouts
(Fig 9E, right), where pinwheel density was defined as the number of pinwheels within an area
Λ2. Pinwheel densities were independent of the scale Λ and increased monotonically with
increasing spectral width (decreasing β). They are in general substantially larger than the exper-
imentally observed value of 3.14 (see also Fig 9C) and outside of the single-species/common-
design consistency range.

Qualitatively, iso-orientation domain layouts generated with the PIPP RGC mosaics resem-
bled those generated from Gaussian random field (GRF) [22, 50, 51] (Fig 9C). In fact, we find
that this resemblance is quantitative. Fig 9E depicts the analytical prediction [51] for the pin-
wheel density of orientation domains obtained with GRFs with a marginal amplitude spectrum
corresponding to the filter function in Eq (15) (Fig 9E, left). Pinwheel densities for GRF layouts
and layouts obtained from PIPP mosaics with the statistical connectivity model are indistin-
guishable. For the pinwheel density to be consistent with at least the single-species consistency
range (ρ< 3.42), amplitude spectra had to be much more peaked (β� 17) than experimentally
observed [99]. Finally, we filtered statistical connectivity model layouts with the Fermi-Filter
function as used in [23, 33] with cut-off wavelengths of 0.3 mm and 1.2 mm (Fig 9D). Again,
pinwheel densities were much larger than those observed in the experimental data and outside
of the single-species and common-design consistency range.

In summary, iso-orientation domain layouts generated by the statistical connectivity model
using PIPP RGC mosaics quantitatively resemble layouts derived from Gaussian random fields.
Their statistics is distinct from the statistics of experimentally measured layouts.

(right). Scale bar indicates cortical distances, assuming cortical magnification factor� 1, and Λ = 0.9mm (see Eq (17) and text). Red circles indicate kc = 2π/
Λ. Black square indicates inset in A, white square indicates Λ2. D As C but filtered with Fermi band pass filters [23]. White square (top) indicates Λ = 0.68mm,
the column spacing as measured by wavelet analysis. Red circles (bottom) indicate low pass (1.2 mm) and high pass (0.3 mm) position. Pinwheel densities
are stated with standard error of the mean. E Left: Analytically predicted pinwheel density of orientation domain layouts derived from Gaussian random fields
[51] as a function of filter parameter β and spatial scale (see text). Right: Pinwheel density of orientation domain layouts obtained from PIPP mosaics with the
statistical connectivity model as a function of filter parameter β and spatial scale. Numbers 1–3 indicate parameter choices displayed in C.

doi:10.1371/journal.pcbi.1004602.g009
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Discussion
In this study, we examined whether the statistical connectivity model—a biologically plausible
scheme of circuit disorder—is able to explain the common design of spatially aperiodic arrange-
ments of orientation domains and pinwheels in the primary visual cortex. As an analytically
tractable limiting case, we first considered the model with perfectly ordered hexagonal RGC
mosaics (Moiré interference model). For this model we derived exact expressions for receptive
fields and tuning curves as well as for unfiltered and filtered layouts. We found that unfiltered
orientation domain layouts generated by Moiré-interference exhibited a fine-grained structure
of subdomains with substantial and systematic variation in orientation preference on scales
much smaller than the typical size of orientation domains. After smoothing, the resulting Moiré
interference pattern could mathematically be expressed as the phase of a complex-valued field
composed of six planar waves. The pinwheel density of this perfectly hexagonal pattern of orien-

tation domains is r ¼ 2
ffiffiffi
3

p � 3:46. Next, we studied the layout of numerically obtained domain
layouts derived from hexagonal mosaics that are randomly distorted by spatially uncorrelated
disorder. We found that pinwheel density and pinwheel nearest neighbor statistics vary substan-
tially with the degree of randomness. Nevertheless, there was no parameter regime in which all
of the common design parameters matched experimental observations. Most prominently, the
pinwheel density increased monotonically with increasing disorder strength. To examine the
effect of noisy RGCmosaics more broadly, we introduced a more general class of noisy hexago-
nal mosaics, which allows for the inclusion of spatial correlations in RGC positional disorder.
We found that, while RGC dipole patterns for such mosaics are inherently aperiodic, the model
still predicts domain layouts that substantially deviate from experimentally observed pinwheel
layouts. Finally, we studied the model with RGCmosaics derived from Eglen’s random pairwise
interacting point process. The resulting layouts lacked a typical spacing between neighboring
orientation domains and, after bandpass filtering, pinwheel densities were inconsistent with the
values observed for any of the four species investigated.

Alternative random wiring models
The statistical wiring model analyzed in the present study is only one representative of possible
random wiring schemes. One could argue that alternative, perhaps more realistic, schemes
might do a better job at reproducing the experimentally observed pinwheel layouts. There is
good evidence that the spatial statistics of RGC mosaics is well approximated by Eglen’s PIPP
[31, 32, 49], and, hence, there is little freedom of choice at the retinal level. In contrast, at the
next network layer, two main modifications or extensions of the statistical wiring model could
be considered: (i) adding an additional layer to the feedforward network implementing the
transformation of the retinal input structure by the lateral geniculate nucleus (LGN) (ii) choos-
ing different probabilistic connectivity rules between the retinal/LGN layer and the primary
visual cortex. We argue that both modifications of the random wiring approach are unlikely to
improve the consistency of the model with experimental data.

Regarding (i), Martinez et al. [100] have recently tried to infer the mapping between RGC
inputs and LGN relay cells using a statistical connectivity approach. In their model, ON and
OFF cell types were homogeneously distributed and their polarity (ON or OFF) was inherited
from the nearest retinal input. Connection probability between RGCs and LGN neurons was
modeled as an isotropic Gaussian function of the relative distance between the RF centers of
the presynaptic and postsynaptic partners. With this simple wiring scheme, together with simi-
lar connectivity rules for the population of inhibitory interneurons, several spatiotemporal
properties of LGN RFs robustly agreed with the experimental data. In the architecture between
the retina and the LGN proposed by these authors, the dipoles of ON- and OFF-center cells
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that characterize the retinal mosaic are transformed into small clusters of same-sign relay cells.
The LGN ON-OFF dipoles occur at the boundaries of these clusters with LGN dipole orienta-
tions strongly correlating but not necessarily matching dipole orientations in the retina. Nota-
bly, dipole density and dipole angle correlation length in the LGN is not increased compared to
the retina. The data and modeling by Martinez et al. suggest that the LGN mosaics do not sys-
tematically alter the spatial structure of RGC inputs beyond providing an additional source of
dipole disorder. Additional disorder imposed by the LGNmosaics would likely add a uniform
level of disorder to all spatial frequency components in the unfiltered orientation domain lay-
outs predicted by RGC dipole structure. When hexagonal mosaics are considered, the disorder
strength that has to be assumed to match the spatial distribution of RGC cells found in experi-
ment is already rather high [28, 29, 31, 32, 83]. Additional noise is likely to obstruct any
remaining Moiré interference. We therefore speculate that when considering an additional
LGN layer, after smoothing, domain layouts for both, the noisy Moiré interference model and
the model with PIPP mosaics would be similar to those obtained with PIPP mosaics [31, 32,
82]. As we have shown in the present study, the spatial statistics of these layouts resembles
those derived from Gaussian random fields and is inconsistent with the data obtained for any
of the four species analyzed (cf. Fig 9, see also [23, 50]).

A similar argument can be made for alternative probabilistic connectivity rules between the
retinal/LGN layer and V1. As our analysis shows, the dipole structure emerging from “realistic”
RGCmosaics (be it very noisy hexagonal mosaics or PIPP mosaics) is spatially fine-grained
because dipole angles vary over short distances in cortical space relative to the typical size of an
iso-orientation domain. For this reason, the statistical connectivity model requires an additional
smoothing step (cf. Figs 4, 5 and 9) to yield smooth orientation domain layouts as observed in
experiment [65, 78]. Unless the connectivity rule is assumed to specifically select dipoles with a
similar angle from a larger spatial region of the retina, or neurons within an iso-orientation
domain are assumed to choose one particular dipole to receive the input from and ignore all
other dipoles in the vicinity, such spatial averaging within the cortical layer will always be
required no matter what the actual probabilistic connectivity rule is. Domain layouts resulting
from such spatial averaging of weakly correlated dipole angles (see also [32]) are likely to follow
layout statistics that resemble those of Gaussian random fields, independently of the connectiv-
ity rule assumed. If neurons are assumed to select specific dipoles out of the repertoire of “avail-
able” ones, then the overall spatial layout of RGC dipoles is not informative about the resulting
domain layout, which contradicts the main hypothesis of the statistical wiring model.

Ultimately, the key experiment to provide support for the random wiring approach consists
of determining both, the orientation domain layout and the retinotopic map in a single animal
and, in a second step, correlate these with the spatial arrangement of RGCs in the same animal.
This challenging experimental task is still awaiting its completion.

Spatial irregularity by disorder or optimization
So far, the only model class able to robustly reproduce all common design parameters,
describes the formation of orientation domain layouts as a deterministic optimization process
converging to quasi-periodic pinwheel-rich orientation domain patterns associated with and
stabilized by a matching system of intrinsic horizontal connections [23, 101, 102]. Irregular lay-
outs of orientation domains dynamically emerge as a consequence of large-scale circuit optimi-
zation of domain patterns and intrinsic circuits. Is this agreement between model and data
good evidence for global circuit optimization or are there simple alternative explanations such
as the random feedforward wiring hypothesis that can explain the invariant statistical proper-
ties of orientation domains? Qualitatively, it is in fact tempting to attribute the spatial
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irregularity and apparent randomness of pinwheel layouts in V1 to some general kind of “bio-
logical noise”. In this view, the quantitative laws of pinwheel organization that Kaschube et al.
found [23] would then be conceived as outcome of a largely random process underlying the
emergence of orientation domains. By now, however, all proposals based on the assumption of
disorder as the determinant of spatial irregularity have failed to reproduce the common design
parameters and laws that have now been observed in four divergent species.

Orientation domain layouts obtained from statistical ensembles of Gaussian random fields
[22, 50, 51] as well as phase randomized layouts derived from experimental data [23], exhibit
pinwheel densities that are substantially higher than experimentally observed. Importantly,
most dynamical models for the development of orientation domains produce such Gaussian
random domain layouts during the initial emergence of orientation selectivity [22, 50]. There-
fore approaches based on “frozen” early states of such models are also ruled out by the existing
data (see [103]). The present study shows that a mechanistic and biologically plausible feedfor-
ward model of the early visual pathway based on (i) noisy hexagonal placement of RGCs or (ii)
a more realistic semi-regular positioning of RGCs generated by the PIPP also generates layouts
distinct from experimental observations. These findings illustrate that orientation domains and
pinwheels positions, although spatially non-periodic and irregular, follow a rather distinct set
of layout laws. These laws cannot easily be accounted for by a spatial irregularity or random-
ness in the structure of afferent projections to visual cortical neurons.

A further conceivable and potentially critical source of stochasticity that is often overlooked
is randomness within intracortical circuits. The field approach employed in various models for
orientation domain layouts, such as the long-range interaction model, represents an idealiza-
tion of a complex network, in which every neuron is characterized by its own set of inputs and
outputs. These inputs and outputs may, at least to some extent, be stochastic. How and to what
extent randomness in intracortical connections can affect and shape orientation domain lay-
outs is not well understood. In that respect, it is interesting to note that model networks for
largely stochastic intracortical circuits are able to generate and robustly maintain orientation
selective responses to afferent inputs and can lead to highly coherent orientation domains
[104, 105].

Hexagonal order of orientation domains
Paik & Ringach reported indications of hexagonal order in visual cortical orientation domain
patterns of tree shrew, ferret, cat, and macaque monkey [28, 29]. Two recent studies have casted
doubt on the hypothesis that this hexagonal order echoes hexagonal or quasi-hexagonal
arrangements of ganglion cell mosaics in the retina [31, 32]. Hore et al. showed that noisy hex-
agonal lattices do not capture the spatial statistics of RGCmosaic. Moreover, the positional cor-
relations in measured mosaics extends to only 200–350 μm, far less than required for generating
Moiré interference [31]. More generally, Schottdorf et al. studied the spatial arrangement of
RGC dipole angles in cat beta cell and primate parasol RF mosaics [32]. According to the statis-
tical wiring hypothesis, dipole angle correlations should follow the spatial correlations of pre-
ferred orientations in the primary visual cortex, i.e. be positively correlated on short scales (0–
300 μm) and negatively correlated on larger scales (300–600 μm) in the retina. By introducing a
positive control point process that (i) reproduces both, the nearest neighbor spatial statistics and
the spatial autocorrelation structure of parasol cell mosaics and (ii) exhibits a tunable degree of
spatial correlations of dipole angles, they were able to show that, given the size of available data
sets, the presence of even weak angular correlations in the data is very unlikely.

If not from the structure of RGC mosaics, where does the apparent hexagonal organization
in orientation domains come from? A variety of self-organization models on all levels of
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biological detail have been shown to generate orientation domains with hexagonal arrange-
ments, e.g. [14, 92, 93, 103, 104, 106, 107] (notably including the earliest theory for the self-
organization of orientation preference by von der Malsburg in 1973). Thus, hexagonal order,
even if present, would not provide specific evidence in favor of Moiré interference between
RGCs. Future work will have to elucidate whether the long-range interaction model for orien-
tation domains [23, 101, 102] can not only explain the common design statistics, but at the
same time account for the observed hexagonal order in the visual cortex.

The impact of retinal orientation biases on visual cortical architecture
Compared to the dense sampling of stimulus space by cortical neurons, the repertoire of
detectors on the retina that input into a given cortical area is limited. For the cat visual path-
way, Alonso et al. estimated the number of LGN X-relay cells converging onto a single simple
cell in V1 to be* 20–40 [27], based on measuring the probability of finding a connection
between individual geniculate and cortical neurons with overlapping receptive fields. This
estimate was later confirmed by directly measuring population receptive fields of ON and
OFF thalamic inputs to a single orientation column [108]. With an expansion of around 1.5–
2.0 from X-cells in the retina to X-relay cells in the LGN [109, 110], each simple cell in V1
receives on average input from only* 10–25 RGCs. This not only implies that random affer-
ent inputs to cortical neurons might seed groups of V1 neurons with similar orientation pref-
erences but also that they might in fact impose substantial biases on the preferred orientation
that can be adopted by the cortical neurons. The postnatal development of orientation col-
umns could then be imagined as a dynamical activity-dependent process which refines and
remodels an initial set of small biases provided by the RGC mosaic model through Hebbian
learning rules and other mechanisms of synaptic plasticity. The up to now most striking
experimental evidence that retinal organization can impose local biases in V1 function archi-
tecture was revealed by the finding that the pattern of retinal blood vessels can specifically
determine the layout of ocular dominance columns in squirrel monkey [111] (for a modeling
study see [112]).

Dynamical models of orientation column formation generally assume no a priori con-
straints or biases as to which preferred orientation a given position in the cortical surface can
acquire. Usually random initial conditions determine which instance from the large intrinsic
repertoire of stable potential domain layouts is adopted. Including seeds and biases derived
from RGC mosaics in such models for the dynamical formation of V1 orientation domain lay-
outs may elucidate the potentially complex interplay between a sparse set of subcortical feed-
forward constraints and self-organization in a dense almost continuum-like intracortical
network. The present study provides a detailed description of a candidate set of such subcorti-
cal biases and, therefore, can serve as a foundation for such future investigations.

The common design as benchmark for models of visual cortical
development and function
The common design invariants comprise four distinct functions in addition to the apparently
invariant pinwheel density. As such, they represent a rather specific quantitative characteriza-
tion of orientation domain layouts. It is, thus, not surprising that entire model classes have
been rejected based on whether their predictions match these invariants.

Since the discovery of visual cortical functional architecture more than fifty years ago, a
large number of models based on a variety of circuit mechanisms has been proposed to
account for their postnatal formation (see [113–115] for reviews). Many of these models are
explicitly or implicitly based on optimization principles and attribute a functional advantage
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to the intriguing spatial arrangement of orientation domains. Because many, even mutually
exclusive, models could qualitatively account for main features of orientation domain layouts
such as the presence of pinwheels or the roughly periodic arrangement of columns, theory
could not provide decisive evidence on whether to favor one hypothesis over another. It is
only in recent years that the large available data sets have started to allow for a rigorous quan-
titative analysis of visual cortical architecture and its design principles in distinct evolutionary
lineages.

To date, abstract optimization models have been analyzed most comprehensively, providing
in many case the complete phase diagram. For instance, Reichl et. al. systematically evaluated
energy-minimization-based models for the coordinated optimization of orientation preference
and ocular dominance layouts [92, 93]. By quantitatively comparing model solutions to the
common design, they were able to rule out a whole variety of otherwise intuitive and plausible
principles for their emergence. It is desirable to obtain a similarly quantitative understanding
of more detailed models for the formation of orientation domains. In this regard, the analysis
of abstract models is informative because there is a many-to-one relationship between detailed
models of the visual cortical pathway and those abstract formulations. Abstract models often
can be shown to be representative of an entire universality class and, once comprehensively
characterized, the questions becomes whether more complex modeling schemes are simply
complicated instantiations of such a class.

For models of an intermediate degree of realism, semi-analytical perturbation methods can
be employed to explicitly provide this mapping. Using this approach, Keil & Wolf studied ori-
entation domain layouts predicted by a widely used representative of a general optimization
framework [103]. According to this framework, the primary visual cortex is optimized for
achieving an optimal tradeoff between the representation of all combinations of local edge-like
stimuli, i.e. all positions in the visual field and all orientations, and the overall continuity of this
representation across the cortical surface [116]. While this framework has successfully
explained a variety of qualitative aspects of orientation domain design, e.g. [116–118], the
authors found quantitative disagreement with the common design in all physiologically realis-
tic parameter regimes of the representative model [103]. Their analysis enabled an unbiased
comprehensive search of the model’s parameter space for a match to the experimental data and
indicated alternative more promising optimization hypotheses to explain the experimentally
observed V1 functional architecture.

Although the statistical wiring model is still rather simplistic, it is hard to make analytical or
semi-analytical progress as soon as RGC mosaics with the necessary degree of realism are con-
sidered. In this case, the question of whether models account for the cortical architecture can
only be answered with the approach we have pursued here, i.e. by systematic comparison
between their solutions, experimental data, as well as predictions from minimal approaches.

The results presented here show that this approach can indeed be successfully applied to
rule out candidate mechanisms as sufficient explanations for the emergence of V1 functional
architectures. We expect a re-examination of the quantitative predictions of other modeling
approaches to be highly informative about candidate mechanisms for the formation of V1
functional architecture.

This present study provides the first systematic assessment as to whether the common
design of orientation domains could result from an inherently random process, as realized
through the local feedforward structure of the early visual pathway rather than an optimization
process coordinated on large scales. Given the disagreement between the layouts predicted by
the statistical wiring model and the data, global circuit optimization as proposed by the long-
range interaction model currently is the only theory known to be capable of explaining the
common design of orientation domains in the primary visual cortex.
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Methods

Analysis of model and experimentally obtained orientation domain
layouts
Column spacing and pinwheel statistics of both data and simulation were analyzed using the
wavelet method introduced in [47, 119]. This method specifically takes into account that exper-
imentally measured domain layouts often exhibit local variations in column spacing (as
opposed to most model layouts) and is thus well-suited to unbiasedly compare the pinwheel
layouts of model layouts and experimental data. Matlab source code for preprocessing of exper-
imentally obtained layouts, column spacing analysis, and the analysis of pinwheel layouts can
be found in the Supplemental Material, along with four example cases from ferret V1 to test
the code. The full data set used in the present study is available on the neural data sharing plat-
form http://www.g-node.org/.

For comparison between model orientation domain layouts and experimentally obtained
layouts, both were analyzed with the exact same wavelet parameters settings. Raw difference
images obtained in the experiments were Fermi bandpass filtered as described in [23]. Filter
parameters were adapted to the column spacings of the different species such that structures
on the relevant scales were only weakly attenuated (see [23]).

To determine the local column spacing of the layouts, we first calculated wavelet coefficients
of an image I(x), averaged over all orientations

Cðy;LÞ ¼
Z

dφ
p

Z
d2x IðxÞ � �yðx;L;φÞ

����
���� ð18Þ

where y is the position, φ the orientation and Λ the scale of the wavelet ϕy(x, Λ, φ). We used
complex-valued Morlet wavelets composed of a Gaussian envelope and a plane wave

�ðxÞ ¼ 1

s
exp � x2

2s2

� �
� exp ðik�xÞ ð19Þ

and

�yðx;L;φÞ ¼ �ðO�1ðφÞðy� xÞÞ: ð20Þ

The matrix O(φ) is the two dimensional rotation matrix (Eq (25)). To compute the wavelet ori-
entation average in Eq (18), 16 equally spaced wavelet orientations were used. For a given Λ,
the parameters of the Morlet wavelet were chosen as

k� ¼
2p
L

1

0

 !
ð21Þ

s ¼ xL
2p

: ð22Þ

ξ determines the size of the wavelet and was chosen to be ξ = 7, as in [23]. This captures column
spacing variations on scales larger than 4 hypercolumns while at the same time enabling robust
column spacing estimation. To obtain the map of local column spacing Λlocal(y), we calculated
the scale Λ with the largest wavelet coefficient

LlocalðyÞ ¼ argmaxL Cðy;LÞð Þ ð23Þ

for every position y.
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To estimate the pinwheel density and other pinwheel layout parameters, we used a fully
automated procedure proposed in [23]. We refer to the Supplemental Material accompanying
[23] for further details.

Amathematical treatment of the Moiré-interference model
Here, we examine the analytically most tractable variant of the statistical wiring model, in
which ON and OFF center cells are localized on perfectly hexagonal lattices L, (Fig 2B), that
may exhibit different lattice constants r and r0,

L ¼
1

0

 !
kþ 1

2

1ffiffiffi
3

p
 !

l

 !
f 8 k; l 2 Z; ð24Þ

where f = r, r0 is the lattice constant. Describing a rotation of the lattice vectors by the rotation
matrix

OðaÞ ¼
cos ðaÞ � sin ðaÞ

sin ðaÞ cos ðaÞ

 !
; ð25Þ

the ON mosaic is rotated by an angle α, the OFF lattice by an angle α0 (Fig 2B). Paik & Ringach
found in numerical simulations that in this case, Moiré interference between two hexagonal
RGC mosaics results in a hexagonal layout of orientation domains [28, 29, 83]. We now first
derive an explicit expression for cortical receptive fields RFy spatially varying with y predicted
by the model. Calculating the preferred orientation of these receptive fields then provides an
explicit expression for the hexagonal domain layouts.

The sum in Eq (3) can be evaluated analytically for rectangular lattices using Jacobi Theta
functions [120]. To solve the Moiré interference model, we used the fact that every hexagonal
lattice can be written as sum L ¼ L1 þ L2 of two rectangular lattices with orthogonal base vec-
tors by separating even and odd numbers in l and shifting the l-sum so that the x-component is
equal to zero. The two rectangular lattices are

L1 ¼
1

0

 !
kþ

0ffiffiffi
3

p
 !

l

 !
f 8 k; l 2 Z;

L2 ¼
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kþ

0ffiffiffi
3

p
 !
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2

1ffiffiffi
3

p
 ! !

f 8 k; l 2 Z:

ð26Þ

Evaluating the infinite Gaussian sum (Eq (3)) yields the result for a single sub lattice (either
ON or OFF)

RFON=OFF
a;r;y ðxÞ ¼ T Y3 be�; t

� 	
Y3 ber; kð Þ þY4 be�; t

� 	
Y4 ber; kð Þ� 	 ð27Þ

where

b ¼ xs2
s þ ys2

r

s2
s þ s2

r

ð28Þ

er ¼ �p
r

cos ðaÞ

sin ðaÞ

 !
ð29Þ
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and Θ3 and Θ4 are the third and fourth Jacobi theta functions [120]. The cortical receptive
fields RFy(x) are obtained by summing the ON and OFF sublattices

RFyðxÞ ¼ RFON
a;r;yðxÞ � RFOFF

a0;r0 ;yðxÞ ; ð34Þ

where α (α0) and r (r0) are the angle and the lattice spacing of the ON (OFF) lattice. The inset of a
receptive field in Fig 3B shows a plot of Eq (34). These receptive fields resemble simple cell recep-
tive fields in V1 with a size of about 1° for our choice of parameters [121, 122]. An implementa-
tion/visualization of the equations for receptive fields can be found in the Supplemental Material.

Tuning curves from receptive fields
The response Ry of a neuron with receptive field RF(x) to a sine wave grating can be calculated
using L(x) = exp(−ik x) as a stimulus in Eq (5). Evaluating the integral then corresponds to
Fourier transforming the receptive field RF(x). Denoting the Fourier transform of the receptive
field as

RyðkÞ ¼
1

2p

Z
d2xRFyðxÞe�ikx; ð35Þ

we refer to the absolute value jRyðkÞj as the amplitude spectrum of the receptive field. Given

the above definition, the amplitude spectrum represents the response to a sine wave grating
with wave vector k = (k cos(ϑ), k cos(ϑ)), where ϑ is the grating orientation and k its spatial fre-
quency. A tuning curve for spatial frequencies k and orientations ϑ is given by

TCðW; kÞ ¼ jRyðk cos ðWÞ; k sin ðWÞÞj: ð36Þ

We calculated the Fourier transform of Eq (34) by transforming Eq (2) and subsequently sum-
ming over the two rectangular lattices L1 and L2 in Eq (26). Interchanging summation and
integration is valid because all infinite sums are uniformly convergent. The result is

RðkÞON=OFFa;r;y ¼ U Y3ðce�; nÞY3ðcer; zÞ þY4ðce�; nÞY4ðcer; zÞ
� 	

; ð37Þ

where

U ¼ 2ps2
rs

2
sffiffiffi

3
p

r2
exp �iky� 1

2
k2 s2

s þ s2
r

� 	� �
ð38Þ

c ¼ ðy� is2
skÞ ð39Þ
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n ¼ exp
�2p2s2

s

3r2

� �
ð40Þ

z ¼ exp
�2p2s2

s

r2

� �
: ð41Þ

The Fourier transform of cortical receptive fields is given by the sum of the ON and OFF sub-
lattice Fourier transforms

RyðkÞ ¼ RðkÞONa;r;y �RðkÞOFFa0 ;r0 ;y ; ð42Þ

where we suppressed the dependencies on α, α0, r, r0 on the left hand side. Receptive fields
depend on the two scales σr and σs. With increasing σs, more RGCs are pooled to form the corti-
cal receptive field. If the cortical receptive field is dominated by more than two RGCs, it can
exhibit multiple ON and OFF subregions. The spatial arrangement of these ON and OFF sub-
region mirrors the hexagonal lattices of the ON and OFF center RGCs. The parameter σs must
be of a minimal size since for very small values of many cortical cells are connected with only a
single, dominant RGC input and exhibit no orientation selectivity. Varying σr does not qualita-
tively change the shape of cortical receptive fields.

Extracting preferred orientation and spatial frequency from amplitude
spectra of receptive fields
For simple cell receptive fields with one ON and one OFF subregion, the amplitude spectrum
jRðkÞj will typically look as in Fig 10A. We follow [28, 82] and define the preferred angle as
ϑpref : = arg(μ)/2, where

m ¼
R
d2k jRðkÞj � e2i argðkÞkR

d2k jRðkÞj : ð43Þ

While there is consensus about the definition of the preferred orientation, methods for
extracting the preferred spatial frequency differ within the literature. Ringach proposed to use
kpref = jμj [82], referred to as Center-of-Mass Method. More commonly, the circular variance

Fig 10. A comparison of different methods for extracting RF parameters from their amplitude spectrum. A Amplitude spectrum jR(k)j of a simple cell
receptive field calculated with Eq (42) in the manuscript. Circles indicate the preferred spatial frequency as extracted by maximizing the CV (yellow), by the
Center-of-Mass Method (brown), and the MaximumMethod (pink). B The Tuning curves corresponding to the green, cyan and blue circles in A, normalized
relative to their maximum.C The Tuning curves corresponding to the brown, the yellow and the pink circles in A, normalized relative to their minimum.D
Circular variance of the various tuning curves calculated via Eq (44) as function of spatial frequency. The brown, the yellow and the pink line correspond to
the preferred spatial frequency as extracted by the three methods.

doi:10.1371/journal.pcbi.1004602.g010
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CV(k) [123–125]

CVðkÞ ¼ j
R 2p

0
dWTCðW; kÞe2iWjR 2p

0
dWTCðW; kÞ ; ð44Þ

is first computed as a measure of orientation selectivity at a given spatial frequency k. Maxi-
mizing the circular variance across all spatial frequencies is then performed to obtain an esti-
mate of preferred spatial frequency:

kpref ¼ argmax
fkg

CVðkÞð Þ: ð45Þ

We refer to this method as CV maximization. Finally, one can use the maximum of the ampli-
tude spectrum

kpref ¼ argmax
fkg

jRðkÞjð Þ; ð46Þ

as an estimate of the preferred spatial frequency (Maximummethod). We argue that Maximum
method and CVmaximization in most cases yield similar results. They extract preferred spatial
frequencies that one would obtain when searching for the “strongest response” by presenting a
set of gratings of varying orientation and spatial frequency to a subject [125–127]. In contrast,
estimates made with the center-of-mass method are usually substantially smaller then this intui-
tive measure (Fig 10C and 10D). As a consequence, the orientation selectivity index defined as

OSI ¼ j
R 2p

0
dWTCðW; kprefÞe2iWjR 2p

0
dWTCðW; kprefÞ

ð47Þ

for all three methods, will usually be substantially smaller, when estimated with the Center-of-
Mass method compared to the other two methods. Among all three methods, the Maximum
method has the advantage that its estimates are unaffected by monotonic nonlinearities applied
to R commonly used to convert it to a firing rate of a neuron. For this reason, the Maximum
method is our method of choice for extracting the preferred spatial frequency from amplitude
spectra of receptive fields.

Extracting the spatial progression of preferred orientation
Using the equations for the receptive fields of cortical neurons in the Moiré interference model,
we extracted the spatial progression preferred orientation and spatial frequency from their
squared amplitude spectrum:

jRyðkÞj2 / expð�k2ðs2
s þ s2

r ÞÞ � Ya;r
3 Ya;r

3 þYa;r
4 Ya;r

4 �Ya0 ;r0
3 Ya0 ;r0

3 �Ya0;r0
4 Ya0;r0

4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GyðkÞ

���������

���������

2

; ð48Þ

with abbreviationYa;r
i Ya;r

i ¼ Yiðce�ða; rÞ; tÞYiðcerða; rÞ; zÞ. jRðkÞj2 is composed of a rota-

tionally symmetric Gaussian envelope and a non-rotationally symmetric part Gy(k) varying in
space y. To calculate the preferred orientation ϑpref and spatial frequency kpref, we expanded
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the non-rotationally symmetric part jGy((k)j2 to quadratic order in k:

jRyðkÞj2 � exp �k2ðs2
s þ s2

r Þ
� 	 jG0

yj2 þ
1

2
k1 k2ð ÞHy

k1

k2

 ! !
; ð49Þ

whereHy is the Hessian matrix

Hy ¼

@2jGyj2
@k21

@2jGyj2
@k1 @k2

@2jGyj2
@k2 @k1

@2jGyj2
@k22

0
BBBBB@

1
CCCCCA

�����������
k ¼ 0

�
ay by

by cy

0
@

1
A ð50Þ

and G0
y ¼ Gyðk ¼ 0Þ. Since Gy(k) = Gy(−k), this Taylor expansion only contains terms of even

power in k.
Using the fact that

hðyÞ ¼ cos y sin yð ÞHy

cos y

sin y

 !
¼ ay cos

2yþ 2by cos y sin yþ cy sin
2y ð51Þ

yields the second directional derivative in the direction of (cos θ, sin θ), ϑpref can be found as
the maximum of h(θ), i.e. the direction of largest increase in amplitude spectrum,

Wpref ðyÞ ¼ atan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðay � cyÞ2 þ 4b2y

q
� ay þ cy

2by

0
@

1
A: ð52Þ

This formula for ϑpref(y) represents an expression for the orientation domain layouts produced
by the Moiré interference model for hexagonal RGC lattices.

To calculate the smoothed domain layout of the Moiré interference model analytically, we
identified the low frequency components of our analytical solution. To this end, we expanded
the Jacobi theta functions in Eq (42) [120]

jRyðkÞj2 ¼
X

j

Cj
y exp � 1

2s2
ðk� aj

yÞ2
� �

þ Cj
y exp � 1

2s2
ðkþ aj

yÞ2
� �� �

ð53Þ

where Cj
y and a

j
y are determined by Eq (42). According to this equation, the power spectra of

receptive fields in the Moiré interference model is represented by an infinite sum of Gaussians,
each mirrored at the origin (0, 0) of Fourier space. The preferred orientation of a receptive field
represented by such an infinite sum is set by the direction in which the “center-of-mass” of the
Gaussians is located. Due to the symmetry of the power under spatial inversion, there are two
peaks located at ϑ(y) and π + ϑ(y). The direction towards the center-of-mass of the peak is
obtained through the complex number

mðyÞ ¼
X

j

Cj
y � jaj

yj exp ð2i argðaj
yÞÞ ð54Þ

with Cj
y and a

j
y defined as in Eq (53). The preferred orientation then is arg(μ(y))/2. Rewriting

this sum and substituting the respective expressions for Cj
y and a

j
y, we obtained

mðyÞ ¼
X
m;n;o;p

f ðm; n; o; pÞ exp ð2iyðne� þmer � oe0
r � pe0

�ÞÞ; ð55Þ
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with coefficients f(m, n, o, p). This is a decomposition of the orientation domain layout of the
Moiré interference model into Fourier modes, indexed by four numbersm, n, o, p = 0, ±1, ±2, . . ..
Table 2 lists the first terms of this series in ascending spatial frequency order. By rewriting μ! z
and selecting only the lowest contributing spatial frequencies, we obtain Eq (7). The phase factor

u0 ¼ ei ðaþa0Þ eia
0
r þ eiar0

� 	
eiar þ eia0r0

ð56Þ

is associated with an overall shift of all preferred orientations. Note that ju0j2 = 1.

Correlated noise on hexagonal RGCmosaics
Realization of a random distortion field y(x) were generated by finding a complex-valued field
z(x) of which real and imaginary part correspond to dislocations in x and y direction, respec-
tively. We constructed such a field using established methods (e.g. [51]) in the Fourier domain.
In short, we drew complex-valued amplitudes a(k) from a Gaussian distribution satisfying

haðkÞaðk0Þi ¼ ~f ðkÞ � dk;k0 , where ~f ðkÞ was a chosen power spectrum, in our case a Gaussian

with width 1/σ, σ being the desired correlation length. The corresponding amplitude spectrum
was then inversely Fourier transformed to obtain a complex-valued field z(x). Real and imagi-
nary part of this field constitute two independent real-valued Gaussian random fields, both
with the desired spatial statistics. We then transformed the coordinates of the hexagonal ON/
OFF lattice points ri = (xi, yi) according to xi ! xi þ Z<ðzðriÞÞ and yi ! yi þ ZIðzðriÞÞ. For
the displacements of ON and OFF lattices, we used two independent complex-valued Gaussian
random field realizations. Source code to generate hexagonal RGC mosaics with correlated spa-
tial noise along with Matlab code for visualization is part of the supplementary material to this
manuscript.

Generating PIPP RGCs mosaics
We generated RGC mosaics with a pairwise interacting point process using the code published
by Schottdorf et al. [32] derived from the method developed in [49, 82].

Supporting Information
S1 Code. Source code for pinwheel statistics analysis and simulating statistical connectivity
model layouts with a variety of RGC mosaics. Numerical implementation of the statistical

Table 2. Lowest frequency contributions of the orientation domain layout predicted by the Moiré inter-
ferencemodel. The vectors ki are the wave vectors and jkij their absolute values. ui denotes the phase fac-
tors of the complex-valued coefficient f(m, n, o, p) in Eq (55) (see also Eq (7)). The constant phase factor u0 is
given by Eq (56). n.d. means not determined.

m n o p ki jkij Phase factor ui

1 1 1 1 2ððer � e0
rÞ þ ðe� � e0

�ÞÞ kc u0e
i4π/3

-1 -1 -1 -1 �2ððer � e0
rÞ þ ðe� � e0

�ÞÞ kc u0e
i4π/3

1 -1 1 -1 2ððer � e0
rÞ � ðe� � e0

�ÞÞ kc u0e
i2π/3

-1 1 -1 1 �2ððer � e0
rÞ � ðe� � e0

�ÞÞ kc u0e
i2π/3

0 2 0 2 4ðe� � e0
�Þ kc u0

0 -2 0 -2 �4ðe� � e0
�Þ kc u0

2 0 2 0 4ðer � e0
rÞ

ffiffiffi
3

p
kc n.d.

-2 0 -2 0 �4ðer � e0
rÞ

ffiffiffi
3

p
kc n.d.

doi:10.1371/journal.pcbi.1004602.t002
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wiring model.We provide all necessary code to calculate single neuron properties and orien-
tation domain layouts along with a Mathematica program which contains the analytical solu-
tion for both, an example single neuron and the domain layout obtained from a perfect and
infinite lattice. The C-program ‘calculate_single_neuron.cpp’ calculates the same for a single
neuron numerically. The C-program is provided to illustrate the use of the rfanalyzer class.
The c-program ‘calculate_map.cpp’ calculates the same properties as ‘calculate_single_-
neuron.cpp’ but for a whole array of cells. After finishing a run, this program generates a set
of ascii files in which the output is stored. These files are read in and analyzed by the Matlab
program ‘plot_results.m’. It calculates the pinwheel density, pinwheel distance distributions,
mean pinwheel distance and pinwheel density fluctuations as a function of subregion size.
We compiled the code with gcc [g++ (Ubuntu 4.8.2-19ubuntu1) 4.8.2] and the gsl:

g++ ./calculate_single_neuron.cpp -lgsl -lgslcblas -O3 -march = native
g++ ./calculate_map.cpp -lgsl -lgslcblas -O3 -march = native

For this article, we have calculated orientation domain layouts with aspect ratio 22x22Λ, sam-
pled with 4096x4096 pixels. This corresponds to� 6.5 μm per cortical unit for our standard
combination of parameters (r = r0 = 170 μm and Δα = 7°). Experimental data The folder
‘map_data’ contains a data folder with single condition layouts and various ROIs for four fer-
rets cases. It also contains two Matlab files, ‘run_analysis.m’ and ‘plot_results.m’ to run the
analysis and display the results. The full data set used in the present study is available on the
neural data sharing platform http://www.g-node.org/.
(ZIP)
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